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Abstract

Pulmonary perfusion with dynamic contrast‐enhanced (DCE‐) MRI is typically

assessed using a single‐input tracer kinetic model. Preliminary studies based on per-

fusion CT are indicating that dual‐input perfusion modeling of lung tumors may be

clinically valuable as lung tumors have a dual blood supply from the pulmonary and

aortic system. This study aimed to investigate the feasibility of fitting dual‐input tra-
cer kinetic models to DCE‐MRI datasets of thoracic malignancies, including malig-

nant pleural mesothelioma (MPM) and nonsmall cell lung cancer (NSCLC), by

comparing them to single‐input (pulmonary or systemic arterial input) tracer kinetic

models for the voxel‐level analysis within the tumor with respect to goodness‐of‐fit
statistics. Fifteen patients (five MPM, ten NSCLC) underwent DCE‐MRI prior to

radiotherapy. DCE‐MRI data were analyzed using five different single‐ or dual‐input
tracer kinetic models: Tofts‐Kety (TK), extended TK (ETK), two compartment

exchange (2CX), adiabatic approximation to the tissue homogeneity (AATH) and dis-

tributed parameter (DP) models. The pulmonary blood flow (BF), blood volume (BV),

mean transit time (MTT), permeability‐surface area product (PS), fractional interstitial

volume (vI), and volume transfer constant (KTrans) were calculated for both single‐
and dual‐input models. The pulmonary arterial flow fraction (γ), pulmonary arterial

blood flow (BFPA) and systemic arterial blood flow (BFA) were additionally calculated

for only dual‐input models. The competing models were ranked and their Akaike

weights were calculated for each voxel according to corrected Akaike information

criterion (cAIC). The optimal model was chosen based on the lowest cAIC value. In

both types of tumors, all five dual‐input models yielded lower cAIC values than their

corresponding single‐input models. The 2CX model was the best‐fitted model and

most optimal in describing tracer kinetic behavior to assess microvascular properties

in both MPM and NSCLC. The dual‐input 2CX‐model‐derived BFA was the most sig-

nificant parameter in differentiating adenocarcinoma from squamous cell carcinoma

histology for NSCLC patients.
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1 | INTRODUCTION

Dynamic contrast‐enhanced magnetic resonance imaging (DCE‐MRI)

is a well‐established imaging technique for the estimation of tissue

microvascular function in clinical settings.1–5 To obtain DCE‐MRI

data, a contrast agent (CA) is injected into the patient and multiple

MR images are acquired at the same spatial location over a time per-

iod of approximately five minutes. The temporal passage of CA

through tissue reflects its microcirculation and can be used to assess

and map out differences in tracer kinetic parameters measuring

blood flow, vascular permeability, and tissue volume fractions. The

enhancement curve pattern provides relevant information about the

biological behavior of tumors.6

Lung cancer is the leading cause of cancer‐related deaths in the

majority of countries.7 Nonsmall cell lung cancer (NSCLC) accounts

for approximately 80% of all lung cancers whereas malignant pleural

mesothelioma (MPM) is a rare and highly lethal tumor affecting the

lining around the lungs and is usually associated with asbestos expo-

sure.8,9 Malignant pleural mesothelioma occurs in any part of the vis-

ceral pleura that covers the lungs and the parietal pleura that lines

the inner surfaces of the chest wall of the pleural cavity; about 80%

occurs in the visceral pleura and 20% occurs in the parietal pleura.10

The blood supply of the parietal pleura emanates from systemic

sources11,12: intercostal arteries, the subclavian and internal thoracic

arteries, and phrenic arteries. The visceral pleura derives its arterial

blood supply from bronchial arterial circulation and from the pul-

monary arteries which arise beneath the pleura from the pulmonary

circulation.11,13 Lung tumors may also have a dual blood supply, due

to the pulmonary and aortic systems, with a circulatory pattern that

is specific to their histologic types.14 Previous studies have per-

formed a single‐input pulmonary or aortic perfusion computed

tomography (PCT),15–19 DCE‐MRI assessment20,21 or, in contrast to

the above studies, which measured the arterial input function (AIF),

a few DCE‐MRI studies used a reduced model, e.g., Brix model in

MPM, where the model assumed a predefined AIF.22,23 Recent stud-

ies using PCT have reported that a dual‐input maximum (or steepest)

slope analysis is valuable in NSCLC.24–27 The dual‐input implementa-

tion identified the proportion of the pulmonary (or systemic) arterial

perfusion to the total perfusion in the lung tissue, and indicated that

perfusion index derived from dual‐input maximum slope PCT analysis

has potential to be an important biomarker for thoracic malignancies.

To date, there have been no DCE‐MRI lung studies using dual‐in-
put tracer kinetic models. The dual‐input method of DCE‐MRI has

already been applied to liver perfusion studies to separately evaluate

the hepatic arterial and portal venous perfusion.28,29 However, appli-

cation of the dual‐input method to lung tumors is challenging

because the time difference between the pulmonary and systemic

arterial circulations is small (within several seconds). This may result

in similar temporal enhancement pattern of the CA between the two

arteries as compared with that between the hepatic artery and the

portal vein in the liver where the time difference is of the order of

10–20 s. In this study, we sought out to extend the previously

developed dual‐input tracer kinetic model to lung DCE‐MRI studies.

The aim of this study was to illustrate the feasibility of dual‐input
tracer kinetic modeling by comparing single‐ and dual‐input
approaches, for the analysis of DCE‐MRI data from two different types

of thoracic malignancies (MPM and NSCLC), and to compare five dif-

ferent tracer kinetic models for the voxel‐level analysis of DCE‐MRI

data with respect to goodness‐of‐fit statistics in MPM and NSCLC.

2 | METHODS AND MATERIALS

2.A | Dual‐input tracer kinetic modeling of lung
tumor perfusion

A detailed analysis of the model has been described in the supple-

mentary document (supplementary document 1) and in part in our

previous publications.30 This work considered dual‐input sources for

the plasma flow F (in mL/min) to the lung tissue, i.e., flow from the

pulmonary artery FPA and flow from the aorta (representing bron-

chial artery, intercostal artery, etc.) FA. Denoting the CA blood con-

centration‐time curves in the pulmonary artery and aorta as CPA(t)

and CA(t) (in g/mL), respectively, CA concentration in the lung tissue

CT(t), can be expressed as.

CT tð Þ ¼ RT t� tLag;T
� �� FPA=VTð ÞCPA tð Þ þ FA=VTð ÞCA tð Þ

1� HLV

¼ F
VT

RT t� tLag;T
� �� γCPA tð Þ þ 1� γð ÞCA tð Þ

1� HLV

¼ QT;PA t� tLag;T
� �� CPA tð Þ

1� HLV
þQT;PA t� tLag;T

� �� CA tð Þ
1� HLV

¼ QT t� tLag;T
� �� Cin tð Þ

1� HLV

(1)

where VT is the volume of tissue (in mL), FPA=VT, FA=VT and

F=VT ¼ FPA þ FAð Þ=VT are the pulmonary arterial perfusion, systemic

arterial perfusion and total pulmonary perfusion (in mL/min/mL),

respectively, γ ¼ FPA=F is the pulmonary arterial flow fraction, HLV is

the hematocrit of blood in major vessels (≅ 0.45)31, tLag;T is the dif-

ference in bolus arrival time (in min) between CPA(t) (or CA[t]) and

CT(t), RT(t) is the tissue residue function (TRF), which is the object

for tracer kinetic modeling. The pulmonary impulse response func-

tions (IRF) of the tissue (in mL/min/mL) is QT;PA tð Þ ¼ FPA=VTð ÞRT tð Þ,
QT;A tð Þ ¼ FA=VTð ÞRT tð Þ is the systemic IRF of the tissue (in mL/min/

mL), QT tð Þ ¼ F=VTð ÞRT tð Þ is the total IRF of the tissue (in mL/min/

mL), and Cin tð Þ is the net arterial input function (AIF). The convolu-

tion operation � in Eq. (1) can be visualized as a reflection of QT(t)

about t = 0 and by summing the overlapping areas of the reflected

QT(t) and Cin tð Þ as the reflected QT(t) is shifted along the positive t

direction. Thus, the IRF QT(t) describes the modeled time‐resolved
proportion of retained CA in the tissue as a result of giving one unit‐
amplitude of an infinitely narrow bolus in the arterial inlet. Further-

more, different tracer kinetic models have different mathematical

forms of IRF due to their different physiologic scenarios in the capil-

lary‐tissue system. Please note that like previous dual‐input kinetic

modeling studies for the liver,28,29 a single lag time (tLag;T) was used

for both pulmonary and systemic arterial delays to the tissue.

Because the dual arterial inputs join in the capillary bed, they can
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effectively be replaced by a single net input function with their

mixed contributions (i.e., weighted sum of the dual AIFs), and

thereby a single IRF can appear as shown in Eq. (1). Thus, CT tð Þ for

single‐input models can be derived either from Cin tð Þ ¼ CPA tð Þ with

γ ¼ 1 for the pulmonary AIF or from Cin tð Þ ¼ CA tð Þ with γ ¼ 0 for

the systemic AIF.

Because there is always a trade‐off between the complexity of

the model and the estimation of model parameters from real‐world

data,32 five different single‐ or dual‐input tracer kinetic models rang-

ing from simple to complex: the Tofts‐Kety (TK), extended TK (ETK),

two compartment exchange (2CX), adiabatic approximation to the

tissue homogeneity (AATH), and distributed parameter (DP) models

were compared (See supplementary document 1). Notations of vari-

ous parameters used in this study are provided in supplementary

document 2.

2.B | Patients

This prospective study was approved by the institutional review

board, and all patients have given written informed consent. In brief,

15 patients with single primary thoracic malignancies (five MPM, 10

NSCLC) were included in this study. Ten NSCLC patients were fur-

ther grouped into adenocarcinoma (AC) and squamous cell carcinoma

(SCC) histologies. These patients underwent MRI scans as a part of

their radiation therapy simulation scan. The patient group included 3

men and 2 women (age range, 59–77 yr; mean age, 69.6 yr) in MPM

group, and 6 men and 4 women (age range, 51–89 yr; mean age,

72 yr) in NSCLC group. All MPM patients had epithelioid histologies.

Out of ten NSCLC patients, five were AC histology (stage I or II = 2,

stage III or IV = 3) and five were SCC histology (stage I or II = 1,

stage III or IV = 4).

2.C | Imaging protocol

MR image acquisition was performed on a 3T Philips Ingenia scanner.

DCE‐MRI was obtained using a coronal four‐dimensional (4D) T1‐
weighted high‐resolution imaging method with volume excitation (4D

THRIVE) sequence during free breathing. The 4D THRIVE uses con-

trast‐enhanced timing robust acquisition, k‐space order technique and

parallel imaging to achieve higher spatiotemporal resolution.33,34 Fat

suppression was turned off to achieve high temporal resolution in the

4D THRIVE sequence. For DCE‐MRI of the five NSCLC patients, a

total of 130 dynamic sequences were obtained with 30 coronal slices

that had 2.5 mm slice thickness, TR/TE of 4.2/1.9 ms, flip angle (FA)

of 15°, in‐plane acquisition resolution of 2.5 mm, and temporal resolu-

tion of 2 s. For DCE‐MRI of the five MPM patients, because of the

extensive spread of the disease in the entire lung, a temporal resolu-

tion of 5 s was attempted for all the patients with TR/TE of 4.2/

1.9 ms, FA of 15° and in‐plane acquisition resolution of 2.5 mm.

Among these, three patients were acquired with a slice thickness of

3 mm, and the other two with slice thicknesses of 5 mm and 10 mm

to cover the entire disease while keeping the same temporal resolu-

tion. The bolus injected with a power injector at a rate of 2 mL/s was

0.2 mL/kg of gadolinium‐diethylenetriaminepentaacetic acid (Gd‐
DTPA, Magnevist) followed by saline flush. Prior to DCE‐MRI acquisi-

tion, 3D coronal fast‐field echo T1‐weighted images with five differ-

ent FA scans (5, 15, 20, 25 and 30°) with the same orientation and

field of view as the dynamic scan were acquired to generate T1 values

of these tumors. The native T1 value for each voxel was estimated

based on the multiple FA method. T1 at each time point in the

dynamic series was determined and the concentration of CA was

determined from the change in T1 by assuming the longitudinal relax-

ivity of the CA to be 4.5 s−1mM−1 at 3 T.35–37

2.D | Image processing and analysis

A groupwise image registration method implemented in elastix was

used for compensating any potential misalignment in DCE‐MRI. The

method was based on principal component analysis and made use of

the fact that intensity changes in DCE‐MRI can be described using a

low‐dimensional signal model.38,39 In such an approach, all DCE‐MRI

time‐points were simultaneously registered to a mean space. Then,

precontrast T1‐weighted images acquired at multiple FAs were also

registered to the first set of DCE‐MR images by using 3D translation,

rigid, affine and b‐spline deformable registration methods. Effect of

motion compensation on DCE‐MRI metrics was also evaluated.

To derive dual‐input curves and delineate tumor margins, regions

of interest (ROIs) were placed by an experienced radiation oncolo-

gist. To mitigate any potential error in the measurement of AIF, the

following criteria for arterial input ROI selection were used – (a) the

dual AIF was measured on the main pulmonary and aorta near cen-

tral slices in the image volume, (b) bolus arrival time was earlier in

the pulmonary artery than in the aorta, (c) pulmonary peak concen-

tration was higher than aortic peak concentration, and (d) pulmonary

and aortic concentrations in the delayed washout phase were at

about the same level. The same dual‐input curves, which were

extracted from the ROIs in the pulmonary trunk (or the main left/

right pulmonary artery) and in the aorta at the level between the

aortic arch and descending aorta for each patient, were used for all

kinetic models. For fitting the dual‐input curves, Lee’s AIF model was

adopted.29 The model led to a new form of analytic solution of CT(t)

by imposing the recirculation delay in addition to the onset time of

the first‐pass bolus upon Orton’s AIF model40 (see supplementary

document 1). This resulted in an AIF model that was the superposi-

tion of the first and second pass of the bolus and fitted at the same

time to the full‐pass data of the arterial concentration‐time curve. A

freehand ROI was carefully drawn to generate concentration‐time

curves in tumor volume. All model parameters were calculated using

the BOBYQA nonlinear optimization algorithm,41 which minimizes

the sum squared difference between model fit and data. The follow-

ing parameters were computed for each single‐ or dual‐input model:

pulmonary blood flow (BF, mL/min/100 g), blood volume (BV, mL/

100 g), mean transit time (MTT, min), permeability‐surface area pro-

duct (PS, mL/min/100 g), fractional interstitial volume (vI), and volume

transfer constant (KTrans, mL/min/mL). For each dual‐input model, pul-

monary arterial flow fraction (γ), pulmonary arterial blood flow (BFPA,
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mL/min/100 g) and systemic arterial blood flow (BFA, mL/min/100 g)

were also calculated. Examples of the fitting of a voxel‐level concen-
tration‐time curve in both MPM and NSCLC are shown in Figure 1.

2.E | Model comparison

The parameterization rules described by Lee, et al. for fair comparisons

among different models were employed by using the same number of

fitting parameters (i.e., F=VP, PS/VP, vP, vI and tLag;T for single‐input
models and along with an additional parameter γ for dual‐input mod-

els) (see supplementary document 1).29 Typically, TK and ETK models

have fewer parameters because KTrans is considered a lumped

parameter. In our analysis, KTrans was decomposed into E and F=VT

(and thereby into F and PS) under a mixed flow‐ and permeability‐lim-

ited condition for the TK and ETK models with a modified assumption

that vP ≪ vI , but vP≠0 for the TK model so that the five models had

the same complexity in the number of fitting parameters.29

To compare the fitting quality of the five different single‐ or

dual‐input tracer kinetic models, the same approach described by

Brix, et al. was used.42 For each voxel, Akaike information criterion

(AIC) was calculated and corrected for small sample sizes (cAIC).42

Based on the cAIC values, the optimal model was chosen by select-

ing the minimum cAIC (cAICmin). The relative strength of support for

each of the five models was quantified by Akaike weight (wm), which

(a) MPM

F I G . 1 . Two central slices of (a) a
malignant pleural mesothelioma (MPM)
patient and (b) a nonsmall cell lung cancer
(NSCLC) patient showing manual outlines
of tumors (yellow) and a rectangular
window (green) over the tumors used to
generate parameter maps with pulmonary,
systemic and dual arterial input conditions
in Figures 2–4, respectively. The blue and
magenta squares indicate the locations for
sampling the pulmonary arterial and aortic
input concentration‐time curves,
respectively. Graphs illustrate examples of
fitting the dual arterial input curves (middle
left) and fitting the five different models
with dual arterial input function (AIF)
(middle right), pulmonary AIF only (lower
left) and systemic AIF only (lower right) to
voxel‐level tissue concentration‐time
curves, which were sampled from (a) the
MPM and (b) NSCLC, respectively. TK –
Tofts‐Kety, ETK – extended TK, 2CX – two
compartment exchange, AATH – adiabatic
approximation to the tissue homogeneity,
and DP – distributed parameter.
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expresses the probability for a model to be the best among a set of

models. To assess the clinical significance of single‐ or dual‐input
kinetic modeling, the intratumoral median values of kinetic parame-

ters were compared between AC and SCC histologies for NSCLC

patients for each model.

2.F | Statistical analysis

On all analyzed voxels, the following were performed: (a) Pearson’s

correlation analysis to detect the linear relationship between the

estimates of the same parameter for the five models, (b) Wilcoxon

signed rank test to compare differences between the different

models, and (c) Wilcoxon rank sum test to determine whether

parameters have similar distribution between MPM and NSCLC for

each parameter and model. To investigate whether a particular

model provides a significantly better fit to the same dataset,

cAICmin and wm of the five models were investigated. All analyses

were performed using the statistical software R 3.3.2. A Wilcoxon

rank sum test was also performed to test the statistical significance

of using single‐ or dual‐input kinetic model parameters in differenti-

ating between AC and SCC histologies. A P < 0.05 was considered

statistically significant.

(b) NSCLC

F I G . 1 . Continued
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(a) MPM: Pulmonary Arterial Input
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(b) NSCLC: Pulmonary Arterial Input
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F I G . 2 . Pulmonary arterial input kinetic parameter maps of the pulmonary blood flow (BF), blood volume (BV), mean transit time (MTT),
permeability‐surface area product (PS), fractional interstitial volume (vI) and volume transfer constant (KTrans) in (a) a malignant pleural
mesothelioma patient and (b) a nonsmall cell lung cancer patient. TK – Tofts‐Kety, ETK – extended TK, 2CX – two compartment exchange,
AATH – adiabatic approximation to the tissue homogeneity, and DP – distributed parameter.
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(a) MPM: Systemic Arterial Input
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(b) NSCLC: Systemic Arterial Input
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F I G . 3 . Systemic arterial input kinetic parameter maps of the pulmonary blood flow (BF), blood volume (BV), mean transit time (MTT),
permeability‐surface area product (PS), fractional interstitial volume (vI) and volume transfer constant (KTrans) in (a) a malignant pleural
mesothelioma patient and (b) a nonsmall cell lung cancer patient. TK – Tofts‐Kety, ETK – extended TK, 2CX – two compartment exchange,
AATH – adiabatic approximation to the tissue homogeneity, and DP – distributed parameter.
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3 | RESULTS

Two examples each for MPM and NSCLC cases are shown in Figs. 2–
4, with voxel‐level fittings and parameter maps generated from the

five models with the pulmonary [Figs. 2(a) and 2(b)], systemic

[Figs. 3(a) and 3(b)] and dual AIFs [Figure 4(a) and 4(b)], respectively.

These parameter maps provide intratumoral spatial information of

the various parameters and show their voxel‐level mapping using the

single‐ or dual‐input tracer kinetic modeling in lung DCE‐MRI. Signifi-

cant heterogeneity is observed in all parameter maps in both types

of tumors. The spatial heterogeneity, in maps of the same parameter,

differs between models, indicating variabilities in different models.

Figure 5 shows the central tumor slice representing cAICmin for

all 5 MPM and 10 NSCLC (i.e., 5 AC and 5 SCC) patients. The map

illustrates that the best‐fitting model differs in between contiguous

regions within tumor. For individual MPM patients, the TK model

was optimal in 1.15–7.49% of voxels with pulmonary AIF, 0.29–
8.05% with systemic AIF and 0.01–2.87% with dual AIF. The corre-

sponding % of voxels with pulmonary AIF, systemic AIF and dual AIF

for ETK, 2CX, AATH and DP models are (0.08–2.88%, 0.08–4.79%,

0.19–6.35%); (22.1–65.8%, 21.1–71.2%, 23.2–77.5%); (24.0–57.1%,

16.9–42.4%, 15.7–39.8%); (8.90–33.6%, 4.95–26.6%, 5.96–34.8%),

respectively. For NSCLC patients, % voxels with pulmonary AIF, sys-

temic AIF and dual AIF for TK, ETK, 2CX, AATH and DP models

include (0.76–5.06%, 0.53–13.2%, 0.26–4.19%); (0.07–8.96%, 0.16–
31.8%, 0.12–19.0%); (13.9–53.8%, 3.40–80.2%, 26.3–59.0%); (27.8–
61.0%, 12.0–35.9%, 22.9–44.3%); (14.2–28.8%, 4.76–37.6%, 10.4–
31.9%), respectively.

Percentage for each model to have cAICmin on all the voxels was

analyzed in both MPM and NSCLC. For the 58,367 voxels analyzed

in MPM, the TK model was optimal in 4.37% of voxels with pul-

monary AIF, 3.53% of voxels with systemic AIF and 1.38% of voxels
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F I G . 4 . Dual‐input kinetic parameter
maps of the total pulmonary blood flow
(BF), pulmonary arterial flow fraction (γ),
pulmonary arterial blood flow (BFPA),
systemic arterial blood flow (BFA), blood
volume (BV), mean transit time (MTT),
permeability‐surface area product (PS),
fractional interstitial volume (vI) and
volume transfer constant (KTrans) in (a) a
malignant pleural mesothelioma patient
and (b) a nonsmall cell lung cancer patient.
TK – Tofts‐Kety, ETK – extended TK, 2CX
– two compartment exchange, AATH –
adiabatic approximation to the tissue
homogeneity, and DP – distributed
parameter.
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with dual AIF. The optimal % of voxels in ETK, 2CX, AATH and DP

models for pulmonary AIF, systemic AIF and dual AIF were (1.26%,

2.16%, 2.86%); (34.3%, 51.4%, 46%); (41.6%, 28.3%, 31.1%); (18.4%,

14.6%, 18.16%), respectively. For all the 165,864 voxels analyzed in

NSCLC, the TK model was optimal in 3.20% with pulmonary AIF,

2.05% with systemic AIF and 2.08% with dual AIF. The optimal % of

voxels in ETK, 2CX, AATH and DP models for pulmonary AIF, sys-

temic AIF and dual AIF were (0.36%, 10%, 0.91%); (38.9%, 42.5%,

42.4%); (38.8%, 26%, 35.4%); (18.8%, 19.5%, 19.2%), respectively. As

a result, the 2CX model was most frequently chosen as the optimal

model with the single or dual AIF, followed by AATH, DP, TK and

ETK models in both types of tumors.

Tables 1–3 summarize the parameter values observed in all the

voxels in both MPM and NSCLC when calculated with the five mod-

els with pulmonary, systemic and dual AIFs, respectively. Overall, BF

was closer between pulmonary arterial input and dual‐input kinetic

models than between systemic arterial input and dual‐input kinetic

models. In comparison between BFPA and BFA, BFPA was higher than

BFA for the dual‐input 2CX, AATH and DP models in both types of

tumors, whereas it was higher for the dual‐input TK model only in

NSCLC and higher for the dual‐input ETK model only in MPM. How-

ever, BFA was not negligible for all five models. In general, the high-

est median Akaike weight or wm was found for the 2CX model

followed by the AATH and DP models in both types of tumors,

although the median wm for the AATH model was slightly higher

than that for the 2CX model in MPM with pulmonary AIF. All voxel‐
level parameter values were statistically significantly different

(P < 0.01) in the pairwise comparison between adjacent different

kinetic models (i.e., TK vs. ETK; ETK vs. 2CX; 2CX vs. AATH and

AATH vs. DP). The distributions of all model parameter values were

statistically significantly different (P < 0.01) between MPM and

NSCLC with a single or dual AIF.

(b) NSCLC: Dual Arterial Input
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Table 4 compares median cAIC values along with their 95% con-

fidence interval derived from fitting each single‐ or dual‐input tracer
kinetic model on all analyzed voxels within MPM or NSCLC. Among

the five different models, the 2CX model had the lowest cAIC value

in both MPM and NSCLC with dual AIF, in NSCLC with pulmonary

AIF, and in MPM with systemic AIF. The AATH model had the low-

est cAIC value in MPM with pulmonary AIF, and the DP model in

NSCLC with systemic AIF. Among the three different arterial input

conditions, the dual‐input kinetic modeling approach yielded the

lowest cAIC values in all five models in both types of tumors. The

ETK model showed positive cAIC values because of poor fits as the

model does not account for the effect of CA exchange and disper-

sion in the intravascular plasma space.

Tables 5–7 compare the intratumoral median values of kinetic

parameters calculated with the five models with pulmonary, systemic

and dual AIFs between two NSCLC histologies (i.e., AC and SCC),

respectively. The values with P < 0.05 and P < 0.1 in comparison

between AC and SCC are shown in bold. With all five models, BF

(a) Pulmonary Arterial Input

(b) Systemic Arterial Input

(c) Dual Arterial Input

TK
ETK

AATH
DP

2CX

MPM

NSCLC
(AC)

NSCLC
(SCC)
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MPM

NSCLC
(AC)

NSCLC
(SCC)

TK
ETK

AATH
DP

2CX

MPM

NSCLC
(AC)

NSCLC
(SCC)

F I G . 5 . Central tumor slices of minimum
corrected Akaike information criterion
(cAICmin) in five malignant pleural
mesothelioma (MPM) patients (upper row)
and 10 nonsmall cell lung cancer (NSCLC)
patients consisting of five adenocarcinoma
(AC) patients (middle row) and five
squamous cell carcinoma (SCC) patients
(lower row). The cAICmin map reflects in
what regions the Tofts‐Kety (TK), extended
TK (ETK), two compartment exchange
(2CX), adiabatic approximation to the
tissue homogeneity (AATH) and distributed
parameter (DP) models were the optimal
tracer kinetic model in terms of goodness‐
of‐fit, with (a) pulmonary, (b) systemic and
(c) dual arterial input conditions,
respectively.
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and KTrans for AC were higher than those for SCC in the pulmonary

arterial input condition, vI for AC was higher than that for SCC in

the systemic arterial input condition, and BF, BFPA and KTrans for AC

were higher than those for SCC in the dual‐input condition. The

mean transit time for AC was lower than that for SCC in all three

arterial input conditions. With all four models except for the ETK

model, BFA for AC was higher than that for SCC. In the pulmonary

arterial input condition, no parameters differed statistically signifi-

cantly between AC and SCC. In the systemic arterial input condition,

the DP model‐derived PS (P = 0.032), vI (P = 0.032) and KTrans

(P = 0.032) differed statistically significantly between AC and SCC. In

the dual‐input condition, only the 2CX‐model‐derived BFA

(P = 0.016) differed statistically significantly, between AC and SCC.

The dual‐input 2CX‐model‐derived BFA was the most significant

parameter in differentiating between the two histologies. Marginally

significant difference (P < 0.1) was found with all five models with

pulmonary or dual AIF, and statistically significant difference

(P < 0.05) with only the dual‐input 2CX and systemic arterial input

DP models.

Pearson correlation between various parameters showed that, in

MPM, BV was highly correlated between the 2CX and AATH models

with pulmonary (r = 0.952), systemic (r = 0.964) or dual AIF

(r = 0.954), respectively. In NSCLC, BF was highly correlated

between the 2CX and AATH models with pulmonary (r = 0.954) or

TAB L E 1 Median with 95% confidence interval of tracer kinetic parameters derived from fitting the five pulmonary arterial input tracer
kinetic models on all analyzed voxels within MPM (n = 58,367) and NSCLC (n = 165,864).

Parameter Lesion TK ETK 2CX AATH DP

BF

(mL/min/100g)

MPM 215.7 (213.5, 217.9) > 41.84 (41.42, 42.27) < 115.1 (113.9, 116.3) > 73.93 (73.10, 74.76) > 64.28 (63.58, 65.00)

NSCLC 85.80 (85.17, 86.43) > 10.25 (10.19, 10.32) < 27.65 (27.46, 27.84) > 16.60 (16.49, 16.71) > 15.96 (15.86, 16.07)

BV(mL/100g) MPM 32.17 (31.97, 32.38) > 12.60 (12.54, 12.67) < 29.77 (29.48, 30.06) > 23.14 (22.91, 23.37) < 27.18 (26.90, 27.46)

NSCLC 20.48 (20.39, 20.57) > 11.06 (11.04, 11.08) > 8.846 (8.792, 8.901) > 6.373 (6.333, 6.413) < 7.129 (7.085, 7.174)

MTT(min) MPM 0.312 (0.309, 0.314) < 1.159 (1.148, 1.171) < 1.269 (1.257, 1.281) < 1.617 (1.603, 1.631) < 2.149 (2.133, 2.166)

NSCLC 0.301 (0.299, 0.303) < 4.836 (4.789, 4.862) > 2.665 (2.641, 2.688) > 1.741 (1.729, 1.754) < 2.459 (2.444, 2.474)

PS

(mL/min/100g)

MPM 57.06 (56.28, 57.87) > 8.276 (8.232, 8.321) < 13.09 (12.88, 13.31) < 14.98 (14.77, 15.19) > 9.886 (9.770, 10.00)

NSCLC 17.71 (17.58, 17.85) > 7.482 (7.466, 7.498) > 2.404 (2.382, 2.425) < 4.385 (4.352, 4.418) > 2.443 (2.428, 2.458)

vI MPM 0.454 (0.449, 0.458) > 0.150 (0.150, 0.150) < 0.620 (0.617, 0.623) > 0.569 (0.567, 0.571) < 0.635 (0.633, 0.638)

NSCLC 0.118 (0.117, 0.118) < 0.150 (0.150, 0.150) < 0.467 (0.461, 0.473) > 0.151(0.149, 0.152) < 0.227 (0.225, 0.230)

KTrans

(mL/min/mL)

MPM 0.466 (0.460, 0.473) > 0.073 (0.072, 0.073) < 0.110 (0.109, 0.112) < 0.123 (0.121, 0.125) > 0.085 (0.084, 0.086)

NSCLC 0.126 (0.125, 0.127) > 0.035 (0.035, 0.035) > 0.021 (0.021, 0.021) < 0.034 (0.034, 0.034) > 0.021 (0.021, 0.021)

wm MPM 0.010 (0.009, 0.011) > 0.000 (0.000, 0.000) < 0.320 (0.316, 0.325) < 0.339 (0.336, 0.342) > 0.200 (0.198, 0.202)

NSCLC 0.019 (0.018, 0.019) > 0.000 (0.000, 0.000) < 0.354 (0.352, 0.357) > 0.307 (0.306, 0.309) > 0.216 (0.215, 0.217)

“>” or “<” indicates significant difference (P < 0.01) between adjoining models in the Wilcoxon signed rank test.

TAB L E 2 Median with 95% confidence interval of tracer kinetic parameters derived from fitting the five systemic arterial input tracer kinetic
models on all analyzed voxels within MPM (n = 58,367) and NSCLC (n = 165,864).

Parameter Lesion TK ETK 2CX AATH DP

BF (mL/min/100g) MPM 193.8 (191.7, 195.9) > 38.33 (37.92, 38.74) < 115.3 (114.0, 116.5) > 83.40 (82.50, 84.31) > 66.19 (65.55, 66.84)

NSCLC 257.3 (253.9, 260.7) > 20.87 (20.73, 21.01) < 88.62 (87.59, 89.67) > 70.19 (69.24, 71.15) > 65.89 (64.95, 66.85)

BV(mL/100g) MPM 30.17 (29.97, 30.36) > 12.27 (12.21, 12.34) < 22.94 (22.68, 23.20) > 17.76 (17.57, 17.96) < 22.02 (21.76, 22.29)

NSCLC 37.01 (36.70, 37.33) > 11.31 (11.29, 11.34) < 16.50 (16.39, 16.62) > 12.74 (12.63, 12.84) < 14.69 (14.57, 14.81)

MTT(min) MPM 0.327 (0.324, 0.330) < 1.280 (1.267, 1.293) > 1.100 (1.087, 1.113) < 1.224 (1.213, 1.236) < 1.805 (1.791, 1.820)

NSCLC 0.216 (0.214, 0.218) < 2.768 (2.744, 2.792) > 1.105 (1.094, 1.116) > 0.927 (0.922, 0.932) < 1.398 (1.391, 1.405)

PS

(mL/min/100g)

MPM 50.80 (50.07, 51.54) > 8.100 (8.058, 8.143) < 13.76 (13.56, 13.96) < 16.24 (16.04, 16.46) > 10.91 (10.78, 11.04)

NSCLC 67.83 (66.41, 69.30) > 7.629 (7.609, 7.649) > 7.502 (7.399, 7.607) < 10.11 (10.01, 10.22) > 3.837 (3.812, 3.861)

vI MPM 0.421 (0.417, 0.426) > 0.150 (0.150, 0.150) < 0.575 (0.573, 0.578) > 0.519 (0.516, 0.522) < 0.591 (0.589, 0.594)

NSCLC 0.207 (0.206, 0.208) > 0.150 (0.150, 0.150) < 0.319 (0.314, 0.324) > 0.144 (0.143, 0.146) < 0.243 (0.241, 0.245)

KTrans(mL/min/mL) MPM 0.414 (0.408, 0.419) > 0.070 (0.069, 0.070) < 0.121 (0.120, 0.123) < 0.138 (0.137, 0.140) > 0.095 (0.094, 0.096)

NSCLC 0.542 (0.531, 0.554) > 0.047 (0.047, 0.047) < 0.063 (0.063, 0.064) < 0.080 (0.080, 0.081) > 0.034 (0.034, 0.034)

wm MPM 0.010 (0.009, 0.011) > 0.000 (0.000, 0.000) < 0.493 (0.490, 0.496) > 0.251 (0.249, 0.252) > 0.156 (0.155, 0.158)

NSCLC 0.005 (0.005, 0.005) > 0.000 (0.000, 0.000) < 0.410 (0.407, 0.412) > 0.218 (0.217, 0.219) > 0.179 (0.178, 0.180)

“>” or “<” indicates significant difference (P < 0.01) between adjoining models in the Wilcoxon signed rank test.
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systemic AIF (r = 0.990), between the 2CX and DP models with sys-

temic AIF (r = 0.979) and between the AATH and DP models with

pulmonary (r = 0.969) or systemic AIF (r = 0.988), respectively. Blood

volume was highly correlated between the 2CX and AATH models,

between the 2CX and DP models and between the AATH and DP

models with systemic AIF (r = 0.965, r = 0.961 and r = 0.968,

respectively). Pulmonary arterial blood flow was highly correlated

between the dual‐input AATH and DP models (r = 0.950).

Figures 6 and 7 show the pulmonary and systemic IRFs derived

from the mean values of the fitting parameters (i.e., F=VP, PS=VP, vP,

vI and tLag;T for single‐input models and along with an additional

parameter γ for dual‐input models) for each of the five models in

MPM and NSCLC. For the single‐input models, the peak of IRF rep-

resents perfusion (F=VT) (Note that it is an extraction perfusion pro-

duct for the TK model, i.e., E � F=VT). For the dual‐input models, the

peaks of the pulmonary and systemic IRFs represent the pulmonary

arterial perfusion (FPA=VT) and the systemic arterial perfusion

(FA=VT), respectively (Note that they are extraction perfusion prod-

ucts for the TK model, i.e., E � FPA=VT and E � FA=VT, respectively). In

the pulmonary arterial input condition, F=VT was higher in MPM

than in NSCLC, with all five models. In the systemic arterial input

condition, F=VT was higher in MPM than in NSCLC, with all four

models except for the 2CX model. In both types of tumors, FPA=VT

was higher than FA=VT, and both FPA=VT and FA=VT were higher in

MPM than in NSCLC, with all four models except for the ETK

model.

In Figure 8, kernel density plots for the distribution of γ on all

the voxels analyzed in MPM and NSCLC are shown. Kernel density

plots were used to overcome the discreteness of the histogram by

centering a smooth gaussian kernel function at each data point and

then summing to get a density estimate. The distribution of γ values

derived from all four models except for the ETK model tended to be

left‐skewed (i.e., higher density of γ values close to unity than to

zero) in both MPM and NSCLC, indicating that pulmonary arterial

perfusion was higher than systemic arterial perfusion in both types

of tumors. Even if the pulmonary arterial contribution to tumor per-

fusion was higher than the systemic arterial contribution in the TK,

2CX, AATH and DP models, the systemic arterial supply in those

models would still be significant in both MPM and NSCLC.

Figure 9(a) and 9(b) shows the effect of motion compensation

for an example MPM and NSCLC case. A line profile as a function of

time along the left‐right and superior‐inferior direction is shown

TAB L E 5 Population mean of intratumoral median parameter values comparing AC (n = 5) and SCC (n = 5) NSCLC histologies with the five
pulmonary arterial input tracer kinetic models.

Parameter Histology TK ETK 2CX AATH DP

BF (mL/min/100g) AC 232.1 23.95† 95.38† 54.89 51.70

SCC 116.3 11.89† 47.05† 28.61 27.95

BV(mL/100g) AC 35.97 10.71 21.19† 17.02† 18.80†

SCC 22.84 11.48 10.17† 7.693† 8.857†

MTT(min) AC 0.152 1.292† 1.088 1.009 1.532

SCC 0.236 3.524† 1.877 1.448 2.083

PS (mL/min/100g) AC 59.81 7.032 3.908 7.071 3.703

SCC 30.70 7.737 1.791 3.494 2.057

vI AC 0.234† 0.150 0.579 0.318 0.455

SCC 0.122† 0.150 0.479 0.148 0.337

KTrans(mL/min/mL) AC 0.479 0.056† 0.038 0.061 0.034

SCC 0.239 0.039† 0.017 0.029 0.018

†indicates marginally significant difference (P < 0.1) in the Wilcoxon rank sum test.

TAB L E 4 Median with 95% confidence interval of cAIC values derived from fitting each single‐ (pulmonary or systemic artery) or dual‐input
tracer kinetic model on all analyzed voxels within MPM (n = 58,367) or NSCLC (n = 165,864).

Arterial Input Lesion TK ETK 2CX AATH DP

Dual MPM −18.58 (−19.22, −17.95) 61.37 (60.92, 61.82) −50.04 (−50.84, −49.25) −48.92 (−49.69, −48.15) −44.71 (−45.48, −43.95)

NSCLC ‐27.72 (−28.64, −26.80) 135.4 (134.5, 136.3) −55.42 (−56.38, −54.45) −54.18 (−55.14, −53.23) −51.24 (−52.19, −50.29)

Single

(Pulmonary

Artery)

MPM −15.94 (−16.56, −15.32) 82.47 (81.98, 82.95) −43.81 (−44.57, −43.05) −46.81 (−47.57, −46.06) −41.13 (−41.90, −40.36)

NSCLC −23.31 (−24.22, −22.39) 230.5 (229.7, 231.4) −54.65 (−55.61, −53.69) −54.16 (−55.11, −53.20) −50.99 (−51.93, −50.04)

Single

(Systemic

Artery)

MPM −7.250 (−7.883, −6.615) 85.60 (85.11, 86.09) −40.51 (−41.27, −39.74) −39.02 (−39.76, −38.28) −33.90 (−34.64, −33.15)

NSCLC −7.315 (−8.253, −6.376) 181.1 (180.1, 182.2) −31.12 (−32.10, −30.14) −32.21 (−33.17, −31.24) −32.51 (−33.48, −31.55)
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before and after registration. In addition, an MR signal intensity

curve at a voxel sampled inside the tumor ROI is shown before and

after registration. Large differences in kinetic parameter values were

seen between registered and unregistered datasets for all the mod-

els. Table 8 shows the mean and standard deviation in the percent

difference of parameter values obtained between registered and

unregistered datasets of MPM and NSCLC patients for the dual‐in-
put 2CX and AATH models. The large standard deviation in all the

parameter values shows the importance of motion compensation of

DCE‐MRI dataset.

4 | DISCUSSION

Our pilot study showed that five different dual‐input tracer kinetic

models with continuous‐time formalism can fit the DCE‐MRI data in

MPM and NSCLC, to different degrees. The continuous‐time formal-

ism enabled the realistic representation of arterial or tissue concen-

tration‐time curves at any temporal resolution between data points,

and thereby contributed to revealing realistic physiological character-

istics in thoracic tumors that receive dual blood supply. The feasibil-

ity of dual‐input tracer kinetic modeling was confirmed by the

TAB L E 6 Population mean of intratumoral median parameter values comparing AC (n = 5) and SCC (n = 5) NSCLC histologies with the five
systemic arterial input tracer kinetic models.

Parameter Histology TK ETK 2CX AATH DP

BF (mL/min/100g) AC 258.9 30.80 109.5 73.61 64.75

SCC 390.6 19.28 116.7 94.81 97.48

BV(mL/100g) AC 36.86 11.14 24.32 18.37 22.39

SCC 47.76 11.14 16.29 13.35 15.06

MTT(min) AC 0.171 1.059 0.797 0.680 1.081

SCC 0.193 2.405 1.232 0.937 1.344

PS (mL/min/100g) AC 65.70 7.497 7.002 14.09 6.409*

SCC 232.7 7.484 14.45 9.629 2.849*

vI AC 0.304† 0.151 0.474 0.228† 0.353*

SCC 0.186† 0.150 0.234 0.107† 0.187*

KTrans(mL/min/mL) AC 0.543 0.064 0.066 0.120 0.059*

SCC 1.590 0.048 0.089 0.081 0.026*

“*” indicates statistically significant difference (P < 0.05) whereas “†” indicates marginally significant difference (P < 0.1) in the Wilcoxon rank sum test.

TAB L E 7 Population mean of intratumoral median parameter values comparing AC (n = 5) and SCC (n = 5) NSCLC histologies with the five
dual‐input tracer kinetic models.

Parameter Histology TK ETK 2CX AATH DP

BF (mL/min/100g) AC 226.8 26.26 107.8† 61.56 56.33

SCC 127.1 16.71 51.10† 34.18 31.35

γ AC 0.760 0.640 0.629 0.767 0.815

SCC 0.759 0.468 0.826 0.916 0.907

BFPA (mL/min/100g) AC 113.1 17.43† 58.32 41.22† 41.48†

SCC 60.96 6.720† 31.82 21.03† 21.31†

BFA (mL/min/100g) AC 42.00 7.372 27.16* 9.490 7.255

SCC 21.84 8.911 4.118* 1.721 0.791

BV(mL/100g) AC 38.11 11.05 22.16† 17.39† 19.68†

SCC 24.48 12.07 10.23† 8.403† 9.516†

MTT(min) AC 0.160 1.121† 0.870 0.798 1.309

SCC 0.231 2.628† 1.641 1.373 1.944

PS (mL/min/100g) AC 62.82 6.759 4.932† 8.015 4.110

SCC 36.95 7.508 2.104† 3.803 2.209

vI AC 0.266† 0.151 0.472 0.238 0.461

SCC 0.139† 0.152 0.404 0.143 0.344

KTrans(mL/min/mL) AC 0.523 0.055 0.048† 0.069† 0.038

SCC 0.297 0.042 0.020† 0.032† 0.019

“*” indicates statistically significant difference (P < 0.05) whereas “†” indicates marginally significant difference (P < 0.1) in the Wilcoxon rank sum test.
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results that it can fit the DCE‐MRI data better than single‐input tra-
cer kinetic modeling, with the continuous‐time formalism. The pro-

posed dual‐input models provide information about the relative

contribution of the pulmonary and systemic arterial supplies to the

tumor tissue from lung DCE‐MRI data. Our preliminary results also

showed that the dual‐input tracer kinetic parameters have potential

to differentiate tumor histologies in NSCLC. Knowledge of relative

blood supply and quantification of tumor blood flow, capillary per-

meability and other microcirculatory parameters may have clinical

implications in the management of thoracic malignancies 22,43,44.

Our results showed that the pulmonary arterial contribution to

MPM is higher than the systemic arterial contribution with all four

models except for the TK model (see Table 3). In a previous study

using techniques to delineate pulmonary and bronchial vessels,

Milne, et al. reported that the visceral pleural circulation is derived

from and is continuous with the pulmonary circulation.13 The results

from this study may be consistent with the above suggestion that

MPM might derive a significant portion of its blood supply from the

pulmonary circulation, though the blood supply to the visceral pleura

is still controversial. A recent PCT study using the dual‐input maxi-

mum slope method also showed that dual blood supply of NSCLC is

reflected by differences in perfusion parameters and is dependent

on both tumor size and histological subtype.26 This PCT study

showed that in general bronchial BF (i.e., BFA) was higher than pul-

monary BF (i.e., BFPA) for NSCLC but noted that larger tumors had a

higher pulmonary than bronchial contribution to their blood supply

as compared with smaller tumors. The authors also observed higher

mean BV for AC as compared to SCC. In our study, higher BV was

also observed for AC with all four models except for the ETK model,

but a discrepancy was found between their PCT and our DCE‐MRI

studies in terms of higher BFPA than BFA for AC with all five models

and for SCC with all four models except for the ETK model (Table 7).

Further studies are necessary in order to conclude which kinetic

model best approximates a true separation of pulmonary and bron-

chial perfusion for NSCLC, but it should be recognized that the max-

imum slope method systemically underestimates tissue perfusion due

to the underlying assumption that there is no venous washout dur-

ing the initial uptake phase.45 Estimates become progressively less

accurate at higher flow values, at which the basic precondition of a

negligible venous washout is violated because of the short capillary

transit time (VP=F) of CA molecules in the intravascular space, which

might cause the discrepancy between their PCT and our DCE‐MRI

studies.

PCT studies have used the maximum slope method for dual‐input
perfusion analysis. PCT uses a short acquisition time (30–60 s) with

high temporal resolution (0.2–2 s) to keep an acceptable radiation

(a) MPM: Pulmonary Arterial Input

(c) MPM: Systemic Arterial Input

(b) NSCLC: Pulmonary Arterial Input

(d) NSCLC: Systemic Arterial Input

F I G . 6 . Impulse response function (IRF),
i.e., QT tð Þ derived from the mean values of
the fitting parameters (F=VP, PS=VP, vP, vI,
and tLag;T) for each of the pulmonary
arterial input Tofts‐Kety (TK), extended TK
(ETK), two compartment exchange (2CX),
adiabatic approximation to the tissue
homogeneity (AATH), and distributed
parameter (DP) models in (a) malignant
pleural mesothelioma (MPM) and (b)
nonsmall cell lung cancer (NSCLC). The IRF
in (a) was derived from the mean values of
the fitting parameters calculated from all
voxels (n = 58,367) within the regions of
the five MPM cases, whereas the IRF in (b)
was derived from all voxels (n = 165,864)
within those of the 10 NSCLC cases,
respectively.
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dose in PCT protocol as well as to separate the peak of time density

curves of the pulmonary and systemic arteries.46,47 By contrast,

DCE‐MRI acquisitions are made over a few minutes mainly due to

their nonionizing radiation nature, enabling tracer kinetic analysis in

two tissue compartments. This study, with more complex models,

involves the fitting of more kinetic parameters that describe CA

exchange behavior between the capillary plasma and interstitial

spaces and the fractional volumes of the CA in the two compart-

ments in addition to tissue perfusion. Therefore, our proposed

method can provide a more comprehensive assessment of microvas-

cular physiologic properties for thoracic malignancies as well as more

accurately quantify pulmonary perfusion, and could be of clinical

value for disease evaluation and assessment of treatment response.

The cAICmin maps showed a heterogeneous pattern with spatially

contiguous regions in which one of the models outperformed the

others. This indicates that the underlying properties of the tumor

microvasculature and microenvironment are heterogeneous. Because

the TK and ETK models provided a relatively poor fit to the data as

compared with the other three models, their wm were low (<0.25) in

the majority of voxels, showing highly right‐skewed distributions.

The wm for the AATH and DP models were relatively evenly dis-

tributed, as compared with those for the TK and ETK models, but

for the most part ranged between 0 and 0.5. The 2CX model was

most evenly distributed across the range of wm and outperformed

other models in the range of wm > 0.75 in both types of tumors.

Pearson correlation analysis showed that BV was consistently highly

correlated between the 2CX and AATH models in MPM with single

or dual AIF (r> 0.95). In NSCLC, BFPA was highly correlated between

the AATH and DP models (r = 0.95), but no correlations were higher

than r = 0.7 between BFA estimated using the five models, indicating

that BFA is relatively more different than BFPA between different

models.

The results showe that the dual‐input 2CX model gave the best

fit among all single‐ and dual‐input kinetic models in the voxel‐based
analysis for MPM and NSCLC tumors (Table 4). In a previous DCE‐
MRI study of lung tumors, Naish, et al. have shown that the AATH

model, in most cases, gave the best description of the data.21 The

study compared three different models (i.e., TK, ETK and AATH

models) based on a single pulmonary AIF using DCE‐MRI data with

4‐s temporal resolution. The fact that the AATH was the best‐fit
model is consistent with our results for MPM with the pulmonary

AIF (Tables 1 and 4), although our results for NSCLC with the pul-

monary AIF showed that 2CX was the best‐fit model. If a compart-

ment is observed at time intervals much longer than the time

required for the mixing of CA within the compartment, it would pre-

sent the appearance of a well‐mixed compartment.48 For instance, if

(a) MPM: Dual Arterial Input

(b) NSCLC: Dual Arterial Input

F I G . 7 . Pulmonary (left) and systemic
(right) impulse response functions (IRFs),
i.e., QT,PA(t) and QT,A(t) derived from the
mean values of the fitting parameters
(F=VP, γ, PS=VP, vP, vI , and tLag;T) for each
of the dual‐input Tofts‐Kety (TK), extended
TK (ETK), two compartment exchange
(2CX), adiabatic approximation to the
tissue homogeneity (AATH), and
distributed parameter (DP) models in
malignant pleural mesothelioma (MPM)
(upper) and nonsmall cell lung cancer
(NSCLC) (lower). The upper IRFs in (a) and
(b) were derived from the mean values of
the fitting parameters calculated from all
voxels (n = 58,367) within the regions of
the five MPM cases, whereas the lower
IRFs in (c) and (d) were derived from all
voxels (n = 165,864) within those of the
10 NSCLC cases, respectively.
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the CA traverses the capillary plasma space in tissue for a short time,

and the time interval between dynamic scans is much longer, then

the 2CX model would be more appropriate than the AATH model.

By contrast, if the time interval between dynamic scans is compara-

ble to the capillary transit time (VP=F) of the CA in the tissue, then

the plasma compartment may not appear to be homogeneous and

the AATH model would be appropriate. The applicability of a partic-

ular model would not only rely on the computational approach based

on underlying tissue physiology, but also the imaging protocol49 and

noise condition in the data.50 From the results, it is observed that

the frequency for the dual‐input AATH model to have cAICmin was

4.3% higher in NSCLC (35.4%) than in MPM (31.1%). When it is con-

sidered that the DCE‐MRI data for NSCLC had higher temporal reso-

lution (2 s) than those for MPM (5 s), better performance of the

AATH model in NSCLC is plausible. It should also be recognized that

the computational method used in this study, which is based on the

explicit model solution in the continuous‐time domain, would mini-

mize the effect of different temporal resolutions in the data when

tissue microvascular parameters are estimated.51

To the best of our knowledge, there have been no studies done on

the comparisons among various tracer kinetic models with single or

dual arterial input condition. We showed that the 2CX model could

describe the DCE‐MRI data better than other models across all three

arterial input conditions, and that the dual‐input 2CX was the best‐fit
model in thoracic tumors. The dual‐input 2CX model‐derived BFA was

most statistically significant and the dual‐input 2CX model‐derived BF,

BV, PS and KTrans were marginally significant in differentiating

between AC and SCC, which were all higher in AC than in SCC.

Although there have been no comparable DCE‐MRI studies for

distinguishing between AC and SCC, PCT studies concerning the per-

fusion characterization of AC and SCC have reported consistent

results with equivalent parameters. A previous study showed that BV

and flow‐extraction product (i.e., KTrans in this study) are significantly

higher in AC than in SCC.52 Another study also showed that before

treatments, the AC histological type has a BF mean value significantly

greater than SCC subtype.53 Even though the systemic arterial input

DP model‐derived PS, vI and KTrans appeared statistically significant,

the fitting error of the systemic arterial input DP model was consider-

ably larger than that of the dual‐input 2CX model in NSCLC (Table 4).

There are some limitations in our study. The number of patients

investigated in this study is small, although it serves as a proof‐of‐
concept comparative study. Although the preliminary analysis is

encouraging, a large patient cohort analysis is needed to further vali-

date the clinical applicability of dual‐input tracer kinetic analysis

approach in thoracic malignancies. We would also like to point out

that a good fit may not necessarily imply accurate parameter esti-

mates because an improved fit could be due to the sparsity of the

data, rather than the accuracy of the model for describing tissue

kinetics.54 Therefore, a model selection criterion based on the good-

ness‐of‐fit has limited value, though it allows for finding a best‐fit
model for the unknown true data given in the experimental protocol.

Even if the dual‐input 2CX model was the best‐fit model in this

study, the underlying physiologic assumption of the 2CX model that

the administered CA is instantaneously mixed in capillaries might be

unrealistic. Finally, the appropriateness of an AIF model would

depend on the CA injection protocol, temporal resolution and imag-

ing duration, etc., though the proposed AIF model was flexible

enough to fit the individual (patient‐specific) AIFs in this study.

(a) MPM (b) NSCLC

F I G . 8 . Kernel density estimation for the distribution of the pulmonary arterial flow fraction (γ) in (a) malignant pleural mesothelioma (MPM)
and (b) nonsmall cell lung cancer (NSCLC). The distribution of γ values derived from the Tofts‐Kety (TK), two compartment exchange (2CX),
adiabatic approximation to the tissue homogeneity (AATH), and distributed parameter (DP) models except for the extended TK (ETK) model
tended to be left‐skewed in both types of tumors. The basic kernel estimator can be expressed as f̂kde xð Þ ¼ 1

n ∑
n

i¼1
K x�xi

h

� �
, where n refers to

independent observations x1, x2, …, xn from the random variable X, K(·) is the kernel function and h is the bandwidth. In this study, a Gaussian
kernel with a random variable X = γ and a bandwidth h = 3 was used to produce smooth estimate.
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F I G . 9 . Effect of motion compensation for an example (top) MPM and (bottom) NSCLC case. Line profiles as a function of time along the
superior‐inferior (a) and left‐right (b) direction are shown before and after registration. MR signal intensity curves at a point indicated by a red
cross within tumor are also shown before and after registration. MPM, malignant pleural mesothelioma; NSCLC, nonsmall cell lung cancer.
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5 | CONCLUSION

In this study, five different single‐ or dual‐input tracer kinetic models

were compared with respect to goodness‐of‐fit statistics using cAIC

in the analysis of DCE‐MRI data for MPM and NSCLC. For most

voxels, the dual‐input 2CX model was best in describing the CA con-

centration of the two thoracic malignancies. Potential clinical value

of the dual‐input tracer kinetic modeling was demonstrated by com-

paring parameter values between two NSCLC histologic subtypes,

i.e., AC and SCC, in which the 2CX‐model‐derived BFA in AC was

significantly higher than that in SCC. The choice of a model influ-

enced the contribution of pulmonary versus systemic arterial flow to

the total pulmonary perfusion in the tumors. Although the pul-

monary arterial flow was higher than the systemic arterial flow in

both MPM and NSCLC, the systemic arterial contribution to tumor

perfusion could still be substantial and may impact the prognostic

and predictive value of DCE‐MRI metrics for thoracic malignancies.
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