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Abstract

The development of next-generation therapies for neuropsychiatric illness will likely rely on a 

precise and accurate understanding of human brain dynamics. Toward this end, researchers have 

focused on collecting large quantities of neuroimaging data. For simplicity, we will refer to large 

cross-sectional neuroimaging studies as broad studies and to intensive longitudinal studies as deep 

studies. Recent progress in identifying illness subtypes and predicting treatment response in 

neuropsychiatry has been supported by these study designs, along with methods bridging machine 

learning and network science. Such methods combine analytic power, interpretability, and direct 

connection to underlying theory in cognitive neuroscience. Ultimately, we propose a general 

framework for the treatment of neuropsychiatric illness relying on the findings from broad and 

deep studies combined with basic cognitive and physiologic measurements.

Introduction

Neuropsychiatric illness has widespread and devastating effects on populations around the 

world, affecting approximately 20% of individuals in the U.S. alone [1]. Converging 

evidence from genetic, behavioral, and neuroimaging [2,3] studies has demonstrated 

overlapping pathological features in these disorders, suggesting that both common and 

unique pathophysiological mechanisms underlie clinical symptoms such as anxiety, 

depression, and psychosis. Accordingly, the classic notion of discrete psychiatric syndromes 

defined by clinical symptoms [4] is being challenged by more biologically and empirically 

driven models that link brain and behavior [5]. High rates of comorbidity between disorders 
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hamper the identification of generalizable pathophysiological principles, similar to those that 

allow us to understand dysfunction of less complex internal organs. The dearth of such 

principles may partially explain the fact that a large cohort of patients do not respond to 

psychotherapy, psychopharmacologics [6], and brain stimulation protocols [7•]. Indeed, a 

marked consequence of the brain’s vast complexity is the existence of many distinct and 

overlapping pathways for cognitive function and dysfunction, constituting a major challenge 

in developing accurate diagnoses and predicting individual responses to treatment.

How, if ever, can we elucidate and intervene on these overlapping pathophysiological 

mechanisms that underlie neuropsychiatric illness? Recent efforts toward this aim have 

focused on the acquisition of human neuroimaging data sets with samples of unprecedented 

size [8•,9–11]. These so-called broad studies provide an excellent picture of between-

individual or population-level variance, allowing the prediction of treatment response from 

high-dimensional neuroimaging and affective phenotypes based on methods from network 

neuroscience and machine learning [12••]. The widespread application of such methods has 

been facilitated by advances in computer processing power and repurposing of graphics 

processing units (GPUs) for machine learning. In complementary efforts, researchers have 

also collected data with repeated measures on a small cohort or single individual. These so-

called deep studies have generated insights into the substantial within-individual variation in 

neuroimaging phenotypes that occurs on the scale of days, weeks, and months [13•,14,15]. 

Daily changes in neuroimaging phenotypes have also been linked to variability in behavioral 

and affective profiles [16], suggesting that temporal derivatives of neuroimaging phenotypes 

may contain unique, neuropsychiatrically relevant information. As such, both broad and 

deep studies have uniquely contributed to our understanding of healthy neurophysiology and 

neuropsychopathology.

While initial progress has been made through these unique forms of big data, 

neuropsychiatry still remains far from the goal of using generalizable principles to develop 

and deliver treatment. In this review, we begin by describing the results of broad and deep 

studies in more detail, along with methods well-suited for each study type. Next, we 

describe a framework to maximize the clinical translatability of broad and deep 

neuroimaging studies. Specifically, we posit that broad studies can inform models that 

identify who would benefit from intervention and how to intervene, while deep studies can 

inform models that suggest when to intervene. Network science and machine learning serve 

as the foundations for these models and will undoubtedly play a critical role in the coming 

generation of neuropsychiatric care.

Informing diagnosis and treatment through large population-level studies

Within the past decade, the neuroimaging community has seen the emergence of broad 

neuroimaging studies with historically large sample sizes (Figure 1). The Human 

Connectome Project [9], the UK Biobank [8•], the Philadelphia Neurodevelopmental Cohort 

[11], and Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) [10] have 

each generated valuable insights into the relations among brain structure, brain function, and 

behavior. Importantly, analyses of these data have increasingly relied on methods from 

network neuroscience [17•], an emerging field that provides elegant approaches for the 
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quantitative description of complex multivariable phenotypes in brain anatomy and 

physiology. In large-scale brain networks, one can succinctly capture the collective role of 

several regions simultaneously through node-level metrics, such as the participation 

coefficient [18,19], controllability [20], hubness, nodal efficiency [21], and weighted degree 

[18] (Box 1). These metrics can be readily computed using freely available code [22,23]. 

Notably, these statistics are influenced by the topology of the entire network, change 

dynamically over time in functional networks [24], and are altered in neuropsychiatric 

disease [25–27]. To combine brain network models with clinical, behavioral, genetic, and 

cognitive data requires the use of multivariate statistical approaches that acknowledge the 

complexity of each of these data types by jointly accounting for their covariance structure 

[8•,28]. Sparse canonical correlation analysis (sCCA) [29] and partial least squares (PLS) 

[30] are two examples of such multivariate statistical methods that are well-suited to identify 

covariance patterns between brain networks and high dimensional behavioral, clinical, and 

genetic data (Figure 1).

Machine learning classifiers have demonstrated clear promise for neuropsychiatric diagnosis 

[43••], even with unimodal neuroimaging data. In a multisite study (n = 941), the ENIGMA 

schizophrenia working group utilized consensus-based classifiers to distinguish individuals 

with schizophrenia from healthy controls with 76% accuracy using structural MRI alone 

[44]. However, the clinical utility of such classifiers may not be realized until they are able 

to distinguish a particular disorder from a heterogeneous clinical population rather than 

healthy controls. Results from studies based on multivariate statistics suggest that the 

inclusion of clinical and behavioral data may help classifiers resolve this heterogeneity. In a 

large multisite study (n = 1188), CCA was used to define biotypes of major depressive 

disorder (MDD) based on resting state functional connectivity and clinical symptoms, 

allowing for diagnosis of depression with 85–90% accuracy in a replication set and 

prediction of positive response to transcranial magnetic stimulation (TMS) [12••]. The 

model was also able to distinguish MDD from schizophrenia more easily than from 

generalized anxiety disorder, reflecting the varying degrees of overlap in neurobehavioral 

phenotypes between different forms of mental illness. Importantly, individual patient data 

from independent samples can be fed into these models to generate priors for clinicians. In 

the near future, these models are likely to become increasingly powerful as open data 

sharing practices facilitate the growth of training data sets [45]. Such efforts will be critical 

for generating low dimensional representations of clinical symptoms and network measures 

of brain structure and function that are useful in the diagnosis and sub-diagnosis of disease, 

and in the selection of interventions and treatments (Figure 1).

Harnessing individual differences and within-subject dynamics

In contrast to broad studies, which leverage large sample sizes to make inferences about 

individuals in a defined population, deep studies are particularly suited for investigating the 

interdependencies between a diverse range of phenotypes that might vary meaningfully over 

time in single individuals (Figure 1). Perhaps the most impressive deep study is the 

MyConnectome project [13•], which is the first to describe the existence and nature of a 

complex interactome between resting state functional connectivity, transcriptomics, 

metabolomics, food intake, and behavior over the course of 532 days. It is interesting to 
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consider the potential for such an interactome to inform the development of targeted 

neuromodulatory interventions that depend on the state of the brain at the time of 

stimulation [46]. Indeed, daily variation in brain network connectivity could confound the 

effects of stimulation, leading to mixed responses to such treatments for depression [7•]. To 

better understand these temporal variations, one can consider using multilayer network 

models, which can identify changes in network structure over time by taking into account 

the interactions between network components and the interactions within each network 

component with time [47] (Figure 1). One can also use linear autoregressive models, Hidden 

Markov Models, or Long Short-Term Memory recurrent neural networks [48] to predict how 

a complex, interacting system evolves over time. While the level of depth reported in the 

MyConnectome project is currently impractical for patient care, it illustrates the complex 

origins of day-to-day individual variation and — alongside other intensive sampling studies 

— offers useful benchmarks to inform future data collection [14,49,50••,51].

Typical approaches for ‘parcellation,’ – obtaining representative signals within anatomically 

[52] or functionally [33] similar regions or ‘parcels’ – tend to rely on registering brain 

images to a common template space. However, performing targeted manipulations of 

distributed cognitive systems that exhibit dysfunction in neuropsychiatric illness demands 

exceptional precision in mapping brain network architecture and function. Thus, the growing 

focus on subject-specific parcellation to define these parcels independently for each 

participant or patient is a critical complement to the intensive sampling of deep studies 

(Figure 2) [14,15,53,54]. Constructing subject-specific parcellations builds on historical 

work in tumor resection, where neurosurgeons and anesthesiologists perform patient-specific 

functional mapping of language and motor circuits with fMRI, pharmacology, and electrical 

stimulation [55,56]. When seeking to map all circuits across the entire brain, one would 

focus on mapping individual differences in functional topography that might hold diagnostic 

and prognostic value, with methods that do not depend on warping subject-level volumes to 

an average brain [50••,57]. Recently, such individualized parcellation techniques have been 

combined with resting state fMRI to identify novel subnetworks within the default mode 

network (DMN) [58], a system that has been broadly implicated in virtually every 

neuropsychiatric illness [59–62]. These observations motivate further studies of individual 

differences in the distribution of cortical real estate between particular functional networks 

[63] and their finer subdivisions in the context of neuro-psychiatric illness (Figure 2). In 

these efforts, deep neuroimaging studies will be particularly important, by providing 

sufficient data to use subject-specific parcellations. This approach will account for — rather 

than average over — individual network topographies (Figure 2). Resolving individual 

differences in spatial topography will facilitate an accurate study of the neural basis of 

temporal fluctuations in individual symptoms. The richly sampled temporal dimension of 

deep studies adds a layer of complexity untouched by most broad studies and the individual-

oriented methodology improves the accuracy of patient-specific predictions. Ultimately, 

meta-analysis of deep studies might inform a generalizable approach, if not 

pathophysiological principles, for making individual predictions of the optimal treatment as 

a function of time and a more easily measurable subset of variables.
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Using network models to link intensive behavioral assessment with 

neuroimaging findings

A key counterpart to accurately interpreting changes in functional brain dynamics over time 

in a patient cohort is the ability to concurrently measure changes in behavior, emotions, and 

mood — core symptoms of neuropsychiatric illness, which are typically assessed 

retrospectively in the clinical setting. Experience-sampling (ES) encompasses the 

measurement of these factors, in addition to physiology, in real time through the use of 

personal data recording tools [64]. Subject-specific symptom networks can be constructed 

by computing cross-correlations between measures of different emotions over time, 

quantifying the cofluctuation of psychiatric symptoms [65•,66,67] (Figure 3). Additionally, 

directed networks can be constructed using pairwise regression between time-lagged 

measures, capturing the temporal precedence of symptom fluctuations [68]. Higher order 

features of these symptom graphs [65•], such as network density (Box 1), are greater in 

individuals with MDD than in healthy controls [69], suggesting that the temporally dynamic 

interplay between symptoms may be altered by disease processes. ES also lends itself well 

to the study of substance use disorders, in which daily emotional variability can trigger 

relapse [70].

Major limitations of ES are the burden of repeated assessment on participants and the 

potential for the process of ES itself to influence symptoms (i.e. reactivity [71]). 

Nevertheless, commonly used forms [72–74] for evaluating mental health utilize 

retrospective reporting, assuming stationarity in these dynamic phenotypes [75] (Figure 3). 

Schizophrenia, for example, is characterized by a lack of insight and poor working memory, 

and therefore real-time assessment may be more likely to accurately capture cognitive and 

emotional state than single-shot clinical evaluations or self-report measures. Thus, ES is a 

highly promising approach for identifying neural correlates of symptom dynamics in 

complex, overlapping neuropsychiatric pathologies.

The use of ES has begun to enter into neuroimaging studies, though not with the same force 

as the machine learning techniques described above. In schizophrenia patients, corticostriatal 

task activation and reduced motor activity were found to predict negative symptoms [77]. 

Similarly, physiological signs of autonomic dysfunction acquired through wearable 

technology were associated with positive symptom severity [78]. In a study of patients with 

anorexia nervosa, reward circuit activity was related to longitudinal body-mass index 

measurements and body-related rumination [79]. Notably, this particular study used group-

level parcellation techniques, indicative of a common disconnect between the use of cutting 

edge methods in social science and those in neuroscience.

Despite these intriguing findings, no parallels have yet been drawn between basic ES 

measures, network models of psychiatric symptoms, and structural or functional brain 

networks. Functional brain network dynamics have been extensively characterized [24,80], 

and there are likely rich relationships with behavioral and symptom dynamics, as suggested 

by the MyConnectome project. One could gain traction on these relationships using 

multilayer network construction with subsequent community detection [47] to draw parallels 

between dynamic functional networks and symptom networks. Brain regions with high inter-
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scan variability in functional connectivity and high within-scan community change, that is, 

flexibility [16], may confer similar variability onto behavior phenotypes.

The use of advanced machine learning techniques for time series analysis, such as recurrent 

neural networks and Hidden Markov Models, as well as unsupervised multivariate statistical 

methods, are promising underexplored avenues for finding covariance between complex 

neural and behavioral phenotypes in neuropsychatric illness. Furthermore, ES could explain 

temporal variance in cortical excitability [81,82], an important factor in TMS response 

[83••], and allow for its targeted control. While targeted neuromodulatory treatment 

paradigms are currently being refined, with the aid of findings from broad studies, ES 

provides us with useful methods that will help to identify the optimal time in a disease 

course to deliver these treatments.

Conclusion

Across many academic disciplines, the use of machine learning techniques, often informed 

by network theory, has skyrocketed in the last decade, concordant with the collection of data 

with larger (broad) and more intensive (deep) samples. Both broad and deep studies provide 

the neuroscience community with unique opportunities to advance the diagnosis and 

treatment of neuropsychiatric illness, with the aid of network science and machine learning. 

Broad studies allow for network analysis followed by dimensionality reduction and 

classification for identifying meaningful symptom-neuropathology correspondence and 

predicting treatment responses. Deep studies demonstrate the importance of individual 

variability and provide a framework for understanding and manipulating complex, individual 

phenomes. Experience sampling provides the tools for acquiring intensive repeated 

physiologic and behavioral measures, the network models of which may have critical 

unexplored neural correlates. Ultimately, a model using priors derived from broad studies, 

patient-specific neuroimaging data, and symptom networks might predict the optimal timing 

and type of treatment for individual patients in real time based on a subset of measurements 

captured through a personal device. The merger of these techniques has the potential to 

usher in a next-generation approach to psychiatric care and contribute to our fundamental 

understanding of the complex relationship between mind, body, and behavior.
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frontal cortical excitability is a strong predictor of response to magnetic seizure therapy. This 
technique might hold enormous promise if intra-individual variability in cortical excitability can 
be exploited to improve treatment response.
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Modularity

Complex networks often contain non-trivial clustering in the form of modularity, in 

which groups of nodes exist that are more densely connected with each other than with 

nodes in other modules [18,31].

Network density

A fully dense network is one in which a connection exists between every possible pair of 

nodes. The density of a network is the number of existing connections divided by the 

number of possible connections.

Participation coefficient

Participation coefficient quantifies the extent to which a node sits on the boundary of 

multiple modules [18,19,31,32], poised to coordinate activity between functional systems 

of the brain [33].

Weighted degree

The weighted degree, or strength, of a node is the sum of its connection weights. 

Weighted degree can be further broken down into within-module and between-module 

degree, referring to the strength of a node’s connections to nodes in the same module or 

in other modules.

Hubs

Hubs are brain regions with unique roles in structural and functional networks due to 

their many, and often diverse, connections with other brain regions. Hubs are often 

disrupted in neuropsychiatric illness [34,26]. Hubs can be defined in several ways 

[18,19,32,35,36], often relying on a balance between participation coefficient and within-

module degree.

Nodal efficiency

Nodal efficiency is a measure related to the average number of nodes that must be 

traversed to go from a given node to all other nodes [21,37]. This quantifies how an 

individual node contributes to the small world properties of brain networks [38].

Controllability

Unlike the above metrics, which quantify the static topological role of nodes in a 

network, network control theory [17•,23] uses a dynamical systems perspective to 

quantify the ability of each node to support transitions between states of activity. Two 

common metrics are average and modal controllability, which capture the ability of 

regional input to drive nearby or distant state transitions [23,39]. These principles have 

been explored in neuropsychiatric illness [25,40], over development [41], and across 

species [42].
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Figure 1. 
Broad and deep neuroimaging studies. The neuroimaging community has seen the rise of 

studies with increasingly large sample sizes (broad studies) and increasingly intensive 

sampling (deep studies). Broad studies (left) typically involve cross-sectional sampling of a 

specific population. Multivariate statistics and deep neural-network classifiers are two 

examples of methods that are well-suited to identify high-dimensional patterns between 

brain network, behavioral, clinical, and genetic phenotypes. Ultimately, such models might 

lead to the automated classification of neuropsychiatric illness based on neurobehavioral 

phenotypes, along with predictions of responses to various treatment options. Deep studies 

(right) typically involve intensive, repeated sampling of a small number of individuals 

longitudinally over days, months, or years. Multilayer network models can capture how the 

interaction between different components of brain activity, transcriptomes, metabolomes, or 

behavior changes over time. Here (middle right), each node represents a component and the 

time-varying edges represent their time-dependent interactions. Such models could prove 

particularly powerful for delineating how variability in individual networks over time affects 

treatment response.
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Figure 2. 
Subject-specific parcellation uncovers individualized topography of functional networks. (a) 
Sample depiction of the default mode network in a group-level parcellation, which warps 

subject volumes to standard space, potentially averaging over important differences in 

functional network topography. Yellow overlay indicates activity, while colored lines 

indicate parcel boundaries. (b) Sample depiction of subject-specific activation map (yellow 

overlay) with group-level parcellation borders (colored lines) overlayed, illustrating the 

possible variation in subject-specific functional topography.
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Figure 3. 
Measuring mood dynamics with experience sampling. (a) Illustration of symptom 

measurement by retrospective report, demonstrating how scales of mood symptoms that ask 

for retrospective reporting average over rich mood dynamics and are subject to recall bias 

[72–74]. (b) Example time series of mood measurements from the Profile of Mood States 

[76]. Spikes in the time series indicate rapid changes in mood induced by brief events. The 

numbering on the x-axis indicates windowing for network construction. (c) Illustration of 

multilayer emotional network construction from subsequent windows of time series shown 

in panel (b). Nodes represent mood features, with the letter label corresponding to features 

in (b), solid gray edges represent the correlation between mood features within a particular 

time window, and dashed black edges link mood features together across time. Constructing 

such a network facilitates the application of numerous methods for analyzing the temporal 

dynamics of multivariate relationships [47].
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