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Abstract

The terrestrial biosphere and atmosphere interact through a series of feedback loops. Variability in 

terrestrial vegetation growth and phenology can modulate fluxes of water and energy to the 

atmosphere, and thus affect the climatic conditions that in turn regulate vegetation dynamics. Here 

we analyze satellite observations of solar-induced fluorescence, precipitation, and radiation using a 

multivariate statistical technique. We find that biosphere-atmosphere feedbacks are globally 

widespread and regionally strong: they explain up to 30% of precipitation and surface radiation 

variance. Substantial biosphere-precipitation feedbacks are often found in regions that are 

transitional between energy and water limitation, such as semi-arid or monsoonal regions. 

Substantial biosphere-radiation feedbacks are often present in several moderately wet regions and 

in the Mediterranean, where precipitation and radiation increase vegetation growth. Enhancement 

of latent and sensible heat transfer from vegetation accompanies this growth, which increases 

boundary layer height and convection, affecting cloudiness, and consequently incident surface 
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radiation. Enhanced evapotranspiration can increase moist convection, leading to increased 

precipitation. Earth system models underestimate these precipitation and radiation feedbacks 

mainly because they underestimate the biosphere response to radiation and water availability. We 

conclude that biosphere-atmosphere feedbacks cluster in specific climatic regions that help 

determine the net CO2 balance of the biosphere.

By influencing the partitioning of turbulent fluxes at the surface1, soil moisture and 

temperature can affect climatic variability2. Biospheric variability, in terms of both 

phenology and stomatal regulation, also strongly modulates turbulent fluxes of both water 

and energy3. Since biospheric variability is regulated by vegetation phenology and root zone 

soil moisture, it exhibits longer (e.g. multi-month) memory compared to the more commonly 

studied surface soil moisture and temperature state. Therefore, an understanding of 

biosphere-atmosphere interactions has the potential to improve seasonal to interannual 

climatic predictions4,5,6, and improve predictions of vegetation resilience to climate 

anomalies7. However, global variations in the strength of biosphere-atmosphere feedbacks 

remain unknown, in part because of the difficulty of observing biospheric fluxes8.

Recent advancements in space-borne observations of solar-induced fluorescence (SIF) have 

enabled for the first-time a global proxy for gross primary productivity (GPP) and vegetation 

phenology. SIF is a by-product of photosynthesis9 related to light-use efficiency (LUE) and 

to the fraction of absorbed photosynthetic active radiation (fAPAR)10. On a canopy or 

regional scale and at a monthly resolution it is nearly proportional to GPP across various 

ecosystems. This large-scale correspondence is strongly related to the changes in canopy 

structure and phenology on absorbed photosynthetic active radiation, in addition to the more 

subtle changes in LUE11,12,13,14. SIF is also generally highly correlated with 

evapotranspiration (ET)15 (Supplementary Fig. 1) and correlates with vegetation-driven 

changes in surface albedo. Here, we use SIF as an integrated measure of vegetation 

variability, capturing both growth and changes in photosynthetic capacity (Methods).

Previous studies of land-atmosphere interactions have typically relied on correlations 

between land and atmospheric variables16,17,18. However, these variables seasonally 

coevolve, and thus it is difficult to determine whether one variable is causally forcing the 

other, or if the two are both driven by separate factors19,20. Here, these shortcomings are 

overcome by employing a Multivariate Conditional Granger causality (MVGC) statistical 

technique using vector autoregressive models (VARs)21. This method determines both the 

strength of the predictive mechanism between variables and the time scale over which these 

links occur (Methods).

MVGC observational data forcings

We apply the MVGC VAR statistical technique to eight years of monthly SIF measurements 

from the Global Ozone Monitoring Experiment 2 (GOME-2) sensor22. SIF-precipitation 

interactions are assessed using remote sensing-based estimates from the Global Precipitation 

Climatology Project (GPCP)23 and SIF-radiation interactions are assessed using 

photosynthetic active radiation (PAR) from Clouds and the Earth’s Radiant Energy System 

(CERES)24. We also use surface air temperature reanalysis data from ERA-Interim25, as 
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temperature can independently impact and interact with photosynthetic activity18. SIF data 

is relatively noisy, and thus spatial averaging is used to smooth it prior to analysis 

(Methods). It should be acknowledged that the smoothing could distort results in highly 

heterogeneous regions where signals from various biomes may be aggregated. Note that, 

although the linear scaling factor between monthly SIF and GPP varies between ecosystems 

and climates12 the pixel-by-pixel data normalization used here removes the geographical 

variations of this factor (Methods). The analysis presented here is independent of the scaling 

factor.

To identify biosphere-atmosphere coupled feedbacks, we first examine their directional sub-

components, i.e. the atmospheric forcing (atmosphere  biosphere), as assessed by the 

response of SIF (GPP) to atmospheric drivers (the fraction of variance in SIF explained by 

precipitation and PAR), and the biospheric forcing (biosphere  atmosphere), as assessed by 

precipitation and PAR response to SIF (the fraction of variance in precipitation and PAR 

explained by SIF) (Fig. 1). An F-test with a null-hypothesis of 0-Granger causality (G-

causality) (p-value <0.1) is used. The total feedback strength is then defined as the product 

of these two directional components (Fig. 2). The sign of the feedback is defined as the sign 

of the first order coefficient of the VAR model from the G-causality analysis. To ensure the 

results presented here are robust and independent of the seasonal cycle (i.e. due to land-

atmosphere interactions), a bootstrap test that conserves the seasonal cycle but breaks the 

causality by shuffling months from different years is used (Supplementary Fig. 2) and 

clearly destroys the feedback.

Globally, precipitation positively explains the highest fraction of biosphere (SIF) variability 

in regions that are transitional between wet and dry climates, e.g. semi-arid or monsoonal 

(Fig. 1a), consistent with previous studies7,16. Many of these regions also have high fractions 

of C4 plants26, which have higher water use efficiency than C3 species27, and are therefore 

expected to be more sensitive to water limitations. The impact of the biosphere on 

precipitation (Fig. 1b), as assessed by the G-causality of SIF on precipitation, is seen in 

seasonally dry regions where increases in GPP, in response to increased soil moisture and 

vegetation growth, is linked with higher latent heat flux and reduced sensible heat flux 

(Supplementary Fig. 1). Although the impact of SIF on precipitation is less widespread than 

that of precipitation on SIF, it is significant in many of the same regions. The feedbacks are 

almost always positive because the monthly positive effect of evapotranspiration on moist 

convection dominates negative feedback pathways induced by mesoscale surface 

heterogeneity28 and the effects of changing albedo. The time scales involved in the feedback 

mechanisms can vary between regions. The subseasonal signal may represent variability due 

to early greening induced by increased water supply or to browning induced by water stress, 

while seasonal and interannual signals may indicate changes in vegetation growth regulated 

by water availability during cell division. The strongest signals are detected subseasonally in 

monsoonal Australia, seasonally in Eastern Asia, and both seasonally and interannually in 

the Sahel and Southern African Monsoonal regions (Supplementary Fig. 3). The dominance 

of seasonal and interannual time scales in the Sahel, related to biomass variability, is 

consistent with previous understanding6,29.
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PAR has the greatest impact on biosphere fluxes (Fig. 1c) in regions where photosynthesis 

and vegetation growth is energy limited such as the high latitudes, humid regions of the 

Eastern US, parts of the Mediterranean, and tropical rainforest regions30,31. This agrees with 

the findings of previous studies showing that net primary production (NPP) in these regions 

is driven by radiation18. The biosphere exerts control on PAR in the Eastern US, central 

Eurasia, African deciduous woodlands as well as in the European Mediterranean region (Fig. 

1d). In these very dry or very wet regions, ecosystems rarely enter the transitional regime 

where stomatal closure depends on soil moisture, and increases in SIF are accompanied by 

increases in both sensible and latent heat (Supplementary Fig. 1)32. The increased sensible 

heat flux leads to a deeper boundary layer and reduced cloud cover (Supplementary Fig. 4), 

therefore increasing PAR (Fig. 1d). In the Eastern US, the increase in PAR is mostly 

attributed to a reduction of low- and mid-level (i.e. congestus) cumulus clouds, typical of 

summer conditions in this humid climate (Supplementary Fig. 4). By contrast, in the 

European Mediterranean, PAR is most sensitive to mid- and high-level clouds. In central 

Eurasia all cloud cover levels negatively impact surface PAR but high-level clouds are the 

primary reason for the PAR change. The strongest feedbacks between SIF and PAR tend to 

be on a seasonal scale indicating an increase in ecosystem-scale photosynthetic capacity due 

to vegetation growth, with exceptions in Madagascar, Australia and central Eurasia where 

subseasonal and interannual feedbacks dominate (Supplementary Fig. 3). In all PAR 

feedback regions, PAR is also negatively correlated with precipitation (Supplementary Fig. 

4). We note that the European Mediterranean has been highlighted as a hotspot of land-

atmosphere coupling in an earlier modeling study, emphasizing the strong coupling between 

surface turbulent fluxes and the boundary layer response in the region33. While a similar 

coupling mechanism may occur in other regions, they do not exhibit a strong response 

because other processes (e.g. topography, different land-ocean circulation…) overshadow 

the regional impact of the biosphere there.

MVGC observational data coupled feedbacks

The results of the atmospheric and biospheric forcings (Fig. 1) are combined to determine 

the total variance explained in the coupled biosphere-atmosphere system (Fig. 2 and 

Supplementary Fig. 5). Hotspot regions for the precipitation  SIF  precipitation feedback 

(Fig. 2a) - which can explain up to 20–30% of the observed precipitation variance - are 

concentrated in grasslands and savannas (transitional zones) such as monsoonal regions in 

the Sahel, Eastern India and Northern Australia, as well as the African savanna, Madagascar 

and the Brazilian savannas. There are other monsoonal regions that despite large shifts in 

rainfall during the year are not hotspots either due to a lack of ET response to 

precipitation34, or a lack of precipitation response to changes in ET35. An example of this is 

the Central Great Plains in North America (a hotspot per previous modeling-based studies of 

soil moisture-atmosphere interactions36), where soil moisture has been shown to have a 

weak triggering effect on precipitation20,37. Indeed, summertime precipitation in this area is 

dominated by eastward propagating mesoscale convective systems mostly independent of 

the land surface38.

The PAR  SIF  PAR feedback (Fig. 2b) has hotspots (20–30% of explained variance) in 

the humid Eastern United States, Southern Brazil, as well as in the Mediterranean basin in 
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Europe. By contrast, in the tropical rainforest regions of Africa and South America there is 

little response detected for the full feedback loops with either precipitation or PAR (Fig. 2 

and Supplementary Fig. 5) suggesting that other factors (such as ecosystem 

characteristics39) dominate the variability of the biosphere there.

Although feedbacks between the biosphere and atmosphere are detected in almost all 

regions, several ‘hotspot families’ stand out: 1) regions that are either semi-arid or 

monsoonal for the precipitation feedback and 2) humid regions (the Eastern US) and the 

Mediterranean for the PAR feedback. No regions exhibit both feedback pathways; one 

always dominates the other when it is present.

MVGC ESM analysis

The distribution of feedbacks in the observational record is next used to assess Earth System 

Models (ESMs) (Supplementary Table 1). The distributions of feedback strengths for model 

and observational results (Fig. 3) summarize the differences between the biosphere-

atmosphere feedback detected by each CMIP5 model (Supplementary Figs 6, 7 and 8) and 

the observational record. In the model analysis, GPP is used as a proxy for the biosphere in 

lieu of SIF. Our results are normalized in terms of explained variance for each pixel so that 

the proportionality factor of SIF and GPP does not impact the pixel-wise metric results. To 

increase robustness, 50 years of data are used for the model analysis (1956–2005) rather 

than the shorter period we are constrained by for the observational analysis40.

The median of all ESMs fall below the first quartile of the observational data results for the 

precipitation  biosphere  precipitation feedback (Fig. 3a). Models significantly 

underestimate the magnitude and the range of both the atmospheric and biospheric forcings 
(except for CMCC-CESM) (Supplementary Fig. 6), although underestimation is more severe 

in the case of the precipitation  biosphere component. The observational PAR  biosphere 

 PAR feedback strength (Fig. 3b) also has a higher median value than that of the ESMs. 

Both the precipitation and PAR atmospheric forcings are underestimated because of 

photosynthesis misrepresentation in ESMs (Supplementary Fig. 6)41. Despite some spatial 

similarities between modeled feedbacks and observational results (Supplementary Figs 7 and 

8), models systematically underestimate the impact of the biosphere on precipitation, and 

noticeably miss the variance explained by observations in monsoonal Australia. On the other 

hand, the modeled impact of the biosphere on PAR varies drastically between models and 

can be either over- or under-estimated (Supplementary Fig. 6). These inter-model 

discrepancies are likely due to the misrepresentation of convection in models, and the 

challenges of correctly representing it over land regions42,43. Interestingly, in general, ESM 

errors in representing the atmospheric forcing on the biosphere are even more severe than 

errors in representing the biospheric forcing on the atmosphere. This suggests that better 

representations of photosynthesis and water stress sensitivities would have a larger impact 

on improving the ESM representation of biosphere-atmosphere feedbacks, than improved 

convection representation.

This study provides the first causal observational diagnostic of biosphere-atmosphere 

feedbacks on subseasonal to interannual time scales. These feedbacks are strong in semi-arid 
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and monsoonal regions, which are key in determining whether the yearly global terrestrial 

biosphere acts as a net CO2 source or sink7,16. As such biosphere-atmosphere feedbacks 

regulate interannual hydrology and climate in these regions as well as the global carbon 

cycle. Additionally, due to the high percentages of atmospheric variability explained by 

vegetation processes, subseasonal and seasonal climate predictions can greatly benefit from 

better vegetation characterization in ESMs. In turn this will improve subseasonal to seasonal 

climate and hydrologic forecasts, which are crucial for optimizing management decisions 

pertaining to food security, water supplies, and disaster management such as droughts and 

heat waves.

Methods

Datasets

Observational remote sensing data is used for SIF, precipitation, and PAR, while quasi-

observational reanalysis data is used for temperature. GOME-2, version 2.622 (overpass time 

of 9:30am) is used for SIF, precipitation data is obtained from version 1.2 of GPCP23, PAR 

from CERES24, and surface air temperature (1000mb) data from ERA-Interim25 (see Data 

availability). While a longer observational data record would allow further insight into 

interannual variability, we are limited by the satellite data record availability.

There is a certain amount of uncertainty inherent to each product that is described in detail 

in their data quality summaries. The SIF data is especially noisy (particularly in South 

America where there are less frequent measurements due to clouds, specifically in the 

rainforest, and noise from the South Atlantic Anomaly)22. Thus, in addition to a standard 

normalization (described below), SIF data is averaged with the 8 adjacent pixels surrounding 

the pixel of interest to smooth the remaining noise. On rare pixels, we note that SIF appears 

to cause an increase in both precipitation and PAR (Figs 1b and d) but this effect is attributed 

to the use of nine-pixels spatially smoothing of the SIF signal.

The monthly SIF data is calculated from daily measurements (level 2) when the effective 

cloud fraction is <30%. It should be noted that effective cloud fraction is not equivalent to 

geometric cloud fraction but is instead based on a Lambertian model that considers cloud 

reflectance and albedo44,45,46. It has been demonstrated that in a typical pixel with a true 

cloud fraction of 40% that over 80% of the SIF signal can still be retrieved for very thick 

cloud optical thicknesses (up to 10)47. The effective cloud fraction is typically lower than the 

geometric one.

While cloud filtering could result in a slight bias, it has been shown that altering the effective 

cloud fraction threshold between 0 and 50 percent only minimally affects the spatial and 

temporal patterns of SIF22. Therefore, we expect minimal bias due to the filtering at the 

monthly resolution that we consider in our analysis. The one region where the cloud 

coverage filtering may reduce G-causality detected is in the wet tropics where there is a 

higher prevalence of clouds. It is possible that the PAR SIF PAR feedbacks might be 

underestimated in this region because of the cloud contamination.
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SIF-GPP relationship

This study uses SIF as a proxy for GPP. SIF is mechanistically linked to GPP9,48, through 

both light use efficiency and fAPAR49, and has been shown to have a near-linear relationship 

with GPP at both canopy and ecosystem scales11,12,50,51,46,52. While the hourly leaf-level 

relationship between SIF and GPP has been estimated as curvilinear (SIF continues to 

increase after the maximum rate of photosynthesis has been reached)11, the relationship at 

larger and longer time scales (e.g., monthly) becomes linear likely due to the effects of 

averaging across a canopy of leaves representing varying light conditions11.

The linearity between SIF and GPP has been observed across biomes using a variety of 

datasets, including flux tower validation46,52. As is shown in Supplementary Fig. 1, SIF 

correlates strongly with monthly global GPP estimates from Fluxnet-MTE in regions outside 

of the wet tropics. The SIF-GPP correlation is lower in the wet tropics as the machine 

learning upscaling approach of the Fluxnet-MTE GPP product has the greatest uncertainty in 

these regions, as there are few(er) eddy covariance towers there that are used for 

training53,54. Additionally, tropical forest GPP exhibits minimal seasonality55, and thus the 

lower correlation can be attributed to the fitting of noise (R2 by construction will be small). 

It has nonetheless been shown that the minimal seasonality in SIF observed in the Amazon 

correctly corresponds to the seasonality of carbon dioxide56 and MODIS near-infrared 

reflectance related to photosynthesis55. As a result, SIF has been used as a proxy for GPP 

interannual variability11.

The linear scaling factor between SIF and GPP varies spatially. Yet, when we normalize the 

data prior to running the G-Causality, the differing slope values should not impact results 

since we look at each pixel (location/ecosystem) separately.

Conditional MVGC

We base our analysis on Multivariate Granger causality, using a MVGC MATLAB 

toolbox21, which allows for time and frequency domain MVGC analysis of time series data. 

The method fits multivariate VAR models to time series. Conditional MVGC compares VAR 

models with and without (potentially causal) variables. For example, if the addition of past 

values of precipitation improves the quality of the VAR model prediction for SIF (that uses 

the autoregressive histories of other variables: SIF, PAR and temperature), then precipitation 

is considered to have a G-causal influence57. If there is no significant information gained 

(based on an F-test with a null-hypothesis of no G-causality), then the variables are 

considered not to have a causal link.

Prior to applying the MVGC technique, the data obtained are aggregated to 1-degree by 1-

degree monthly data. Monthly data are used to reduce random noise in the original SIF daily 

data and to achieve consistency with the monthly-aggregated resolution of Coupled Model 

Intercomparison Project Phase 5 (CMIP5) model data. For each dataset, the long-term mean 

value is subtracted from each pixel and it is normalized by its long-term standard deviation. 

After normalization, SIF data is averaged with the 8 adjacent pixels surrounding the pixel of 

interest to smooth the remaining noise inherent in the SIF data from GOME-2. Single 

missing monthly values (approximately 4% of the pixels per month) are interpolated using 
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temporal splines. Prior to performing the normalization and running the MVGC analysis, 

partial correlations are calculated between non-normalized SIF and atmospheric variables, 

and if the absolute correlation falls below a value of 0.1, the atmospheric variable is 

considered non-significant for that pixel and is not included in the analysis. Although results 

of the analysis are not shown for surface air temperature (temperature at 1000mb), it is used 

in the analysis, to account for its influence when determining the feedbacks involving 

precipitation, PAR and SIF. For example, by including temperature in the analysis we 

guarantee that the G-causality between PAR and SIF is not instead a reflection of the effects 

of temperature (or related to vapor pressure deficit), which can be correlated with PAR. For 

all analyses, we use a conservative p-value calculation given the high auto-correlation in the 

variables of interest, which reduces the degrees of freedom in the number of samples.

Note that we intentionally do not remove the seasonal cycle in pre-processing. Small 

stochastic amplitude and phase modulations of the seasonality (e.g. large monthly cloud 

cover or colder than usual temperatures in a particular year) induce non-additive widening of 

the amplitude and phase spectra so that subtracting the climatology artificially reduces 

specific frequencies and phases, potentially removing part of the causal signal. This risk is 

amplified by the relatively short remote sensing record used, which could lead to an 

imperfect definition of the climatological seasonal cycle. Indeed, where the seasonal signal 

amplitude and phase have a causal effect we want to capture this (such as the rainfall impact 

on vegetation green-up and SIF in monsoonal regions). Because the VAR models can 

capture seasonal periodicity, the MVGC analysis is not affected by the risk of false 

attribution of causality due to simple lagged seasonality, as is further demonstrates in the 

examples below.

After normalization of the data and checking that partial correlations between SIF and the 

other variables fall above 0.1, the Akaike information criterion is calculated and defines the 

best model order up to the maximum model order, specified as 6 months 

(‘tsdata_to_infocrit.m’ function in the MVGC MATLAB toolbox). The best actual model 

order used displays the memory of the biosphere-atmosphere interactions (Supplementary 

Fig. 9): model orders of 1 correspond to regions where memory in the system is short and 

causal influence between the atmosphere and biosphere is weak. Using the calculated model 

order, an ordinary least-square regression is used to determine the multivariate-VAR model 

coefficients (‘tsdata_to_var.m’). The autocovariance function is created 

(‘var_to_autocov.m’), and from this we calculate the time domain pair-wise conditional 

causalities (‘autocov_to_pwcgc.m’). To test time-domain significance, we calculate the p-

values, which are compared to our chosen p-value of less than 0.1 (‘mvgc_pval.m’). An F-

test with a null-hypothesis of no G-causality is used and only significant pixels are displayed 

in figures. To perform the analysis in the frequency domain and identify subseasonal (<3 

months), seasonal (3 to 12 months) and interannual (>1 year) feedbacks, we calculate the 

spectral-conditional G-causality (‘autocov_to_spwcgc.m’) (Supplementary Fig. 3).

We check that the G-causality in the frequency domain integrates to the time domain by 

integrating the frequency results (‘smvgc_to_mvgc.m’) and then subtracting the output from 

the time domain result. Checks are performed throughout the process so that the analysis is 

automatically exited should there be a failed calculation.
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A sample first order VAR model to explain the variability of SIF is displayed in equation 1 

with A, P, T and sig representing the VAR coefficient matrix, precipitation, temperature, and 

significance (1 for significant, 0 for insignificant at p< 0.1) accordingly.

SIF(t) = A(SIF) SIF(t − 1) + A(P on SIF) P(t − 1) sig(P on SIF) + A(PAR on SIF) PAR(t − 1)
sig(PAR on SIF) + A(T on SIF) T(t − 1) sig(T on SIF) + ε (1)

With the addition of the auto-regressive histories of each variable, the VAR model captures 

the original SIF data more accurately. We acknowledge that other factors not included in this 

analysis can affect SIF variability (such as naturally and anthropogenically caused 

disturbances), and is one of the reasons (along with sensor noise) that we cannot predict 

100% of the variable variance, even with our full VAR model.

Synthetic Bootstrap Tests

To demonstrate the effectiveness of this method, we perform several additional tests of the 

conditional MVGC on synthetic data where causal links can be specified. In the first three 

test scenarios PAR and precipitation (P) time series are assumed to be sinusoidal with 

amplitude modulation – AM – and frequency modulation – FM –, as well as additive noise 

(equations 2 and 3). We define two similar test cases except that one has a causal link 

(equation 4) while the other does not (non-causal) (equation 5). We assume that the noise is 

normally distributed (and thus have a white noise/flat spectrum in the frequency domain). To 

test the frequency response, PAR is assumed to have a yearly frequency ω = 2π/(12 months) 

(equation 2) while precipitation is assumed to have twice-yearly frequency 2ω (i.e. two 

wet/dry seasons per year) (equation 3).

PAR(t) = 100(1 + 0.25At
PAR)sin 1 + 1

24Ft
PAR ωt − π /2 + 25εt

PAR
(2)

P(t) = 100(1 + 0.25At
P)sin 1 + 1

24Ft
P 2ωt − π /4 + 25εt

P, (3)

with At
PAR, Ft

PAR, εt
PAR, At

P, Ft
P , εt

P i.i.d. normally distributed with unit variance N(0,1).

In the causal case, SIF is defined as a lagged version of precipitation and radiation (with t in 

months) (equation 4):

SIF = 0.2(1 + 0.25At
SIF)P(t − 2) + 0.8(1 + 0.25Bt

SIF)PAR(t − 1) + 25εt
SIF . (4)

with At
SIF, Bt

SIF, εt
SIF i.i.d. normally distributed with unit variance N(0,1). We use 50 years 

of synthetic data and one realization for the test.

The conditional G-causality finds that only radiation and precipitation are causing SIF and 

not the converse (Supplementary Fig. 10). In addition, the magnitude of radiation on SIF is 
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four times stronger than the one of precipitation on SIF, as expected based on the time series 

generated (equation 4).

To emphasize that these results are not spurious, we perform a second, similar test but with a 

non-causal time series (equation 5). This non-casual SIF time series is not induced by PAR 

nor precipitation. It is statistically similar to the causal scenario, composed of lagged 

sinusoids with similar frequencies to PAR and precipitation, but without a causal 

mechanism. For the precipitation and radiation time series we allow for both amplitude and 

frequency modulations so that both amplitude and phase are stochastic (similar to radiation 

and precipitation monthly time series).

SIF = 20(1 + 0.25at
SIF)sin 1 + 1

24bt
SIF 2ωt − π /2 − (2/12)2π + 80(1 + 0.25ct

SIF

)sin 1 + 1
24dt

SIF ωt − π /4 − (1/12)2π + 25et
SIF .

(5)

The conditional MVGC analysis of this non-causal time series shows no significant G-

causality, as expected (Supplementary Fig. 10).

In the third test we bootstrap every month of equations 2–4 across years, clearly destroying 

the causality in the time series (as the same month from another year is used) while 

preserving the climatology (and seasonal cycle). As seen in Supplementary Figure 10, the 

test again finds no causality in the time series, further confirming the quality of the method 

and its applicability for our type of time series.

In a fourth and final synthetic data analysis, we test whether we can detect a causal full-

feedback loop. We repeat the original causal test (equation 4), switching the original 

equation for PAR (equation 2) for one that also includes SIF as a driver (equation 6).

PAR = PAR + 0.4 SIF var (PAR)/ var (SIF) . (6)

As expected, in addition to the causality detected previously in the causal test of 

precipitation and PAR on SIF, we also detect significant causality of SIF on PAR 

(Supplementary Fig. 10).

Observational Bootstrap Test

To further test the assumption that the observed causation of the biosphere on the 

atmosphere is not an artifact of the seasonal cycle, we perform a bootstrap analysis with 

100-realizations at the global scale. Observational data is sampled by randomly swapping 

the same months across years for each variable: that is the seasonality is preserved while the 

causal link from month to month is destroyed. As expected, very few pixels showed any G-

causality (Supplementary Fig. 2): only 6.2% of the SIF  precipitation results, and 6.9% of 

the SIF  PAR results were found to be significant at the 95% confidence level (had more 

than 5/100 realizations per pixel with significant results based on an F-distribution with a p-

value < 0.1). The resulting averaged pair-wise conditional G-causality shows almost no 

signal, with a peak of less than 0.05 compared to 0.3 for the original dataset (Supplementary 
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Fig. 2). In addition, the resulting geographical patterns reflect mostly random noise. This 

further emphasizes the physical nature of our assessed causation between the biosphere and 

the atmosphere.

Vector Autoregressive Models

The VAR models obtained from the G-causality analysis are used to quantify the fraction of 

variance in the biosphere explained by the atmosphere and vice versa. We tested for 

normality and homoscedasticity of the residuals during the VAR fits and excluded pixels that 

did not meet these criteria (3–6% of pixels depending on the feedback). Using the VAR 

coefficients generated by the analysis (to account for cross variations), VAR models are 

created for each atmospheric variable with and without the inclusion of SIF. VAR models are 

also created for SIF with and without the inclusion of each atmospheric variable. The 

fractions of observed SIF variance explained by each atmospheric component is computed 

(equation 7):

f X SIF =
var (SIFAR fit with X) − var (SIFAR fit without X)

var (SIF) (7)

as well as the fraction of each atmospheric variable observed variance explained by SIF 

(equation 8) (Fig. 1):

f SIF Y =
var (Y AR fit with SIF) − var (Y AR fit without SIF)

var (Y) (8)

These are combined to obtain the full feedback fractions (equation 9) (Fig. 2 and 

Supplementary Fig. 5):

f X SI Y =
var (SIFAR fit with X) − var (SIFAR fit without X)

var (SIF)
×

var (Y AR fit with SIF) − var (Y AR fit without SIF)
var (Y)

(9)

The feedback is defined as positive or negative by taking the VAR model first order 

coefficients, which is then compared with the VAR model coefficient with the greatest 

absolute magnitude as further verification. The leading order coefficient of the AR model 

could be used in lieu of the first order one but given the rapid decay of the autocorrelation 

function and the reduced VAR model order (typically less than 2, Supplementary Fig. 9) we 

use the sign of the first order coefficient. The two estimates of the sign differ in limited 

regions.

CMIP5 Model Simulations

For the Earth System models from the CMIP5 collection (Supplementary Table 1), the same 

analysis used for the observational data is applied. Only those models that included GPP 

data are used. The time period of 1956–2005 is used to obtain statistics that are robust across 

interannual variability40. The true feedback strengths have likely not changed significantly 
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from this earlier, longer time period and the period used for the observational analysis, but 

we acknowledge that land-use and land-cover changes can affect the feedback metrics (but 

are also model dependent). One realization of the historical run was used for each model58.

VAR models are created based on coefficients calculated in the MVGC analysis for each 

ESM, and the fraction of variance explained in biosphere-atmosphere coupling from each 

variable is calculated using equations 5–7.

Code availability

The code used as the basis for the study can be accessed from http://www.sussex.ac.uk/

sackler/mvgc/.

Data availability

All data supporting the findings of this study are freely available from the following 

locations:

• GOME-2 SIF: https://avdc.gsfc.nasa.gov/pub/data/satellite/MetOp/GOME_F/

• GPCP precipitation: http://iridl.ldeo.columbia.edu/

SOURCES/.NASA/.GPCP/.V1DD/.V1p2/

• CERES PAR: https://ceres-tool.larc.nasa.gov/ord-tool/jsp/SYN1degSelection.jsp

• CERES cloud coverage: https://ceres-tool.larc.nasa.gov/ord-tool/jsp/ISCCP-

D2Selection.jsp

• ERA-Interim temperature and boundary layer height: http://apps.ecmwf.int/

datasets/data/interim-full-mnth/levtype=sfc/

• Fluxnet-MTE surface flux and GPP data: https://www.bgc-jena.mpg.de/geodb/

projects/Data.php

• CMIP5 model data: https://pcmdi.llnl.gov/

Additional intermediate datasets produced as part of the study can be made available upon 

request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Atmospheric forcings and biospheric forcings
X  Y represents the fraction of variance of Y explained by X, for the atmospheric forcing 
(atmosphere  biosphere) (a,c), and biospheric forcing (biosphere  atmosphere) (b,d). The 

signs of the fractions in the top row show whether the atmospheric variable increases 

(positive) or decreases (negative) the biosphere flux, while in the bottom row they show 

whether the biosphere increases or decreases the atmospheric response. Oceans and regions 

where SIF partial correlations are less than 0.1 are shown in white. Pixels without 

significance are shown in gray (p-value<0.1).
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Fig. 2. Hotspots of terrestrial biosphere-atmosphere feedbacks
The fraction of biosphere-atmosphere coupling variance explained for the full feedback 

loop: precipitation  SIF  precipitation (a) and PAR  SIF  PAR (b). The sign of the 

fraction shows whether the feedback is positive or negative. Oceans and regions where SIF 

partial correlations are less than 0.1 are shown in white. Pixels without significance are 

shown in gray (p-value<0.1).
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Fig. 3. Comparison of observational and Earth System Model results
Boxplots showing the distributions of significant observational and model results for the 

fractions of variance explained for the feedbacks of precipitation  biosphere 

precipitation (a) and PAR  biosphere  PAR (b). Boxes are defined by the upper quartile, 

median and lower quartile of the data while whiskers are defined by the outliers. Only 

significant pixels are represented (p-value<0.1).

Green et al. Page 18

Nat Geosci. Author manuscript; available in PMC 2019 November 08.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript


	Abstract
	MVGC observational data forcings
	MVGC observational data coupled feedbacks
	MVGC ESM analysis
	Methods
	Datasets
	SIF-GPP relationship
	Conditional MVGC
	Synthetic Bootstrap Tests
	Observational Bootstrap Test
	Vector Autoregressive Models
	CMIP5 Model Simulations
	Code availability
	Data availability

	References
	Figure 1
	Fig. 2
	Fig. 3

