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The circadian clock is a timekeeping system for regulation of
numerous biological daily rhythms. One characteristic of the
circadian clock is that period length remains relatively con-
stant in spite of environmental fluctuations, such as tempera-
ture change. Here, using the curated collection of in-house
small molecule chemical library (ITbM chemical library), we
show that small molecule 3,4-dibromo-7-azaindole (B-AZ)
lengthened the circadian period of Arabidopsis thaliana
(Arabidopsis). B-AZ has not previously been reported to
have any biological and biochemical activities. Target identi-
fication can elucidate the mode of action of small molecules,
but we were unable to make a molecular probe of B-AZ for
target identification. Instead, we performed other analysis,
gene expression profiling that potentially reveals mode of ac-
tion of molecules. Short-term treatment of B-AZ decreased
the expression of four dawn- and morning-phased clock-asso-
ciated genes, CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1), LATE
ELONGATED HYPOCOTYL (LHY), PSEUDO-RESPONSE
REGULATOR 9 (PRR9) and PRR7. Consistently, amounts of
PRR5 and TIMING OF CAB EXPRESSION 1 (TOC1) proteins,
transcriptional repressors of CCA1, LHY, PRR9 and PRR7 were
increased upon B-AZ treatment. B-AZ inhibited Casein Kinase
1 family (CK1) that phosphorylates PRR5 and TOC1 for tar-
geted degradation. A docking study and molecular dynamics
simulation suggested that B-AZ interacts with the ATP-
binding pocket of human CK1 delta, whose amino acid
sequences are highly similar to those of Arabidopsis CK1. B-
AZ-induced period-lengthening effect was attenuated in prr5
toc1 mutants. Collectively, this study provides a novel and
simple structure CK1 inhibitor that modulates circadian clock
via accumulation of PRR5 and TOC1.

Keywords: Arabidopsis thaliana (Arabidopsis) • Casein Kinase 1
• Chemical Screening • Circadian clock.

Introduction

Circadian clocks are biological timekeeping systems that allow
organisms to coordinate their activities with daily fluctuations

such as light–dark and warm–cold cycles that originate from
earth’s rotation. Although fundamental properties of circadian
clocks (a period of about 24 h under constant conditions can be
entrained by the environmental time cues, and period length is
robust against environmental fluctuations) are well conserved
among bacteria, fungi, plants and animals, clock components are
different among phylogenetic lineages (Nohales and Kay 2016).
Cyanobacteria employ the KaiC activity cycle as the clock; time
information governed by KaiC controls the activity of transcrip-
tional factors, leading to genome-wide rhythmic gene expression
(Nakajima et al. 2005, Takai et al. 2006, Markson et al. 2013). In
eukaryotes, transcription translation feedback loop is essential
for clock function. The mechanism for plant circadian clocks was
proposed to be a transcription translation feedback loop with a
repressilator-like structure inwhich three classes of transcription-
al factors repress transcription of genes expressed during earlier
phases (Nakamichi 2011, Pokhilko et al. 2012), but recent pro-
gresses have demonstrated that the transcription translation
feedback loop is highly wired network (Millar 2016, Nohales
and Kay 2016). The network components are modulated at least
at the level of transcription and post-translational modifications,
by light and temperature changes as environmental time cues
(Inoue et al. 2017). The transcription translation feedback loop
controls the circadian rhythms of many physiological processes
through directly regulating the expression of key genes in output
pathways (Huang et al. 2012, Nakamichi et al. 2012, Nagel et al.
2015, Kamioka et al. 2016, Liu et al. 2016, Ezer et al. 2017, Adams
et al. 2018). Network architectures are partly conserved among
flowering plants (Toda et al. 2019), but divergence is important
for adaptation (Itoh et al. 2019).

In the transcription translation feedback loop of Arabidopsis
thaliana (Arabidopsis), three classes of transcriptional repress-
ors together form a repressilator-like structure. CIRCADIAN
CLOCK-ASSOCIATED 1 (CCA1) and LATE ELONGATED
HYPOCOTYL (LHY) are expressed at dawn and encode single
Myb-type transcription factors that repress day-time expressed
PSEUDO-RESPONSE REGULATORs (PRRs) and evening to
nighttime-expressed LUXARRHYTHMO (LUX), EARLY
FLOWERING 3 (ELF3) and ELF4 (Alabadi et al. 2001, Nagel
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et al. 2015, Kamioka et al. 2016, Adams et al. 2018). The PRR
family [PRR9, PRR7, PRR5 and TIMING OF CAB EXPRESSION 1
(TOC1), called as PRR1] encode transcriptional repressors that
directly repress CCA1, LHY and PRRs expressed during earlier
phases (Nakamichi et al. 2010, Gendron et al. 2012, Nakamichi
et al. 2012, Liu et al. 2013, Liu et al. 2016). LUX, ELF3 and ELF4
proteins form the Evening Complex that represses LUX, PRR9
and PRR7 expression (Dixon et al. 2011, Helfer et al. 2011,
Nusinow et al. 2011, Ezer et al. 2017). In addition to the
repressilator-like loop, REVIREE8 (RVE8) and NIGHT LIGHT-
INDUCIBLE AND CLOCK-REGULATED GENE 1 (LNK1) activate
PRR5 and TOC1 expression (Rawat et al. 2011, Rugnone et al.
2013, Ma et al. 2018, Shalit-Kaneh et al. 2018). PRR9, PRR7, PRR5
and TOC1 in turn repress RVEs and LNKs genes (Nakamichi
et al. 2012, Rugnone et al. 2013). TEOSINTE BRANCHED 1-
CYCLOIDEA-PCF20 (TCP20) and TCP22, and LIGHT-
REGULATED WD 1 (LWD1) form complexes and activate the
expression of CCA1 (Wu et al. 2016). CCA1-HIKING EXPEDITION
(CHE) encodes TCP transcription factor, and represses CCA1
(Pruneda-Paz et al. 2009). CCA1 and LHY repress CHE expres-
sion. In addition to transcription translation feedback loop,
post-translational regulation is involved in the clock.
Phosphorylation of CCA1 and LHY by Casein Kinase 2 (CK2)
is crucial for DNA-binding activities of CCA1 and LHY (Sugano
et al. 1999, Daniel et al. 2004). ZEITLUPE (ZTL), a component of
the ubiquitin E3 ligase Skp-Cullin-F-box complex degrades PRR5
and TOC1 preferentially in the dark (Mas et al. 2003, Kiba et al.
2007). The phosphorylated forms of PRR5 and TOC1 are bound
by ZTL for targeted degradation (Fujiwara et al. 2008).
Phosphorylation of PRR3 and TOC1 triggers their interaction
and subsequently inhibits recognizing by ZTL. Thus, there are
multiple phosphorylations sites on TOC1 that regulate degrad-
ation and stabilization (Fujiwara et al. 2008).

Many plant lineages have undergone whole genome duplica-
tions during evolution, by which plants enrich functionally redun-
dant genes in their genomes (The Arabidopsis Genome Initiative
2000). This may make further discoveries of clock-associated
genes technically difficult by forward genetic approaches. To iden-
tify such potentially redundant genes that are involved in the
clock, screening of small molecules and revealing mode of action
of these molecules have emerged as the preferred methodology.
Natural compounds that affect actin-associated processes also
influence Arabidopsis clock period (Toth et al. 2012).
PHA767491, originally found as mammal cell division cycle 7
(CDC7) and cyclin-dependent kinase 9 (CDK9) inhibitor can
lengthen the period of Arabidopsis clock (Uehara et al. 2019). In
Arabidopsis, PHA767491 inhibits Casein Kinase 1-like (CKL) family
that consists of 13 members. Given that PHA767491 treatment
caused the accumulation of PRR5 and TOC1 in vivo and inhibited
CKL4-dependent phosphorylation of PRR5 and TOC1 in vitro, it
was suggested that highly redundant CKLs phosphorylate PRR5
and TOC1 for degradation (Uehara et al. 2019).

In this study, we performed a chemical screening using the
ITbM chemical library (Ziadi et al. 2017, Toh et al. 2018) and
found a compound with a relatively simple structure, 3,4-
dibromo-7-azaindole (B-AZ). Our primary structure–activity
relationship study of B-AZ suggested that target identification

using a molecular probe was not possible; however, gene ex-
pression profiling after short-term treatment with B-AZ sug-
gested that B-AZ immediately controls the expression of CCA1,
LHY, PRR9 and PRR7. B-AZ treatment resulted in accumulation
of PRR5 and TOC1 proteins that act as repressors for CCA1, LHY,
PRR9 and PRR7. B-AZ inhibited CKL kinase that controls PRR5
and TOC1 protein amounts, emphasizing that inhibition of CKL
is one of the pharmacologically controllable steps in the clock.

Results and Discussion

Screening of small molecules that can change the
circadian period

We searched for small molecules that could regulate circadian
clock, from the ITbM chemical library, our unique chemical
library that was enriched with plant hormone mimic molecules
for use in plant-based phenotypic screening (Ziadi et al. 2017,
Toh et al. 2018). We monitored the circadian rhythms of trans-
genic plants harboring a clock reporter [CCA1:Luciferase (LUC),
exhibiting circadian bioluminescence rhythm that peaks in the
morning] upon treatment with small molecules from the li-
brary. Although most small molecules did not influence the
circadian period, B-AZ lengthened the circadian period of
CCA1:LUC (Fig. 1A). Note that another parameter of circadian
rhythm, the amplitude, was highly variable among the samples
in our screening system, so that screening molecules for chang-
ing amplitudes seemed technically difficult (Fig. 1B). Seedling
size was not likely the reason for the differing amplitudes be-
cause we carefully selected seedlings of similar size at 4 d after
germination. Rather, we hypothesize that other factors, such as
fluctuation of temperature during screening, may have affected
the amplitude. This hypothesis is consistent with general prop-
erties of circadian rhythms; period length is robust against en-
vironmental fluctuation, but amplitude is variable (Murayama
et al. 2017). We have found some other small molecules from
the ITbM chemical library that changed the circadian period
and will report these molecules in future studies.

To validate the period-lengthening activity of B-AZ, we fur-
ther analyzed the CCA1:LUC luminescence upon the continuous
treatment of different concentration of B-AZ (Fig. 1C). B-AZ
lengthened the circadian period of CCA1:LUC reporter in a dose-
dependent manner. B-AZ lengthened the period of CCA1:LUC
about 5 h at 125 mM. B-AZ also lengthened the circadian period
of other clock reporter line, TOC1:LUC (exhibiting circadian lu-
minescence rhythm that peaks in the evening), validating that
B-AZ lengthens the period of the Arabidopsis circadian clock
(Fig. 1D). We also noticed that the period length in samples
treated with 250 and 500 mM B-AZ were similar (about 6 h
longer than the control samples), suggesting that period length-
ening seemed to be saturated at concentration of B-AZ over
250 mM. By validation using two clock reporters, we confirmed
that B-AZ lengthens circadian clock of Arabidopsis. Putative
biological activities of B-AZ besides period-lengthening activity
are intriguing and will be examined in a future study.

Although the structure of B-AZ is partly similar to plant
hormone cytokinin, we hypothesized that B-AZ lengthens clock
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period through cytokinin-independent manner. This hypoth-
esis is probably correct since the application of cytokinin does
not result in lengthening or shortening the circadian period
(Hanano et al. 2006). Secondly, the side-chain structures of
cytokinin are essential for their biological activity (Sakakibara
2006), but B-AZ lacks such side chain (Fig. 1A).

To reveal the mode of action of B-AZ, screening for proteins
capable of being bound by a small molecule (Target
Identification) is often regarded as a first and crucial step
(Hirota et al. 2010, Dejonghe and Russinova 2017). To this
end, generating the molecule that is covalently attached to
bead is required. To understand which position in the molecule
should be the site for conjugating the molecular linker, we again
checked first screening result since molecules whose structures
are partially similar to B-AZ were in the ITbM chemical library.
We found no period-lengthening activity of these molecules
(Fig. 2A). B-AZ has two bromine atoms at 3 and 4 positions.
To test the importance of these bromines, and possibly install
linker molecule at these positions, molecules lacking the bro-
mines (7-azaindole, 3-bromo-7-azaindole and 4-bromo-7-azain-
dole) were treated with seedlings and the circadian rhythms
were analyzed (Fig. 2B). There was no obvious period-length-
ening effect by 7-azaindole or 4-bromo-7-azaindole. A weak
period-lengthening effect was observed by 3-bromo-7-azain-
dole and may suggest importance of the bromine in the B-
AZ. Collectively, these results indicated that generatingmolecu-
lar probe for target identification of B-AZ is difficult.

Short-term B-AZ treatment downregulates CCA1,
LHY, PRR9 and PRR7
To understand the mode of action of B-AZ for clock period
lengthening in other ways, we focused on gene expression
profiling after a short-term B-AZ treatment. Even if the expres-
sion changes were not drastic, this approach would reveal an
immediate effect on gene expression resulting from the B-AZ

treatment, and would allow us to speculate the state of
clock-associated transcription factors that potentially regulate
these immediate altered genes.

Arabidopsis seedlings were grown under 12 h light/12 h dark
conditions (LD) for 4 d, and transferred into constant light, and
treated with B-AZ at eight time points (25, 28, 31, 34, 37, 40, 43
and 46 h after being moved to the constant light conditions,
Fig. 3A). Plants were sampled 3 h after treatment. Reverse tran-
scription quantitative PCR (RT-qPCR) analysis indicated that
LUX expression was not changed by B-AZ treatment. With
the exception of time-point 28 h, TOC1 expression was also
not changed by B-AZ. B-AZ treatment decreased ELF4 expres-
sion at around subjective noon and early night. B-AZ decreased
PRR5 from subjective night to early morning. B-AZ significantly
decreased PRR7 and PRR9 expression in subjective night and
highly suppressed their peaks. B-AZ decreased CCA1 and LHY in
subjective early night, before the peak time for expression of
these genes.

Collectively, B-AZ did not affect all of clock-associated genes
expression. Rather, B-AZ had a lesser effect on the evening-
phased genes such as TOC1 and LUX. B-AZ reduced CCA1,
LHY, PRR9 and PRR7 at time when their expression would nor-
mally start to increases and also decreased PRR9 and PRR7 in
subjective morning when their expression should peak.

B-AZ increases the amounts of PRR5 and
TOC1 proteins
Given that PRR proteins are transcriptional repressors for CCA1,
LHY, PRR9 and PRR7, we hypothesized that B-AZ affects PRR
proteins that eventually decrease the expression of CCA1, LHY,
PRR9 and PRR7 genes. This hypothesis is supported by evidence
showing that PHA767491, another small molecule that down-
regulates CCA1, LHY, PRR9 and PRR7, causes increasing of
amounts of two PRR proteins, PRR5 and TOC1 (Uehara
et al. 2019).
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Fig. 1 B-AZ lengthens circadian period ofArabidopsis. (A) The screening result showing that B-AZhas the potential to lengthen the circadian period
of Arabidopsis seedling (left). Traces of bioluminescence of CCA1:LUC seedlings treated with random small molecules showed similar period length
(blue traces), except for a sample treated with 50mM B-AZ (red trace). Structure of B-AZ (right). (B) Amplitude and period in three independent
trials (n¼ 87–93) under constant light conditions were determined by a CL96-attached software. (C) Averaged traces of relative luminescence of
CCA1:LUC (left) and period length (mean ± SEM, n¼ 8, right). (D) Averaged traces of relative luminescence of TOC1:LUC (left) and period length
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To test whether B-AZ affects the amounts of PRR proteins
without regulating transcription, transgenic plants overexpress-
ing PRR under the control of the CaMV 35 promoter were used
(Nakamichi et al. 2012). 35Spro:PRR5-FLAG seedlings grown
under LD conditions were treated with B-AZ and further kept
under constant dark. We found that B-AZ treatment caused
accumulation of PRR5-FLAG under dark conditions (Fig. 3B).
The result suggested that degradation of PRR5 is attenuated by
B-AZ; however, it is possible that enhancement of the transcrip-
tional repressor function of PRR5 for the target genes that per-
turb clock may influence B-AZ’s activity for regulating the
amount of PRR5 protein. To examine this possibility, we ana-
lyzed PRR5-VP protein in 35Spro:PRR5-VP seedlings that have
opposite phenotypes to that of 35Spro:PRR5-FLAG (Nakamichi
et al. 2012). PRR5-VP amounts were also increased by B-AZ
treatment under constant dark conditions (Fig. 3C), suggesting
that PRR5-dependent transcriptional regulation of target genes

less affects B-AZ’s activity to regulate PRR5 amount. Next, we
analyzed the amount of TOC1-VP protein in 35Spro:TOC1-VP
seedlings (Nakamichi et al. 2016). B-AZ caused increasing of
TOC1-VP amount (Fig. 3D). These results indicate that B-AZ
controls the amount of PRR5 and TOC1 proteins, as
did PHA767491.

B-AZ inhibits CKL4, a kinase that phosphorylates
PRR5 and TOC1
Phosphorylated PRR5 protein is preferentially recognized by
ZTL for degradation (Fujiwara et al. 2008). Recently, we
reported that Casein Kinase 1 (CK1) family protein (CKL4)
phosphorylates PRR5 and TOC1 in vitro, and inhibition of
CK1 activity by PHA767491 causes increasing amount of
PRR5 and TOC1 proteins in vivo (Uehara et al. 2019). We
hypothesized that B-AZ also inhibits CKL activity, thereby even-
tually leading to an increase in PRR5 and TOC1 amount in vivo,
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although the structure of B-AZ is not similar to that
of PHA767491.

The CKL4 kinase activity for model substrate casein was
analyzed in vitro, since CKL4 kinase activity was strongest
among the purified CKL proteins (Uehara et al. 2019). B-AZ
inhibited CKL4 kinase activity with an IC50 around 40 mM, far
lower than the concentration required for period lengthening
in vivo (Fig. 4A). B-AZ also inhibited CKL1 kinase activity
(Fig. 4A). B-AZ analogs lacking at least one bromine (7-azain-
dole, 3-bromo-7-azaindole or 4-bromo-7-azaindole) had very
weak CKL4 inhibitory activities, suggesting that two bromines
are essential for CKL4 inhibitory activity (Fig. 4B). The correl-
ation of structure–activity relationship studies with the in vitro
CKL4 kinase assay and in vivo period-lengthening effect support
the idea that B-AZ lengthens the period through CKL inhibition.

To further understand how B-AZ inhibits CKL, molecular
docking and molecular dynamics (MD) simulations were per-
formed to predict B-AZ binding site in human CK1 delta (PDB
ID: 5IH6, Ursu et al. 2016), whose amino acid sequences are
highly similar to those of Arabidopsis CKLs (Supplementary
Fig. S1), since crystal structures of Arabidopsis CKLs have not
been reported. To validate our strategy to use human CK1 delta,
we first analyzed whether PHA767491 binds to CK1 delta. The
in vitro inhibitory activity of PHA767491 on CK1 delta and the
PHA767491-dependent period lengthening of mammal circa-
dian clock were shown, but the actual inhibitory mechanism of
PHA767491 on CK1 delta was unclear (Uehara et al. 2019). The
computational results successfully provided the binding con-
formation of PHA767491 in the ATP-binding pocket of CK1
delta (Fig. 4C, D). The binding energy between PHA767491
and CK1 delta was calculated to be �5.76 kcal/mol (Fig. 4C).
The MD simulation also suggested that the binding structure of
PHA767491 in the CK1 delta ATP-binding pocket is stable
(Fig. 4D). PHA767491 spatially associates with two amino
acid residues, Leu85 and Ile148 in the ATP-binding pocket of
CK1 delta. PHA767491 binds to Leu85 via a hydrogen bond.
Then, the same analysis was applied to B-AZ, resulting in a
binding conformation in the ATP-binding pocket (Fig. 4C)
and the binding energy of �4.56 kcal/mol. This value showed

higher binding energy than that for PHA767491, suggesting that
binding between PHA767491 and CK1 delta is stronger than
that between B-AZ and CK1 delta. The in silico results may
meet with IC50 value of PHA767491 on CKL4 (�5 mM)
(Uehara et al. 2019), far lower than that of B-AZ (Fig. 4A). B-
AZ also has hydrogen bonds to Leu85 in the ATP-binding
pocket of CK1 delta, although chemical structures of B-AZ
and PHA767491 are not similar. We also applied the same com-
putational analysis to the 7-azaindole, but failed to produce a
binding conformation in the ATP-binding pocket. Collectively,
it was suggested that B-AZ well binds to the ATP-binding site of
CK1 delta. Binding energies between human CK1 delta were
well correlated to inhibitory activities for Arabidopsis CKL4
in vitro (Fig. 4A, B) (Uehara et al. 2019). Leu85 and Ile148 are
conserved among CK1 delta and CKLs (Supplementary Fig. S1),
implying that B-AZ binds to the ATP-binding site of Arabidopsis
CKLs; however, future co-crystallization and MD simulation
studies using B-AZ and CKL are required to confirm the mech-
anism of B-AZ inhibition of CKL kinase activity.

prr5 toc1 is hyposensitive to B-AZ treatment
Our results showing that PRR5 and TOC1 proteins were accu-
mulated by B-AZ treatment suggested that PRR5 and TOC1 are
crucial factor in mode of action of B-AZ. If so, Arabidopsis
lacking PRR5 and TOC1 should be hyposensitive to B-AZ. To
examine this possibility, we treated prr5 toc1 mutants with B-
AZ and analyzed the circadian rhythm (Fig. 5A). As mentioned,
40–100 mM of B-AZ lengthened period of wild type for 4 h, and
about 200 mM lengthened it for 6 h. In prr5 toc1, 40–100 mM
lengthened below 1 h, and 200 mM lengthened 2 h, showing the
hypo-sensitivity of B-AZ in period lengthening in prr5 toc1.
There was no statistical significance of B-AZ-dependent
period-lengthening sensitivities of prr5 and toc1 single mutants
treated with 80 mM B-AZ (Fig. 5B). Genetic redundancy may
mask the sensitivity of these single mutants (Uehara et al. 2019).
In short, PRR5 and TOC1 are major mediators in the mode of
action of B-AZ, but other mechanisms are not excluded since B-
AZ-sensitivity was not completely diminished in the prr5 toc1
mutants. Other B-AZ target proteins than CK1 family and other
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CK1 substrates besides PRR5 and TOC1 may contribute to the
mode of action of B-AZ.

Conclusion

In this study, we found that a structurally simple molecule,
named B-AZ, has an activity to lengthen the circadian period
in Arabidopsis. Although primary structure–activity relation-
ship study suggested that generating molecular probe for direct
target identification of B-AZ was difficult, gene expression
profiling helped to reveal the mode of action of B-AZ.

B-AZ lengthens the period of the clock by inhibiting CK1
protein that regulates PRR5 and TOC1 amounts. This mode of
action is the same as that described for PHA767491, recently
identified as Arabidopsis CK1 inhibitor (Uehara et al. 2019). In
addition, the docking study and MD simulation demonstrate
that B-AZ interacts with the ATP-binding pocket of CK1. Thus,
these two studies emphasize that inhibition of CK1 is one of the
pharmacologically controllable steps for period tuning in
Arabidopsis.

Utilization of small molecules for understanding biological
systems are emerging and expanding (Dejonghe and Russinova
2017, Kinoshita et al. 2018). For instance, synthetic small mol-
ecules that modulate auxin metabolism, transport and signaling
have helped us to understand auxin biology (Fukui and Hayashi
2018, Uchida et al. 2018, Yamada et al. 2018). Also, the molecu-
lar mechanisms of brassinosteroid biosynthesis and signaling
have been revealed by extensive studies using small molecules

(Asami and Yoshida 1999, De Rybel et al. 2009, Dejonghe et al.
2014, Yamagami et al. 2017). Not only in hormone biology but
also in a wide range of plant physiological processes, the finding
molecules that perturb biological processes were used as the
first step to elucidate the molecular mechanism underlying the
physiology of interest (Matsubayashi et al. 1997, Park et al. 2009,
Noutoshi et al. 2012, Nakano et al. 2018). Although this study
failed to generate molecular probe (Fig. 2), generating molecu-
lar probes help us to find exact targets of biologically active
molecules (Matsubayashi et al. 2002, Kinoshita et al. 2005,
Sharma and Russinova 2018, Tsuchiya 2018, Uehara et al.
2019). Full understanding of the mode of action of biologically
activemolecules eventually expands our knowledge of plant cell
signaling at the molecular level.

As the clock regulates a wide range of physiological proc-
esses such as photosynthesis, cell elongation and flowering time
regulation, further discovery and development of small mole-
cules controlling clock may provide plant growth regulators
(Uehara et al. 2019).

Materials and Methods

Plant materials and growth conditions
Derivatives of A. thaliana accession Columbia (Col-0) were used in this study.
CCA1:LUC (Nakamichi et al. 2005), TOC1:LUC (Uehara et al. 2019), 35Spro:PRR5-
FALG, 35Spro:PRR5-VP (Nakamichi et al. 2012), 35Spro:TOC1-VP (Nakamichi
et al. 2016), prr5-11 CCA1:LUC (Nakamichi et al. 2005), toc1-2 CCA1:LUC (Ito
et al. 2009) and prr5-11 toc1-2 CCA1:LUC (Uehara et al. 2019) were described
previously. Plants were grown on Murashige Skoog (MS) medium (pH 5.7)
(Murashige and Skoog 1962) with 0.25% sucrose and 0.3% gellan gum. Plates
were stored at 4�C on dark for 2 d, andmoved to LD or constant light conditions
(LL). Light intensity was �70mmol s�1m�2.

Chemical screening for molecules that affect
period length
Screening of small molecules changing circadian period was performed as pre-
viously described (Uehara et al. 2019), using an ITbM chemical library (Ziadi
et al. 2017, Toh et al. 2018), in which all molecules were dissolved in dimethyl
sulfoxide (DMSO,Molecular biology grade, Nacalai, Japan), CCA1:LUC transgenic
seedlings and an automated luminescence monitoring system (CL96, Churitsu).
Molecules dissolved in DMSO at 1mM were diluted with half strength of MS
media to 50mM, and dropped on 4-day-old seedling grown under LD. Period
length of CCA1:LUC was determined by CL96-attached software (Churitsu,
Japan), as described previously (Kamioka et al. 2016). After the first screening,
the hit molecule (B-AZ) was tested in different concentrations to period-length-
ening effects of CCA1:LUC and TOC1:LUC. Other hit molecules discovered in this
project will be described in future. B-AZ was also purchased from SINOVA Inc.,
Maryland. 7-Azaindole, 3-bromo-7-azaindole and 4-bromo-7-azaindole were
purchased from Sigma-Aldrich, Tokyo Kasei and Fujifilm-Wako, respectively.
The sensitivity of B-AZ in prr5-11 CCA1:LUC, toc1-2 CCA1:LUC and prr5-11
toc1-2 CCA1:LUC was performed by the same method. Period lengths were
normalized to the period length of each genotype treated with DMSO solvent
control, since period length of the mutants was shorter than that of the
wild type.

Effect of B-AZ on gene expression
Seedlings were germinated and grown on MS for 4 d under LD conditions, and
transferred to LL. Then, seedlings were transferred into a conical tube and
treated with 50 mM of B-AZ for 3 h. RNA isolation, RT-qPCR were done by
methods reported previously (Nakamichi et al. 2012). We used three biological
replicates for each sample.
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Effect of B-AZ on PRR protein
35Spro:PRR5-FLAG and 35Spro:TOC1-VP seedlings were germinated and grown
on MS for 4 d under LD. 35Spro:TOC1-VP was grown under constant light
conditions. Then, seedlings with MS medium were transferred into a well of
96-well plate by a dropper, and treated with 500mM of B-AZ and kept under
constant dark conditions for 16–28 h. Thirty seedlings were gathered as one
biological replicate, and frozen by liquid nitrogen. Isolation of total protein from
froze samples was performed as described previously (Uehara et al. 2019).
Detection of FLAG or VP fusion proteins was done as previously described
(Nakamichi et al. 2012, Nakamichi et al. 2016).

In vitro CKL kinase assay
Recombinant glutathione S-transferase (GST)-CKL4, GST-CKL1, casein, B-AZ
and [c-32P] ATP (NN-NEG502A, PerkinElmer) were used for in vitro kinase assay,
as described previously (Uehara et al. 2019). The IC50 (the half-maximal inhibi-
tory concentration) of CKL4 kinase activity from the means of three separate
experiments was calculated, as described previously (Uehara et al. 2019).

In silico study
Molecular docking simulations were performed with FlABCps (Uehara et al.
2015), where the AutoDock force field (Huey et al. 2007) was employed for
evaluating the energy score. For accurate estimations of the binding energy,
100 ns MD simulations were performed on a periodic boundary box
(80� 82� 88 Å3) composed of human CK1 delta (PDB ID: 5IH6, Ursu et al.
2016), ligands and water molecules, using a time step of 2 fs under NPT con-
ditions at 300 K and 1 atm. The computational settings of molecular docking
andMD simulations were the same as in a previous study (Fujimoto et al. 2018).
All MD simulations were performed with the AMBER16 program package (Case
et al. 2016). Alignment of CKLs and human CK1 delta kinase domains was
performed by ClustraIW tool in DNA Data Bank of Japan (DDBJ, https://
www.ddbj.nig.ac.jp/index-e.html), with default setting.

Supplementary Data
Supplementary data are available at PCP online.
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