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Abstract

To capture the spatial distribution of phenanthrene in an urban setting we used vegetation 

biomonitoring with Jeffrey pine trees (Pinus jeffreyi). The major challenge in characterizing 

spatial variation in polycyclic aromatic hydrocarbon (PAH) concentrations within a metropolitan 

area has been sampling at a fine enough resolution to observe the underlying spatial pattern. 

However, field and chamber studies show that the primary pathway through which PAHs enter 

plants is from air into leaves, making vegetation biomonitoring a feasible way to examine the 

spatial distribution of these compounds. Previous research has shown that phenanthrene has 

adverse health effects and that it is one of the most abundant PAHs in urban air. We collected 99 

pine needle samples from 91 locations in Fresno in the morning on a winter day, and analyzed 

them for PAHs in the inner needle. All 99 pine needle samples had detectable levels of 

phenanthrene, with mean concentration of 41.0 ng g−1, median 36.9 ng g−1, and standard deviation 

of 28.5 ng g−1 fresh weight. The ratio of the 90th:10th percentile concentrations by location was 

3.3. The phenanthrene distribution had a statistically significant Moran’s I of 0.035, indicating a 

high degree of spatial clustering. We implemented land use regression to fit a model to our data. 

Our model was able to explain a moderate amount of the variability in the data (R2 = 0.56), likely 

reflecting the major sources of phenanthrene in Fresno. The spatial distribution of modeled 

airborne phenanthrene shows the influences of highways, railroads, and industrial and commercial 

zones.
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1. Introduction

In order to capture the short-term spatial distribution of airborne polycyclic aromatic 

hydrocarbons (PAHs) in an urban setting we employed a vegetation biomonitoring approach 

using Jeffrey pine trees (Pinus jeffreyi) in Fresno, California. Other researchers have used 

vegetation biomonitoring for examining local source–receptor relationships (Hwang and 

Wade, 2008; Lehndorff and Schwark, 2004; Meharg et al., 1998), whereas our primary 

interest is to establish the magnitude and shape of the PAH spatial distribution to inform 

future air monitoring studies and exposure assessment in epidemiology studies. Because 

PAH concentrations vary widely within most urban areas and because air sampling for PAHs 

is a labor-, equipment-, and time-intensive task, urban air monitoring has been limited to 

relatively few simultaneous sampling locations (Guo et al., 2003; Manoli et al., 2004; Noth 

et al., 2011; Thornhill et al., 2008). We elected to use a vegetation biomonitor because it 

potentially offers a convenient, available, and reliable passive monitor for characterizing 

PAHs.

We have focused our research on vapor-phase phenanthrene, the second most abundant 

airborne PAH in the environment and the PAH implicated in multiple adverse health 

outcomes (Gale et al., 2012; Miller et al., 2004; Nadeau et al., 2010; Tsien et al., 1997). 

PAHs are ubiquitous toxic air pollutants with complex spatial distributions. Major sources 

for ambient PAHs are open biomass burning, residential heating, power generation, trains, 

ships, motor vehicles, and industrial processes (EPA, 1998; Jenkins et al., 1996). Multiple 

studies in urban and suburban settings have shown phenanthrene to have the highest airborne 

concentrations of the 16 EPA PAHs, excepting naphthalene (Rogge et al., 2011; Zhu and Jia, 

2012). Additionally, in personal exposures to PAHs the concentration of phenanthrene is the 

highest for PAH with three or more rings when compared either for total (vapor- and 

particle-phase), or vapor-phase (Li et al., 2010; Nethery et al., 2012).

PAHs are well-known to be carcinogenic individually and in mixtures (International Agency 

for Research on Cancer, 1987), but there is an extensive literature developing that implicates 

phenanthrene as a toxic agent in adverse health outcomes from subclinical immunological 

changes through asthma and wheeze. Phenanthrene exposure in ex vivo human studies 

caused the conversion of regulatory T-cells to pro-allergic Th-2 effector T-cell phenotype, 

which is associated with allergic asthma (Liu et al., 2013). In vitro studies by Schober et al. 

(2006, 2007) demonstrated that phenanthrene enhanced the allergic reaction to birch pollen 

by strongly inducing basophils taken from birch pollen allergic patients, significantly 

enhancing cytokine secretion (IL-4 and IL-8), and significantly enhancing histamine release 

(Schober et al., 2006, 2007). Furthermore, phenanthrene exerts these same pro-allergic 

effects on sensitized basophils from allergic individuals even in absence of the allergen itself 

(Lubitz et al., 2010). Phenanthrene has also been shown to enhance the allergic response to 

ragweed in ragweed-sensitive subjects by increasing IgE synthesis following in vivo human 

nasal challenge (Saxon and Diaz-Sanchez, 2000). Nadeau et al. (2010) have demonstrated an 

association between airborne PAH exposure and decreased FEV1, increased asthma severity, 

and suppression of regulatory T-cell function through methylation of the FoxP3 gene 

(Nadeau et al., 2010). Gale et al. (2012) found significant associations with ambient 

phenanthrene exposure and wheeze in a cohort of 315 asthmatic children (Gale et al., 2012). 
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In conclusion, evidence is accumulating that respiratory health can be seriously impacted by 

phenanthrene exposure.

The literature on vegetation biomonitoring for PAHs is well-developed. Chamber studies and 

field studies, controlled and observational, have been used to examine distributions of PAHs 

and other persistent organic pollutants (POPs) in vegetation and dependencies of vegetation 

concentrations on local sources. Controlled field and physico-chemical studies show that the 

primary pathway through which phenanthrene enters plants is from air into the leaves, and 

uptake from soil is negligible (Barber et al., 2004; Kipopoulou et al., 1999; Ryan et al., 

1988; Simonich and Hites, 1995; Welsch-Pausch et al., 1995). For the purposes of using pine 

needles as passive samplers for vapor-phase phenanthrene, the inner needle concentrations 

provide the most stable and least variable concentrations. Minimizing the non-spatial 

variability is especially important because we wanted to focus on spatial variability. Vapor-

phase phenanthrene can penetrate into the inner needle directly through the stomata or by 

diffusing through the outer waxy layer (Paterson et al., 1991; Schönherr and Riederer, 1989). 

Photolysis and photodegredation of PAHs contribute to the higher variability of the outer 

wax layer, relative to the inner needle (Niu et al., 2003; Simonich and Hites, 1995; Wang et 

al., 2005; Wild et al., 2005). Controlled experiments found that the half-life of PAHs in the 

outer needle surface of conifers was shorter by at least 50% than the half-life in the inner 

needle (Wild et al., 2005). The half-life for phenanthrene in the whole needle was found by 

Wang et al. (2005) to be 34.5 h Wenzel et al. (1998) show that analysis of the inner needle 

results in good precision, with relative standard deviations under 20% (Wenzel et al., 1998), 

and that most of the total phenanthrene measured in the needle is present in the inner needle 

compartment. Experiments show that the majority of phenanthrene is present in the inner 

needle portion of 2-year old Pinus sylvestris L. needles collected in urban environments in 

Argentina and Germany (mean = 73% of total needle phenanthrene concentration is from the 

inner needle) (Wenzel et al., 1998) and in Germany and Russia (mean = 73% of total needle 

phenanthrene concentration is from the inner needle) (Wenzel et al., 1998).

Field studies show that accumulation of PAHs in leaves is sensitive to variations and changes 

in air concentration (Alfani et al., 2001, 2005; Hwang et al., 2003; Hwang and Wade, 2008; 

Lehndorff and Schwark, 2004; Wagrowski and Hites, 1997). Wagrowski and Hites (1997), 

Hwang et al. (2003), Hwang and Wade (2008), Alfani et al. (2001, 2005) and Lehndorff and 

Schwark (2004) each collected and analyzed vegetation for PAH concentrations and found 

an increasing concentration gradient along the rural-urban gradient. Additionally, Hwang 

and Wade (2008) and Meharg et al. (1998) show that point sources can be detected in 

vegetation concentrations (Hwang and Wade, 2008; Meharg et al., 1998). Hwang and Wade 

(2008) found that two sites located in Houston, Texas, USA near the “largest petrochemical 

complex in the United States,” had very high concentrations of PAH in pine needles (Pinus 
taeda) when compared to samples collected in other parts of the Houston metropolis. 

Meharg et al. (1998) showed that phenanthrene concentrations in grasses downwind from a 

large chemical fire were up to 67 times the concentrations in grasses upwind.

The goal of this research was to use Jeffrey pines (P. jeffreyi) to characterize the spatial 

distribution of one of the more volatile PAHs, phenanthrene, in Fresno, California, USA. We 

selected phenanthrene because of the research showing a relationship between exposure and 
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health outcomes and because it is one of the most abundant of the PAHs in ambient air. The 

general approach was to obtain a cross-sectional dataset of PAHs at approximately 100 

locations and use regression modeling with land use, traffic data, and other neighborhood 

characteristics to build a spatial model of phenanthrene concentrations for Fresno, CA.

2. Methods

2.1. Field collection

Two methods informed the choice of locations for pine needle sampling. In the first method, 

systematic sampling of the grid of 1-square mile United States Public Land Survey System 

(PLSS) blocks was used to capture the spatial range of ambient PAH concentrations 

throughout Fresno. Fresno contains approximately 150 PLSS blocks. This number was 

reduced to 42 blocks by selection of alternating blocks within each row of blocks. Each 

selected 1-square mile block was visited and the locations of Jeffrey pine trees were 

recorded on a paper map and electronically with a Garmin eTrex GPS device (Olathe, KS, 

USA).

In the second method, a “demand” surface was created that indicated areas of Fresno with 

high density of participants in the Fresno Asthmatic Children’s Environment Study (FACES) 

and where PAH concentrations were likely to be very high or very low (Noth et al., 2011). 

FACES is an epidemiology study that examines the relationship between asthma attacks and 

air pollutant concentrations. Our results will inform future collection of air monitoring data 

for epidemiology studies such as FACES, therefore the population density of participants is 

of particular interest. The demand surface used traffic density as a proxy for PAH 

concentrations. The traffic count data used roadway locations from the TeleAtlas MultiNet™ 

USA (TAMN) roadway database and the annual average daily traffic (AADT) count from 

the California Department of Transportation for vehicle activity data (Margolis et al., 2009). 

The range for Fresno was from 51 to 113,600 vehicles day−1. In ArcMap 9.2 (ESRI, 

Redlands, CA), the two input surfaces (traffic count and FACES population density) were 

combined and reclassified. For collection, we identified locations with higher FACES 

population densities and equally distributed by traffic density. Each of these areas was 

surveyed for locations of Jeffrey pine trees, and recorded on paper maps and with a GPS 

device.

There were a total of 158 possible sampling locations for Jeffrey pine trees identified when 

both surveys were combined. To reduce this number to approximately 100, pairs or groups 

of trees that were located closer together than approximately 10 m were reduced to a single 

representative tree, selected randomly. Next, trees that were located in the same PLSS block 

and representing the same “demand” level were reduced throughout the sampling area, again 

based on random numbers, until the total sample locations reached 100 samples.

2.2. Collection method

Prior to collection, experiments were conducted to determine if collecting needles from all 

four “sides” of an individual tree (two directions parallel to the street, and two directions 

perpendicular) was necessary to avoid bias from branch-to-branch variations. The goal of the 
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sampling is to obtain an unbiased average for the tree. Pine needle samples were collected 

from four branches. The samples were aliquoted into three samples each, to examine the 

precision of the laboratory analysis [Online Supplement Tables 1 and 2]. The variability 

among the branches resulted in an observable difference among samples collected on 

different branches on the same tree. Therefore, in order to measure the average value on a 

tree, the protocol was to collect needles from a minimum of two branches on each tree, 

located as far apart on the tree as possible, and at breast height (approximately 1.4 m). 

Additionally, needles were collected from the second bunch back to ensure that the needles 

collected were of a uniform age, and hence minimize aging effects, either from decay or 

from different biological functioning (Piccardo et al., 2005). Samples were wrapped in 

solvent-washed aluminum foil, labeled, sealed with tape, and stored in coolers on dry ice 

during the collection period. After returning to the laboratory, pine needle samples were 

stored in the freezer at −20 °C.

2.3. Laboratory method

We used a published method for the extraction, clean-up, and analysis of pine needles for 

phenanthrene (Hubert et al., 2001, 2003; Wenzel et al., 1997, 1998). Before analysis, 

samples were removed from the freezer and stripped of the outer wax layer by following 

published methods of 10 min sonication in dichloromethane (Hubert et al., 2001; Wenzel et 

al., 1997, 1998). After wax stripping, the solvent was allowed to evaporate from the needles 

before they were weighed. The needles were then chopped into 1/8-inch pieces using a new 

solvent-washed razor blade for each sample. The mean mass for the chopped samples was 

9.8 g. The chopped needles were mixed with 10 mg of diatomaceous earth, and placed in a 

stainless steel extraction cell. Any empty space left in the cell was filled with solvent-

washed Ottawa sand.

Samples were extracted using the Dionex Accelerated Solvent Extractor 200 (Dionex Corp, 

Sunnyvale, CA), or ASE. Each cell was extracted with heptane for four 10-min cycles at 

120 °C, under 10 MPa (1500 psi). The flush volume for the cycles was 30% of the cell 

volume and the nitrogen purge was 120 s at 1 Mpa (150 psi). Following extraction the 

sample was evaporated to near dryness under nitrogen with a Zymark TurboVapII (Caliper 

Life Sciences, Hopkinton, MA) and then redissolved with 1.5 ml or 2.0 ml of 

tetrahydrofuran depending on a low or high wax volume in the sample. Following transfer to 

tetrahydrofuran, 200ul or 400ul of the sample was injected into the HPLC (Waters626 

Pump/600controller, Waters717 + autosampler, Waters Corporation, Milford, MA) for 

fractionation using a gel permeation chromatograph column (Nucleogel GPS 50–100, 

Macherey-Nagel, Bethlehem, PA). Both injection volumes were tested for adequate 

recoveries with standard solution and spiked pine needle samples for the full extraction and 

clean-up procedure. The flow rate was 0.5 mL min−1 of tetrahydrofuran. The 11–17 min 

fraction was retained, evaporated to 0.5 mL, and quantitatively transferred to heptane for 

analysis by GC/MS. Analyses were performed on a Hewlett Packard model 6890 Gas 

Chromatograph (Hewlett Packard, Palo Alto, CA) equipped with a 30 m (50%-Phenyl)- 

methylpolysiloxane fused silica capillary column and a 5972 Mass Selective detector 

operating in the selected ion-monitoring mode for enhanced sensitivity. The 11–17 min 
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fraction contained 100% of the PAHs in the injected extract. Triplicate analyses showed the 

method had good precision, with relative standard deviations under 20%.

Concentrations of phenanthrene found in the inner needle sample were normalized by total 

mass in grams of the pine needle sample as weighed after the needle outer layer was 

removed (ng phenanthrene g−1 fresh weight); phenanthrene had a limit of quantitation of 

0.90 ng g−1 fresh weight.

We used standard solutions and spiked pine needle samples to determine recovery levels for 

the method on the GC/MS. Standard solution samples were run by adding the standard 

solution to sand and performing the full method of extraction and analysis. The standard 

solution recovery for phenanthrene was 100% and the spiked pine needle recovery was 

120%.

A storage study to test and quantify any significant losses to PAHs in the pine needle 

samples during storage in the freezer found that the average phenanthrene concentration in 

replicate samples tested at the beginning and end of the 8-week duration of the analysis 

period were not statistically different, as found by a two-tailed t-test.

2.4. Spatial distribution

To characterize the spatial distribution of phenanthrene, we calculated the Moran’s I statistic 

and examined the bivariate models of phenanthrene with local environmental characteristics 

(see below). We also plotted the sample variogram to look for an overall covariance structure 

in the data. Following these preliminary steps, phenanthrene concentrations for all of the 

City of Fresno were modeled using linear regression. The model was fit manually in SAS 

9.3 (Cary, NC). Covariates in the model were required to be statistically significant at an 

alpha level of 0.10. Residual analysis on the model included an examination of the quantile–

quantile and histogram plots for normality, of the residual versus predicted scatterplot for 

absence of structure, and of the Moran’s I statistic for spatial autocorrelation. Additionally, 

correlations between the covariates were checked for collinearity.

2.4.1. Quantification of local environmental characteristics—Geographic 

information was collected, compiled and processed in ArcGIS 9.2 (ESRI, Redlands, CA) 

and, when necessary, further data calculations were completed in SAS 9.3 (SAS, Cary, NC).

2.4.1.1. Traffic.: Two datasets were used to define traffic-related spatial variables: 

roadway locations from the TeleAtlas MultiNet™ USA (TAMN) roadway database and 

vehicle activity data from the California Department of Transportation (Caltrans). The 

vehicle activity data were GIS-based and contained estimates of annual average daily traffic 

(AADT) volumes traveling both directions on select road segments, and truck traffic-

volumes for freeways and state freeways (Margolis et al., 2009).

Five categories of traffic variables were defined: roadway proximity, roadway density, traffic 

intensity, and home location in relation to school bus emissions. Roadway proximity 

measured the distance from the sampling site to the nearest of each of five major road types 

(freeway, major arterial, minor arterial, major collector, and minor collector). Roadway 
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density was defined as the sum of total roadway length of each of the five major road types 

within each of 6 circular buffers (50 m, 100 m, 200 m, 300 m, 400 m, and 500 m) around the 

sampling site. Traffic intensity at each site was calculated based on AADT counts from 

Caltrans, assuming Gaussian decay of exhaust emissions with distance to the roadway 

(Wilhelm and Ritz, 2003). Roadway proximity and density were also calculated separately 

for the major freeways in Fresno because of the difference in predominant vehicle type by 

freeway. US Route 99, on the western edge of the city, is a heavily used regional trucking 

corridor whereas centrally-located State Route 41 restricts truck traffic and is primarily 

local, light-duty vehicles. Last, we accounted for city and school buses. City bus routes and 

bus stops were each available from the City of Fresno. The intensity and proximity of bus 

routes and bus stops was calculated using the 6 buffers described above. The impact of 

diesel school buses was represented using the distance to the nearest elementary school as a 

proxy for exposure to bus exhaust. Elementary school proximity was used to capture this 

source in Fresno, because elementary schools are used as primary bus stops for the school 

district, not children’s homes. School buses do not have established routes, but vary their 

route depending on the driver and traffic conditions (Fresno Unified School District, 

personal communication, 2005).

2.4.1.2. Land use.: Land use data were obtained from the California Department of Water 

Resources county-wide California Land & Water Use surveys from Fresno County (2000) 

and Madera County (2001). Land use types included were urban, vacant urban (including 

parking lots), landscaped urban, residential urban, commercial, industrial, agricultural, semi-

agricultural, native vegetation, and native riparian. To describe the neighborhood, each 

sampling site was assigned three sets of values: land use type on which the tree was located; 

land use types within 6 circular buffers (radii 50 m, 100 m, 200 m, 300 m, 400 m, and 500 

m) near the home; and total land use area, by type, within the same 6 buffers around the 

home.

2.4.1.3. Neighborhood variables.: Data from the United States 2000 Census SF3 dataset 

was selected for transportation, home fuel use, or socioeconomic characteristics and 

assigned to each sample by location.

3. Results

3.1. Samples collected

On February 20, 2008, four teams of researchers collected 99 samples from 91 locations in 

Fresno between 8:10am and 12:50pm. The samples were collected by four teams, each of 

which started in a different quadrant of the city. This was done so that the time of collection 

for the samples was not spatially autocorrelated.

3.2. Phenanthrene distribution in samples

All 99 pine needle samples had detectable levels of phenanthrene, with mean concentration 

of 41.0 ng g−1 fresh weight, median 36.9 ng g−1 fresh weight, and standard deviation of 28.5 

ng g−1 fresh weight. The ratio of the 90th:10th percentile concentrations was 3.3 and the 

ratio of the maximum:minimum was 21.6. There were eight locations at which pine needle 
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samples were taken at the start of sampling in the morning and again from the same eight 

trees at the end of sampling midday. We saw no significant difference, as tested by paired t-
test (mean absolute difference was less than 4 ng g−1 between morning and afternoon 

samples), between 8 pairs of these samples, indicating that our pine needle samples are 

virtually contemporaneous.

3.3. Spatial modeling

The phenanthrene distribution had a statistically significant Moran’s I of 0.035, indicating a 

high degree of spatial clustering (Fig. 1). The sample variogram did not show a systematic 

covariance structure. We log-transformed the data prior to modeling, to achieve a normal 

distribution. Additionally, we adjusted a single extreme high value (greater than mean plus 

five standard deviations), from 257.7 ng g−1 fresh weight to 102.0 ng g−1 fresh weight (mean 

plus two standard deviations), to avoid biasing the results of our regression model toward 

this one point. This is still the highest phenanthrene value in the dataset, the next highest 

value is 85.6 ng g−1 fresh weight.

The model for phenanthrene accounted for a moderate amount of variability in the data (R2 

= 0.56, Table 1). The residual analyses did not show any bias. The Moran’s I for the 

residuals was not statistically significant, indicating that there was no remaining spatial 

autocorrelation. In a sensitivity analysis, we found that the model fit with the full dataset 

resulted in similar beta coefficients and coefficient of determination (R2 = 0.55, Online 

Supplement Table 3). Table 1 shows that each covariate has a fairly large range, making the 

primary predictive variable(s) likely to be different for different locations. However, the 

partial R2 value shows that the distance from the sampling site to the nearest railroad tracks 

has the largest explanatory power in the model. Fig. 2 shows the results of the model through 

an inverse distance weighting interpolation of modeled concentrations at 1096 locations. The 

range in the modeled data is from 1.0 to 125 ng g−1 fresh weight, with a 90th:10th percentile 

ratio of 6.2. The range in the modeled data is larger than that in the observed data because 

there is a wider range of microenvironments in the modeled locations than in the observed 

locations. In particular, our modeled locations included sites that were closer to highways 

and railroads than in the observed data.

4. Discussion and conclusion

The use of 91 sites for simultaneous phenanthrene measurement in a single urban area is 

unprecedented for vegetation biomonitoring or air monitoring of PAHs. In general, air 

concentrations of PAHS have been measured simultaneously at less than 15 locations when 

using air sampling techniques. As expected from previous air concentration measurement 

data in Fresno, phenanthrene was the most abundant PAH in the pine needle samples (Noth 

et al., 2011). Applying vegetation biomonitoring, we were able to observe that the short-term 

(approximately daily) spatial variability of phenanthrene in Fresno is significant, with 

significant clustering of concentrations. Our model explains a moderate amount of the 

variability in the data, likely reflecting the major sources of phenanthrene in Fresno. In 

particular, the spatial distribution of modeled phenanthrene clearly shows the influences of 

highways, railroads, and industrial and commercial zones within the urban environment. We 
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also saw that sampling sites in blockgroups with a higher number of residents who 

commuted less than 5 min to work had lower phenanthrene concentrations. Because Fresno 

commuters almost exclusively drive in private cars, the shorter commuters may be the few 

residents who walk, bike, carpool or work at home; such a decrease in local car activity 

would explain the lower phenanthrene concentrations in those blockgroups. In contrast, 

block-groups with higher numbers of residents with longer commutes (45–60 min) had 

higher phenanthrene concentrations. This may be an indicator of more intense private 

vehicle use, which would increase neighborhood phenanthrene concentrations. What our 

model appears to not capture is the very local, small-scale variability for which we have 

insufficient range of sites. For example, we suspect from our data that proximity to certain 

types of industries (e.g. welding) or minor sources may be associated with increased 

phenanthrene concentrations, but we do not have enough sampling sites near each minor 

source to adequately account for them in the regression model.

Understanding the spatial distribution of PAH has been critical for the epidemiology studies 

conducted in Fresno, CA (Gale et al., 2012; Nadeau et al., 2010; Noth et al., 2011). Spatial 

variability in epidemiology studies is often overlooked as being far less important than 

temporal variability (Brauer et al., 2003; Hoek et al., 2008; Wilson et al., 2005). However, 

the distribution of phenanthrene in these data, representing the full space of the city of 

Fresno on one day, show a 3-fold difference between the 90th and 10th percentile observed 

concentrations (6 fold in modeled concentrations) and more than a 20-fold difference 

between the maximum and minimum observed concentrations (over 100 fold in modeled). In 

comparison, the outdoor airborne PAH concentrations measured at the Fresno EPA Supersite 

in February 2008 show a 5-fold difference in the 90th:10th percentile daily concentrations 

and a 9-fold difference between maximum and minimum daily concentrations (Hammond et 

al., 2010). This shows clearly that for short-term exposure assessment the inclusion of 

spatial variability is equally important to correct quantification of temporal variability.

Bearing in mind the differences between species, extraction methods and clean-up 

procedures, the vast majority of published research on PAHs in pine needles reports 

phenanthrene concentrations to be the highest of the 16 EPA Priority PAHs measured 

(Hwang and Wade, 2008; Lehndorff and Schwark, 2004; Piccardo et al., 2005). Many 

studies have examined the distribution of phenanthrene in pine needles collected over a large 

geographic region (Amigo et al., 2011; Lehndorff and Schwark, 2009a,b; Ratola et al., 

2010); relatively few have looked at intra-urban variability (Hwang and Wade, 2008; 

Lehndorff and Schwark, 2004). Similar to our data, Lehndorff and Schwark (2004) reported 

that of the 46 locations sampled in Cologne PAHs were highest near railroad operations as 

compared to other sampling locations. Hwang and Wade (2008) found that within their 18 

sites of pine needle sampling those in more dense residential areas and with higher traffic 

volumes were higher in total PAH, most of which was phenanthrene.

In summary, our data and model show that there is a high degree of variability in 

phenanthrene concentrations across a moderate-sized urban environment. Traffic-generated 

pollution is important as well as rail pollution. When planning urban air monitoring 

campaigns to observe or model the spatial distribution of urban PAH concentrations, it is 
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important to evaluate the microenvironments present and select those locations that will 

maximize variability in both road and rail traffic.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• We examine the spatial distribution of phenanthrene using vegetation 

biomonitoring.

• Phenanthrene concentrations in Fresno show significant spatial clustering.

• The major sources of phenanthrene in our data in Fresno are highways and 

railroads.
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Fig. 1. 
Phenanthrene concentrations in pine needles, ng g−1 fresh weight, at 91 locations in Fresno, 

CA on 20 February 2008.
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Fig. 2. 
Predicted phenanthrene concentrations in ng g−1 fresh weight, based on land use regression 

modeling at 1000 locations. Surface generated through inverse distance weighting for 

purposes of presentation.
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