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Abstract

Purpose: Routine quality assurance (QA) testing to identify malfunctions in medical

imaging devices is a standard practice and plays an important role in meeting quality

standards. However, current daily computed tomography (CT) QA techniques have

proven to be inadequate for the detection of subtle artifacts on scans. Therefore,

we investigated the ability of a radiomics phantom to detect subtle artifacts not

detected in conventional daily QA.

Methods: An updated credence cartridge radiomics phantom was used in this study,

with a focus on two of the cartridges (rubber and cork) in the phantom. The phan-

tom was scanned using a Siemens Definition Flash CT scanner, which was reported

to produce a subtle line pattern artifact. Images were then imported into the IBEX

software program, and 49 features were extracted from the two cartridges using

four different preprocessing techniques. Each feature was then compared with fea-

tures for the same scanner several months previously and with features from con-

trolled CT scans obtained using 100 scanners.

Results: Of 196 total features for the test scanner, 79 (40%) from the rubber car-

tridge and 70 (36%) from the cork cartridge were three or more standard deviations

away from the mean of the controlled scan population data. Feature values for the

artifact‐producing scanner were closer to the population mean when features were

preprocessed with Butterworth smoothing. The feature most sensitive to the artifact

was co‐occurrence matrix maximum probability. The deviation from the mean for

this feature was more than seven times greater when the scanner was malfunction-

ing (7.56 versus 1.01).

Conclusions: Radiomics features extracted from a texture phantom were able to

identify an artifact‐producing scanner as an outlier among 100 CT scanners. This

preliminary analysis demonstrated the potential of radiomics in CT QA to identify

subtle artifacts not detected using the currently employed daily QA techniques.
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1 | INTRODUCTION

Quality assurance (QA) testing is a widely used method of detecting

malfunctions in medical imaging devices such as computed tomogra-

phy (CT) scanners. Therefore, the QA process plays an important

role in meeting quality standards and ensuring good image quality.

QA is traditionally carried out following state‐specific requirements

or recommendations from accrediting bodies (e.g. American College

of Radiology) or the scanner manufacturer with a standard phantom

for which simple metrics, such as uniformity, are calculated.1 How-

ever, whereas daily QA has been able to detect calibration issues, it

is less effective at identifying subtle artifacts.2,3 Although subtle,

these artifacts can cause issues for diagnostic scans and potentially

indicate a significant underlying issue regarding system performance.

In practice, detection of subtle artifacts is often dependent on the

experience of radiologists evaluating the images and missed detec-

tions may cause the patient to have additional unplanned scans,

resulting in excess dose.4

Radiomics, in which voxel relationships are evaluated to identify

textural patterns, has shown promise in separating patients into low‐
and high‐risk groups for assessment of survival.5–9 This separation of

patients demonstrates the ability of radiomics features to identify

small textural differences on CT images. We hypothesized that

applying this radiomics analysis to CT QA could allow for determina-

tion of small textural differences on images with subtle artifacts not

detected in conventional QA. We tested this hypothesis by perform-

ing a controlled CT scan of a radiomics phantom using a scanner

producing a subtle artifact not detected in conventional QA testing.

2 | MATERIALS AND METHODS

An updated credence cartridge radiomics phantom was used as we

described previously10 to acquire the CT scan. This phantom consists

of six cartridges composed of different materials that produce a

spectrum of textures. For this study, two of the cartridges—one

composed of rubber and one composed of cork—were investigated

because they have been shown to produce textures most similar to

those on images of nonsmall cell lung tumors.11

For this study, the phantom was imaged using a Siemens SOMA-

TOM Definition Flash CT scanner (Siemens Healthineers, Forchheim,

Germany). This scanner produced an artifact with a line pattern that

was identified by a radiologist reviewing a patient’s CT lymphoma

study [Fig. 1(a)]. In addition, after the artifact was detected, the same

scanner was used to image an anthropomorphic phantom, demon-

strating the same line pattern [Fig. 1(b)]. This particular artifact was

not observed in other types of scans.

Routine daily QA is performed as per manufacturer specifications

on the system since it was installed in July 2013. The manufacturer

provided phantom is scanned using the follow acquisition technique:

120 kVp, 230 mAs, pitch 0.6, 25 cm display field of view, image and

interval thickness of 5 × 5 mm, and B30f convolution kernel. A 2 cm

diameter circular region of interest (ROI) is placed centrally in the

middle image for the water insert of the phantom. The Hounsfield

unit (HU) of water and standard deviation are recorded as a surro-

gate for image noise. Four additional ROIs of the same size (2 cm

diameter) are placed peripherally at 12, 3, 6, and 9 o’clock position

to measure uniformity. The difference between the mean value of

each peripheral and central ROI is calculated and recorded. In addi-

tion, the uniformity images are visually reviewed for artifacts by

either the Qualified Medical Physicist or trained support staff.

To facilitate direct comparison of the Flash CT scanner with

other CT scanners the same scanner protocol and settings employed

for a population of controlled scans that we described previously10

were used. This population consisted of controlled scans taken using

100 CT scanners. The controlled protocol was specific for each ven-

dor and designed to minimize feature differences across vendors.

Therefore, this eliminates scanning protocol variabilities, as there is

only one protocol. For this dual source Flash CT scanner, only tube

A was used with the following acquisition parameters: 120 kVp,

200 mAs, pitch 1, 50 cm display field of view, image and interval

thickness of 3 × 3 mm, and B31s convolution kernel. Additionally,

the data set also contained images obtained using the same scanner

investigated in this study but at an earlier time point when no arti-

facts were reported. This datum was referred to as our first time

point in this study, whereas the new scan – in which the artifact

was reported – was called the second time point. Images from the

phantom in the first and second time points are presented in Fig. 2.

All images were imported into IBEX, a freely available radiomics

software program.12,13 ROIs with an 8.2 cm diameter and 1.9 cm

height were semiautomatically contoured for the rubber and cork

cartridges using an in‐house MATLAB script (MathWorks, Natick,

MA). A total of 49 features were extracted from images of the two

cartridges. All of the features examined were listed previously10 and

consisted of 22 gray‐level co‐occurrence matrix (GLCM), 11 gray‐
level run length matrix (GLRLM), five neighborhood gray tone differ-

ence matrix (NGTDM), and 11 intensity histogram features. The fea-

tures were calculated using four preprocessing techniques: 1) no

(a) (b)

F I G . 1 . CT scans with subtle artifacts not detected during daily
QA. The red arrows point to subtle line pattern artifacts. (a) Patient
lymphoma scan. (b) An anthropomorphic phantom scan performed
after the artifact was detected.
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preprocessing, 2) 8‐bit depth rescaling, 3) Butterworth smoothing,

and 4) Butterworth smoothing and 8‐bit depth rescaling. These pre-

processing techniques were chosen because in studies of nonsmall

cell lung cancer survival, different features were shown to be the

most prognostic when using different preprocessing techniques.8,14

The settings for the features and preprocessing are detailed in the

supplemental material reported by Fave et al.8

To determine whether a given feature calculated on the second

time point scan can identify the scan as an outlier (i.e., a surrogate

for detecting an artifact in the scan in this study), the mean and

standard deviation of the population of controlled scans for each

combination of feature and preprocessing algorithm were calculated.

For each feature value, the number of standard deviations of a given

time point scan away from the mean of the controlled scan popula-

tion (Nsd,i) was calculated using the formula.

Nsd;i ¼ fp � fi
σp

;

in which i is the time point (1 for the first time point and 2 for the

second time point), fp is the average feature value for the controlled

scan population, fi is the feature value from the scan at i, and σp is

the standard deviation of the feature value in the scan population.

Features from the second time point with the largest standard devia-

tions from the population mean and therefore the leading ones for

identifying the second time point as an outlier were selected for fur-

ther investigation. The Wilcoxon signed rank test was performed to

determine whether Nsd,2 for each feature was the same when

extracted from the cork and rubber cartridges. The Wilcoxon signed

rank test was also performed to compare Nsd,2 values across differ-

ent preprocessing techniques. This statistical test was used for these

comparisons because the normality of the data could not be estab-

lished using the Shapiro‐Wilk test. P values below 0.05 were consid-

ered statistically significant. All analyses were conducted with the R

computing language (version 3.4.1).

3 | RESULTS

The artifact shown in Fig. 1 was not detected by the daily QA per-

formed as per manufacturer’s specifications, as seen in Fig. 3, in

which no trend in daily QA metrics can be clearly discerned and

therefore associated with any problems with the scanner. All daily

QA values, HU of water, uniformity, and standard deviation, fell

within the tolerance limits. Additionally, the visual review of unifor-

mity detected no artifacts.

For the rubber and cork cartridges, of a total of 196 feature‐pre-
processing combinations, the Nsd,2 was greater than or equal to

three in 79 (40%) and 70 (36%) of cases, respectively. Of all features,

12 had an Nsd,2 of three or greater for all four preprocessing algo-

rithms: seven from GLCM, four from GLRLM, and one from

NGTDM. Nsd,2 values for each feature are shown in Fig. 4.

Fifty‐eight percent of the features had a higher Nsd,2 in rubber

than in cork. Also, Wilcoxon signed rank test results demonstrated

that the Nsd,2 was larger for features in rubber than for those in cork

(P = 0.001).

When comparing the different preprocessing techniques, the

Wilcoxon signed rank test findings demonstrated that the Nsd,2 val-

ues were larger when no preprocessing was used versus Butterworth

smoothing (P = 5 × 10−12) or versus Butterworth smoothing and bit

depth rescaling (P = 10−6). The Nsd,2 values were also larger when

(ai) (aii)

(bi) (bii)

F I G . 2 . CT scans of the radiomics
phantom used in this study. To the left (i‐a
and i‐b) are the scans referred to first time
point and to the right (ii‐a and ii‐b) is the
second time point in this study. Top two
scans (i‐a and ii‐a) are the cartridges
containing rubber and the two bottom
ones (i‐b and ii‐b) have cartridges with the
material cork.
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bit depth rescaling was used versus Butterworth smoothing

(P = 10−10) or versus Butterworth smoothing and bit depth rescaling

(P = 4 × 10−11). However, we did not see a statistical difference in

the Nsd,2 values between no preprocessing and bit depth rescaling

(P = 0.17) or between Butterworth smoothing and Butterworth

smoothing and bit depth rescaling (P = 0.11).

To examine the relationship of the first and second time point

scans with the controlled scan population, we selected three fea-

ture‐preprocessing combinations with the largest Nsd,2 values. The

three feature‐preprocessing combinations selected were: maximum

probability with bit depth rescaling from GLCM, energy with bit

depth rescaling from GLCM, and long run emphasis with bit depth

rescaling from GLRLM. Histograms of these feature values in all of

the scans are shown in Fig. 5. For the rubber cartridge, the Nsd,1 and

Nsd,2 of maximum probability were 1.01 and 7.56, respectively; the

Nsd,1 and Nsd,2 of energy were 1.05 and 7.34, respectively; and the

Nsd,1 and Nsd,2 of long run emphasis were 0.25 and 7.26, respec-

tively. For the cork cartridge, the Nsd,1 and Nsd,2 of maximum proba-

bility were 0.07 and 4.56, respectively; the Nsd,1 and Nsd,2 of

energy were 0.31 and 5.41, respectively; and the Nsd,1 and Nsd,2 of

long run emphasis were 0.15 and 5.28, respectively.

4 | DISCUSSION

We investigated the ability of radiomics features to detect a subtle

artifact in a CT scan –only resolved once the x‐ray tube was replaced

– that was not detected in conventional daily QA testing. We identi-

fied several features that varied considerably when measured in a

radiomics phantom using a scanner that produced a subtle artifact

compared with a population of scanners using a controlled protocol.

Additionally, the proposed method was capable of identifying an

outlier by using a controlled protocol without the need of using the

singular CT imaging technique that was producing the artifact in

the clinic. This proves to be useful in a clinical scenario since only

the controlled protocol scan is needed for the analysis.

The values for almost half of the features deviated greatly in the

images from the second time point when compared with the popula-

tion of controlled CT scans. Twelve features measured at the second

time point were three or more standard deviations away from the

controlled scan population mean when measured in both the rubber

and cork cartridges across all four preprocessing algorithms. The top

three features that had the largest Nsd,2 came from two different

feature categories: GLCM and GLRLM. This demonstrated that the

F I G . 3 . Daily QA parameters extracted from the Siemens SOMOTOM Definition Flash CT Scanner. Three parameters were extracted in daily
QA testing performed from 1 September 2017 to 31 July 2018: HU of water, uniformity, and standard deviation. The highlighted time points
shown in orange, red, and green represent 1) the designated first time point in this study (i.e., our reference scan for comparison), 2) the
designated second time point in this study (i.e., the radiomics phantom scan performed when the scanner was producing an artifact), and 3)
when the artifact was first identified by the radiologist, respectively. The horizontal red lines show the limit values in the scanner meeting
vendor‐specific tolerances and therefore passing the daily QA testing.
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F I G . 4 . Standard deviations away from the mean of 100 CT scans in the controlled population for all features. The distance from the mean
of the population of controlled scans is shown for the second time point scan, which produced an artifact not detected in daily QA testing.
Each feature value is presented as measured in both cartridges: blue for cork and purple for rubber. Additionally, the four preprocessing
techniques are represented by different symbols: circle, no preprocessing; square, 8‐bit depth rescaling; triangle, Butterworth smoothing; +,
Butterworth smoothing and 8‐bit depth rescaling. *Feature that produced an Nsd,2 of at least three across all preprocessing techniques. QA,
quality assurance.
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artifact impacted second‐order statistics and therefore affected the

spatial relationship of HUs in the phantom. However, this difference

did not noticeably affect the uniformity, linearity, or HU of water as

measured in daily QA. This lack of detection of the artifact in daily

QA is consistent with our results demonstrating that intensity his-

togram values were least affected by the subtle artifact.

Standard deviation values of the second time point were signifi-

cantly higher for features extracted with no preprocessing or bit

depth rescaling than for features extracted with Butterworth

smoothing alone or Butterworth smoothing and bit depth rescaling.

This suggests that the Butterworth filter smoothens the textural dif-

ferences for this particular subtle artifact.

This study had several limitations. We did not perform longitudi-

nal scans, which would have allowed tracking of the features from

the scanner from when they were within the population and there

was no artifact, to when they were outside the population and there

was an artifact. However, as previous studies have shown that radio-

mics features from CT scans are reproducible over time,15,16 we are

convinced that this result is due to the artifact and not due to ran-

dom fluctuations in feature values in repeat measurements. Likewise,

while the first time point demonstrated that the features from the

scanner images were within the population of scans obtained using

the 100 CT scanners and the features from the second time point

were outside the population’s distribution, a trend in feature value

cannot be established using only these two time points. Additionally,

we performed all artifact analyses using only one scanner. However,

this was a feasibility study and further investigation using multiple

scanners would be required to better elucidate the relationship of

detection of artifacts with radiomics features and before any clinical

usage.

Another limitation of this study is that we only tested two materi-

als – the ones from the phantom which most closely produce textures

similar to textures from patients. The use of more materials could pro-

vide us with a more complete picture of the relation between radio-

mics features and the textural differences of a CT artifact. However,

features that are not similar to those from patients may erroneously

identify issues, as they do not have similar values to patients.

Even with these limitations, the results of this study are promis-

ing, specifically, the ability of features extracted from a controlled

CT scan of a radiomics phantom to identify an artifact‐producing
scanner as very far away from the controlled scan population distri-

bution of feature values. In a clinical environment, this could lead to

better QA than waiting for a radiologist to report the artifacts within

a patient’s scan. Additionally, this method would allow for the analy-

sis of the extracted radiomics features relative to the controlled scan

population distribution to be done automatically without the require-

ment of visual inspection of scans to identify artifacts. There is still

much left to prove with this method by tracking scanners over time

to determine the existence of a trend in feature values as well as

determining whether the same features are able to identify multiple

scanners producing artifacts as outliers (i.e., scanners producing arti-

facts). However, this proof‐of‐concept study is promising for extend-

ing radiomics to the routine quality assurance of CT scanners.

5 | CONCLUSION

In this study, we found that features from a radiomics phantom

identified an artifact‐producing CT scanner as an outlier relative to a

population of 100 scanners after imaging the same phantom using a

F I G . 5 . Histograms of feature value
distributions in all scans. The top three
feature‐preprocessing combinations
identifying the second time point as an
outlier are shown. The three features all
used 8‐bit depth rescaling. The features
selected were maximum probability from
gray‐level co‐occurrence matrix (GLCM),
energy from GLCM, and long run emphasis
from gray‐level run length matrix (GLRLM).
The first time point is inside the controlled
scan population distribution, whereas the
second time point is outside.
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controlled protocol. This preliminary study demonstrates the poten-

tial for radiomics in CT QA to identify subtle artifacts not detected

using current daily QA techniques. The radiomics phantom method-

ology presented herein can contribute to further investigation of

radiomics features being extended to QA practices.
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