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Abstract

Objective: Alterations in the serum metabolome may be detectable in at-risk individuals prior to 

the onset of coronary heart disease (CHD). Identifying metabolomic signatures associated with 

CHD may provide insight into disease etiology and prevention.

Approach and Results: Metabolomic profiling (chromatography-mass spectrometry) was 

performed in 2,232 African Americans and 1,366 European Americans from the Atherosclerosis 

Risk in Communities (ARIC) study. We applied Cox regression with least absolute shrinkage and 

selection operator (LASSO) to select metabolites associated with incident CHD. A metabolite risk 

score (MRS) was constructed to evaluate whether the MRS predicted CHD risk beyond traditional 

risk factors (TRFs). After 30 years of follow-up, we observed 633 incident CHD cases. Thirty-two 

metabolites were selected by LASSO to be associated with CHD, and 19 of the 32 showed 

significant individual associations with CHD, including a sugar substitute, erythritol. Theophylline 

(HR [95% CI] = 1.16 [1.09- 1.25]) and gamma linolenic acid (HR [95% CI] = 0.89 [0.81- 0.97]) 

showed the greatest positive and negative associations with CHD, respectively. A 1 SD greater 

standardized MRS was associated with a 1.37 fold higher risk of CHD (HR [95% CI] = 1.37 

[1.27- 1.47]). Adding the MRS to the TRFs significantly improved model predictive performance 

(30-year risk prediction: Δ C-statistic [95% CI] = 0.016 [0.008- 0.024], continuous net 

reclassification index [95% CI] = 0.522 [0.480- 0.556], integrated discrimination index [95%CI] = 

0.038 [0.019- 0.065]).
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Conclusion: We identified 19 metabolites from known and novel metabolic pathways that 

collectively improved CHD risk prediction.
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Introduction

Despite a decline in coronary heart disease (CHD) incidence in most countries, CHD 

remains the leading cause of death globally 1, 2. Identifying individuals at increased risk of 

CHD can improve prospects for delayed onset and improved treatment. Over the last 

decades, a number of traditional risk factors (TRFs) have been discovered for CHD 3–6, and 

those risk factors act synergistically. Multiple studies have demonstrated that integration of 

novel biomarkers, such as a genetic risk score, cardiac troponin-T or coronary artery 

calcium, can enhance CHD risk assessment 7. However, such studies have identified few 

novel and tractable biological pathways. Other technologies, such as metabolomics, may 

help to identify novel biomarkers and pathways involved in CHD onset and progression.

The metabolomic approach systematically evaluates small-molecule metabolites in biologic 

samples that reflect the state of the system or whole organism provide additional insights 

into disease pathology 8–10. Studies have successfully identified novel signatures of CHD 
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risk using metabolomic approaches, and the potential value of such signatures beyond the 

TRFs has been demonstrated 11–18. However, these studies were carried out predominantly 

in individuals of European-ancestry and the spectrum of metabolites was limited.

We hypothesized that a collection of metabolites is associated with CHD risk independent of 

established risk factors, and adding a combination of CHD related metabolites to TRFs 

provides improved risk prediction. Hence, we conducted a metabolome-wide analysis of 

CHD risk in 3,598 African and European Americans from the Atherosclerosis Risk in 

Communities (ARIC) study to identify metabolomic signatures that better identify 

individuals at-risk.

Methods

Because of the sensitive nature of the data collected for this study, requests to access the 

dataset from qualified researchers trained in human subject confidentiality protocols may be 

sent to the Biologic Specimen and Data Repository Information Coordinating Center 

(BioLINCC) (https://biolincc.nhlbi.nih.gov) and the database of Genotypes and Phenotypes 

(dbGaP) (Study Accession: phs000090.v1.p1).

Study Population

The ARIC study is a prospective cohort study of 15,792 individuals aged 45-64 years from 

four U.S. communities (Forsyth County, NC; Jackson, MS; suburbs of Minneapolis, MN; 

and Washington County, MD) originally sampled between 1987 and 1989. A detailed 

description of the ARIC study design was published elsewhere 19. Metabolomic profiles of 

baseline stored serum samples were measured in 1,997 African Americans in 2010 (phase 

1), and 2,152 African and European Americans in 2014 (phase 2). Included in this analysis 

were 3,598 participants who did not have prevalent CHD or impaired renal function 

(estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m2) at the baseline 

examination, with CHD follow-up and complete covariate information. The ARIC study was 

approved by the institutional review boards at each site, and written informed consent was 

obtained from all study participants.

Assessment of incident CHD and Covariates

In ARIC, CHD incidence was ascertained by reviewing death certificate and hospital 

discharge records, and contacting participants annually, identifying hospitalizations and 

deaths during the prior year 20. Incident CHD was defined as definite fatal CHD, definite or 

probable myocardial infarction, silent myocardial infarction between examinations as 

determined by electrocardiography, or coronary revascularization 19 that occurred on or 

before December 31st 2016. Covariates used in the analyses were measured at the baseline 

examination or home interview. Blood pressure was measured by trained technicians 

following a standard protocol 21. Plasma total cholesterol levels were measured by 

enzymatic methods 22, 23. High-density lipoprotein (HDL) cholesterol was measured after 

precipitation of the plasma with MgCl2 and dextran sulfate by the method of Warnick et al 
24. Self-reported smoking status (categorized as current smoker, former smoker and never 

smoker) and antihypertensive medication use during the past 2 weeks were obtained by 
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questionnaire. Prevalent CHD was defined as a self-report of previous myocardial infarction 

or coronary reperfusion procedure, or electrocardiography (ECG) evidence of a previous 

myocardial infarction. Diabetes was defined as a fasting serum glucose level ≥126 mg/dL or 

non-fasting serum glucose level ≥200 mg/dL, a self-reported physician diagnosis of diabetes, 

or the use of hypoglycemic medication. eGFR was calculated by using the Chronic Kidney 

Disease Epidemiology Collaboration equation 25. Carotid intima-media thickness (C-IMT) 

was measured using the ultrasound procedure that has been previously described 26–28. 

Briefly, the C-IMT was assessed in three 1cm segments in the distal common carotid, the 

carotid artery bifurcation and the proximal internal carotid arteries. We used the mean of the 

mean measurements for both right and left sides of these segments at the baseline 

examination for analyses. Plaque presence or absence was adjudicated by trained readers; 

plaque was adjudicated to be present if two of three of the following criteria were abnormal: 

wall thickness, wall shape, and wall texture 27, 29.

Assessment of the Serum Metabolome

Metabolomic profiling was completed in two phases, 2010 and 2014, using serum samples 

which had been stored at −80 °C since collection at the baseline examination in 1987-1989. 

A total of 384 metabolites were detected and semi-quantified by Metabolon Inc. (Durham, 

USA) using untargeted gas chromatography-mass spectrometry and liquid chromatography-

mass spectrometry (GC-MS and LC-MS) 30, 31. 139 metabolites were excluded because: 1) 

their values were missing/below-the-detection-limit in more than 25% of the samples in 

either phase; or 2) their Pearson correlation coefficients were < 0.3 between 97 pairs of 

duplicate samples measured during both phases. After this assessment, 245 metabolites, 

including amino acids, lipids, nucleotides, peptides, carbohydrates, cofactors and vitamins, 

xenobiotics, and energy related metabolites were included in the present study.

Statistical Analysis

Within each phase, metabolite levels were winsorized at the 1st and 99th percentile, and 

missing/below-the-detection-limit values were imputed with the lowest detected value of 

that metabolite. Prior to the analyses, metabolites were standardized (mean = 0 and SD = 1) 

within each phase.

To select a subset of the most informative metabolites that were associated with incident 

CHD, Cox proportional hazard regression models with least absolute shrinkage and 

selection operator (LASSO) procedures were applied in the combined phase 1 and 2 

samples. We fit LASSO with 10-fold cross validation incorporating 245 metabolites and 

CHD TRFs defined according to ARIC CHD risk score, including age, sex, race, smoking 

status, systolic blood pressure (SBP), anti-hypertensive medication use, HDL and total 

cholesterol levels, and diabetes status 4, as well as phase and study center. The penalty 

parameter was chosen as theλthat gave the minimum mean error as determined by 10-fold 

cross validation. To explore the individual effect of each LASSO selected metabolite on 

incident CHD, we performed analyses using a Cox model adjusting for TRFs, phase and 

study centers. The false discovery rate of 5% or less was used to define significance for 

associations between individual metabolites and CHD.

Wang et al. Page 4

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2020 July 01.

H
ealth R

esearch A
lliance A

uthor M
anuscript

H
ealth R

esearch A
lliance A

uthor M
anuscript



Metabolites selected by the LASSO procedure were further reduced to those that had 

significant individual associations with incident CHD, and this subset of metabolites were 

used to construct a metabolomics risk score (MRS). A continuous MRS was constructed 

using the sum of selected metabolite levels taking into account the direction of effect. The 

continuous MRS was standardized (mean = 0 and SD = 1) for further analysis. Quartiles of 

the continuous MRS were analyzed to examine any potential non-linear associations. Cox 

regression models were used to calculate whether the continuous MRS or MRS quartiles 

were associated with incident CHD adjusting for the same covariates described above. The 

proportional hazards assumption was tested in each Cox model and no violation of the 

assumption was observed. To explore potential sex- and race- specific effects, we performed 

secondary analyses testing the association between continuous MRS and incident CHD 

stratified by sex and race separately. Additionally, we tested the association between the 

MRS and baseline C-IMT and plaque measurement. The significance threshold was defined 

as p < 0.05 for the MRS analysis.

To investigate whether the MRS improved risk reclassification and prediction, we computed 

statistical measures of discrimination, including area under the receiver operating 

characteristic curve (AUC), the continuous net reclassification index (NRI), and the 

integrated discrimination index (IDI) 32, 33. The C-statistic and differences in C-statistic 

were calculated using the method for censored survival data proposed by Uno et al. 34. 

Additionally, to confirm the internal validity of the MRS and ensure a nearly unbiased 

estimate of our MRS model prediction performance, we performed 10-fold cross-validations 

with 100 replicates and reported the average cross-validation C-statistics 34, 35. All statistical 

analyses were carried out using R version 3.4 (R Foundation for Statistical Computing, 

Vienna, Austria).

Results

During 30 years of follow-up, we identified 633 (17.6%) incident CHD cases among 3,598 

African and European American ARIC participants (Table 1). The CHD incidence rate was 

lower in European Americans as compared to African Americans. In general, ARIC 

European Americans showed a more favorable baseline CHD risk profile, including less 

current smokers, lower SBP levels, and less prevalent diabetes, except for lipid profiles, 

which were similar between African and European Americans. The C-IMT and plaque 

presence measurements did not differ between the two groups. Baseline characteristics by 

incidence CHD cases and non-cases were summarized in Supplemental Table I.

Thirty-two metabolites were identified by LASSO as the best subset predictive of incident 

CHD. We examined each of the selected metabolites for its association with CHD risk, and 

19 out of 32 metabolites had significant individual associations, including 8 amino acids, 3 

lipids, 2 nucleotides, 1 peptide, 1 carbohydrates, and 4 xenobiotics (Supplemental Table II). 

The median hazard ratio (HR) per SD was 1.11 across the 19 metabolites; the 25th percentile 

and 75th percentile HR per SD was 1.08 and 1.14. Theophylline (HR [95% confidence 

interval (CI)] = 1.16 [1.09- 1.25]) and linolenate [alpha or gamma; (18:3n3 or 6)] (HR [95% 

CI] = 0.89 [0.81- 0.97]) had the highest and lowest HRs for CHD, respectively (Figure 1). 
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Fourteen out of 19 selected metabolites were not correlated (|r| < 0.3), while five other 

metabolites showed moderate inter-correlations (Supplemental Figure I).

The MRS constructed from the 19 metabolites was approximately normally distributed 

(Supplemental Figure II). Baseline participants’ characteristics by deciles of the MRS were 

summarized in Supplemental Table III. A 1 SD increase in the standardized MRS was 

associated with a 1.37 fold greater risk of incident CHD adjusting for TRFs (HR [95% CI]) 

= 1.37 [1.27-1.47], Table 2). There was a graded association between the MRS quartiles and 

risk of incident CHD events (p for linear trend = 1.82×10−13) (Table 2), where participants 

with the highest quartile of MRS had more than 2 fold higher risk of developing CHD 

compared to participants in the lowest quartile (Q4 vs. Q1 HR [95% CI] = 2.21 [1.72-2.84]). 

Additional analyses adjusting for BMI and total energy intake did not change the association 

between MRS and CHD risk. Sex-stratified and race-stratified analyses did not suggest 

different continuous MRS associations with CHD among males and females, or among 

African- and European- Americans (Supplemental Table IV). The MRS we created for 

CHD risk was significantly associated with greater intima-media thickness (log transformed 

C-IMT measurement, coefficient = 0.007, p = 0.03). But the association between the MRS 

and plaque presence was modest (Odds Ratio = 0.07, p = 0.07).

Adding the continuous MRS to the TRFs model significantly improved model 

discrimination performance. The C-statistic [95% CI] increased from 0.724 [0.704-0.744] to 

0.740 [0.720-0.759] for 30-year CHD risk prediction (Δ C-statistic [95% CI] = 0.016 

[0.008-0.024], Figure 2). Addition of the MRS also showed significant incremental benefit 

in the analysis of the continuous NRI and IDI (continuous NRI [95% CI] = 0.522 

[0.480-0.556], p < 0.001, and IDI [95% CI] = 0.038 [0.019-0.065], p = 0.002). Adding MRS 

quartiles to the TRFs model similarly improved model performance. The Δ C-statistic [95% 

CI] for 30-year CHD risk prediction was 0.014 [0.005- 0.022]), and the continuous NRI 

[95% CI] = 0.475 [0.271-0.634] and IDI [95% CI] = 0.048 [0.014- 0.085].

Using 10-fold cross validation with 100 replicates, we computed cross-validated C-statistics 

for the TRFs only model (corrected C-statistic: 0.718) and the model with continuous MRS 

and the TRFs (corrected C-statistic: 0.735). Cross validation did not change the conclusion 

that adding the continuous MRS to the TRFs model improved discrimination (cross 

validation corrected Δ C-statistic vs. one time estimated Δ C-statistic: 0.017 vs. 0.016).

Discussion

In this population based prospective study of African and European Americans, we 

identified a set of 19 metabolites, including amino acids, lipids, peptides, carbohydrates, 

nucleotide and xenobiotics, that were collectively associated with CHD risk during thirty 

years of follow-up. A MRS constructed from the 19 metabolites were positively association 

with C-IMT, a well-described surrogate marker for cardiovascular disease 36, and showed a 

graded association with CHD risk that were consistent across race and sex. Adding the MRS 

to the TRFs model significantly improved 30-year incident CHD risk prediction and 

discrimination. The predictive ability of the MRS was internally validated. Our findings 
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indicate that a metabolite panel can be used to improve CHD risk prediction, compared with 

TRFs alone.

Previous metabolomic studies have identified multiple metabolites that are associated with 

CHD risk 11–18, 37–41, some of which were corroborated in our study. For example, 

metabolites involved in amino acid metabolism, including asparagine, dimethylglycine, and 

short chain acylcarnitines such as 2-methylbutyrylcarnitine (C5), were associated positively 

with CHD occurrence in this and other studies 37, 38, 40, 41. We observed that α-linoleic acid 

was negatively associated with CHD, which is consistent with previous metabolomic study 

findings, and in line with previous observations that polyunsaturated fatty acids were 

inversely associated with cardiovascular disease in contrast to saturated and 

monounsaturated fatty acids 42, 43. Other metabolites such as 13-HODE + 9-HODE 

(oxidized derivatives of linoleic acid), uridines, and mannose also have been previously 

reported to be associated with CHD 14, 16, 38, 39, 44, 45. Some metabolites reported previously 

were not included in our MRS, such as TMAO (14, 15) which was not in our analyzed 

metabolomic panel. Other CHD metabolites, for examples, polyunsaturated fatty acids, were 

not selected probably because of high correlations with other LASSO selected metabolites, 

as LASSO tends to select only one variable from a group of highly correlated variables 46.

Twelve of our 19 selected metabolites have not been previously reported to be associated 

with CHD (Supplemental Table II). Among these, four metabolites have been shown 

previously to be related to one or more CHD risk factors. For example, higher urinary 

excretion levels of 4-vinylphenol sulfate, a styrene metabolite, has been reported to associate 

with smoking 47, which can be explained as styrene is one of many chemicals found in 

cigarettes. DNA methylation studies have previously reported several CpG loci that associate 

with serum 4-vinylphenol sulfate levels 48, which are the same CpG loci associated with 

tobacco smoking 49. Greater N-acetylthreonine levels was identified to be a biomarker for 

the progression of renal dysfunction 50, and N-acetyl-1-methylhistidine, a metabolite 

involved in histidine metabolism, has been associated positively with incident chronic 

kidney disease 51. Three metabolites have been associated with heart failure risk: higher 

levels of N-acetylalanine and p-cresol sulfate 52, and lower levels of 1-

arachidonoylglycerophosphocholine (20:4n6), also known as lysoPC (20:4) 53. In addition, 

p-cresol sulfate levels have been reported to be higher among those elderlies as compared to 

younger age group 54, and we observed the same pattern at baseline (data not shown). Such 

observations suggest that some of the metabolites we selected might partially reflect aging 

process, a major contributor to CHD risk. Theophylline, which we found associated with the 

highest CHD HR, is a drug used to treat asthma and chronic obstructive pulmonary disease 

(COPD), and is well known for having cardiotoxic side effects 55, 56. We conducted 

sensitivity analyses by excluding COPD cases, defined by Global Initiative for Chronic 

Obstructive Lung Disease (GOLD) criteria 57, or individuals with self-reported ever asthma. 

The association between theophylline and CHD risk in the fully adjusted model remained 

unchanged (data not shown), although the association still may reflect residual confounding 

effects of smoking.

An interesting metabolite associated positively with CHD in our study was erythritol. 

Erythritol is a sugar substitute widely used in processed foods, especially artificial 
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sweetened beverages (ASB). Like conventional sugar sweetened beverages, greater ASB 

intake has been associated with negative health outcomes, including increased risk for CHD 
58, 59 and hypertension 60. Studies of ASB often fail to distinguish the sugar replacement 

sweetener used in these beverages; therefore, the etiologic connection of sugar substitutes 

with CHD remains poorly understood. Hootman et al. showed that erythritol can be 

synthesized from glucose via the pentose-phosphate pathway and associated with adiposity 

gain 61, which is in contrast to previously evidence that erythritol cannot be metabolized in 

humans 62. The association between erythritol and CHD we observed may be explained by 

weight gain 63; however, additional adjustment for body mass index did not change the 

association we observed between erythritol and CHD risk (data not shown).

The metabolite, 1-arachidonoylglycerophosphocholine (20:4n6) [LysoPC (20:4)], showed a 

novel negative association with CHD. LysoPC is mainly formed by the enzyme, 

lecithin:cholesterol acyltransferase (LCAT), which converts cholesterol and 

phosphatidylcholine to cholesterol esters and lysophosphatidylcholine 64, 65. It has been 

reported that lysoPC (20:4) levels are lower in heart failure patients with reduced ejection 

fraction as compared to controls 53. lysoPC (20:4) has been suggested to be a potential 

biomarkers for discriminating CHD patients from controls (lower levels in CHD patients) 66. 

Fan et al. (54) provided evidence supporting multiple lysoPCs, for example, lysoPC (16:0), 

lysoPC (18:1), and lysoPC (20:3), as metabolites with relatively lower concentrations in 

CHD patients or in more severe patients vs. controls. Our results further document an 

association of lysoPC with CHD risk.

Arginylphenylalanine, a dipeptide composed of arginine and phenylalanine, was negatively 

associated with CHD risk. Although no previous study has identified the dipeptide 

arginylphenylalanine as associated with CHD, its two components, arginine and 

phenylalanine, have been recognized for their roles in cardiovascular diseases 16, 67–69. 

Arginine has substantial cardiovascular benefits, including lowering blood pressure, 

peripheral vascular resistance and plasma homocysteine, as well as improving endothelial 

function 68, 69. Previous metabolomic studies associated higher serum phenylalanine levels 

with increased cardiovascular risk 16, 67. The possible pathophysiology of 

arginylphenylalanine in CHD development is unknown, but we speculate it may be via these 

two amino acids since it is a short-lived intermediate on the way to amino acids degradation 

pathways.

To our knowledge, this study is the first to evaluate prospectively whether a comprehensive 

set of metabolites predicts CHD in a biracial population. Our study has some limitations that 

are worth noting. We did not replicate our findings in other independent population-based 

studies. Yet, our use of LASSO and a false discovery rate of 5% strengthened the selection 

of metabolites. Our MRS included 19 metabolites with significant individual associations 

with CHD risk. Further investigation of LASSO selected metabolites not included in the 

MRS is warranted. In addition, LASSO picks the statistically most significant metabolites 

for CHD prediction, not necessarily the most biologically relevant ones. We assessed the 

metabolome on samples drawn in 1987-89 to predict CHD over 30 years. ARIC participants’ 

metabolomes and confounding variables may have changed significantly over the 30 years 

of follow-up. The lack of longitudinal metabolomic data did not allow us to examine the 
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change of these metabolites in relation to CHD risk. Furthermore, the matabolomic panel we 

used focused on small molecules, which did not contain complex lipids. Information on 

complex lipids, such as lipidomic profiles, may provide additional insights for CHD risk 
42, 43.

We selected metabolites based on their associations with incidence CHD beyond traditional 

risk factors, including conventional lipid variables. Our data demonstrated that adding MRS 

to current conventional risk scores led to improved CHD prediction. Although the strength 

of association of MRS was similar to conventional lipid parameters used in CHD risk 

prediction, it is premature to suggest routine assessment of metabolites in clinical practice. 

Future investigation is warranted to examine long-term metabolic changes in relation to 

CHD risk prediction, costs and availability of the measurement assays, appropriate 

therapeutic cutpoints, and clinical evidence of benefits for achieving these cutpoints based 

on randomized clinical trials.

In conclusion, a MRS constructed from 19 metabolites was associated with the risk of 

developing CHD and improved CHD 30 years risk prediction beyond TRFs. Our results 

suggest several new pathways in the etiology of CHD, and highlight the use of 

metabolomics in CHD risk prediction. Further work is warranted to replicate our novel 

findings and shed light on potential mechanisms in CHD etiology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Identifying metabolomic signatures may provide insight into disease etiology 

and prevention.

• Using least absolute shrinkage and selection operator and a false discovery 

rate of 5%, we selected 19 metabolites that were associated with the risk of 

developing coronary heart disease, including a sugar substitute, erythritol.

• A metabolite risk score constructed from the 19 selected metabolites 

improved coronary heart disease 30 years risk prediction beyond traditional 

risk factors.

• Our results suggest several new pathways in the etiology of coronary heart 

disease, and highlight the use of metabolomics in CHD risk prediction.
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Figure 1. 
Individual metabolite hazard ratios (95% confidence intervals) per SD increment for 19 

LASSO metabolites with significant individual associations with coronary heart disease risk.
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Figure 2. 
Receive operating characteristic curves for coronary heart disease 30-year risk prediction, 

comparing a model with traditional risk factors (TRF) only and a model with TRF plus 

continuous metabolite risk score (MRS).
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Table 1.

Baseline characteristics and number of incident coronary heart disease events among participants, 

Atherosclerosis Risk in Communities study.

African Americans European Americans P-values Overall

Participants, n 2232 1366 3598

Incident CHD, n (%) 359 (16.1%) 274 (20.1%) 0.003 633 (17.6%)

Age (years) 52.8 ± 5.6 54.2 ± 5.7 <0.001 53.3 ± 5.7

Male, n (%) 801 (35.9%) 602 (44.1%) <0.001 1403 (40.0%)

SBP (mm Hg) 127.9 ± 21.0 119.1 ± 18.2 <0.001 124.5 ± 20.4

Anti-hypertensive medication use, n (%) 828 (37.1%) 276 (20.2%) <0.001 1104 (30.7%)

HDL-c (mmol/L) 1.4 ± 0.4 1.3 ± 0.4 <0.001 1.4 ± 0.4

TC (mmol/L) 5.5 ± 1.1 5.6 ± 1.0 0.34 5.5 ± 1.1

Prevalent Diabetes, n (%) 367 (16.4%) 90 (6.6%) <0.001 457 (12.7%)

Smoking status <0.001

Current, n (%) 1070 (47.9%) 556 (40.7%) 1626 (45.3%)

Former, n (%) 526 (23.6%) 463 (33.9%) 989 (27.6%)

Never, n (%) 636 (28.5%) 347 (25.4%) 983 (27.3%)

C-IMT 0.7 (0.1) 0.7 (0.2) 0.9 0.7 (0.1)

Plaque presence (%) 592 (28.1%) 425 (31.6%) 0.03 1017 (29.4%)

Abbreviations: CHD, coronary heart disease; SBP, systolic blood pressure; HDL-c, high-density lipoprotein cholesterol, TC, serum total 
cholesterol, and C-IMT, carotid intima-media thickness.

Data are expressed as mean ± standard errors for quantitative traits.
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Table 2.

Hazard ratios relating metabolite risk score with incident coronary heart disease.

Contrast HR 95% CI P-value

Continuous MRS (per SD change) 1.37 1.27- 1.47 <2×10−16

 MRS Quartiles Q2 vs. Q1 1.08 0.82- 1.43 0.57

Q3 vs. Q1 1.36 1.04- 1.77 0.02

Q4 vs. Q1 2.21 1.72- 2.84 6.51×10−10

Trend 4.63×10−13

Abbreviations: HR, hazard ratio; CI, confidence interval; MRS, metabolite risk score; SD, standard deviation. Each model adjusted for age, sex, 
race, study center, phase, smoking status, systolic blood pressure, anti-hypertensive medication use, diabetes status, total cholesterol, and high-
density lipoprotein cholesterol levels.
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