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Abstract

The terrestrial biosphere and atmosphere interact through a series of feedback loops. Variability in
terrestrial vegetation growth and phenology can modulate fluxes of water and energy to the
atmosphere, and thus affect the climatic conditions that in turn regulate vegetation dynamics. Here
we analyze satellite observations of solar-induced fluorescence, precipitation, and radiation using a
multivariate statistical technique. We find that biosphere-atmosphere feedbacks are globally
widespread and regionally strong: they explain up to 30% of precipitation and surface radiation
variance. Substantial biosphere-precipitation feedbacks are often found in regions that are
transitional between energy and water limitation, such as semi-arid or monsoonal regions.
Substantial biosphere-radiation feedbacks are often present in several moderately wet regions and
in the Mediterranean, where precipitation and radiation increase vegetation growth. Enhancement
of latent and sensible heat transfer from vegetation accompanies this growth, which increases
boundary layer height and convection, affecting cloudiness, and consequently incident surface

Reprints and permissions information is available at www.nature.com/reprints.

"Correspondence to: jg3405@columbia.edu.

Correspondence and requests for materials should be addressed to JKG (jg3405@columbia.edu).

Author Contributions

JKG, AGK and PG wrote the main manuscript text. JKG, PG and SHA prepared figures. SHA processed the CMIP5 simulations. JKG,
PG and AGK designed the study. All authors reviewed and edited the manuscript.

Competing financial interests

The authors declare no competing financial interests.



1duosnue Joyiny VSN 1duosnuey Joyiny YSYN

1duosnue Joyiny VSN

Greenetal. Page 2

radiation. Enhanced evapotranspiration can increase moist convection, leading to increased
precipitation. Earth system models underestimate these precipitation and radiation feedbacks
mainly because they underestimate the biosphere response to radiation and water availability. We
conclude that biosphere-atmosphere feedbacks cluster in specific climatic regions that help
determine the net CO, balance of the biosphere.

By influencing the partitioning of turbulent fluxes at the surfacel, soil moisture and
temperature can affect climatic variability2. Biospheric variability, in terms of both
phenology and stomatal regulation, also strongly modulates turbulent fluxes of both water
and energy?. Since biospheric variability is regulated by vegetation phenology and root zone
soil moisture, it exhibits longer (e.g. multi-month) memory compared to the more commonly
studied surface soil moisture and temperature state. Therefore, an understanding of
biosphere-atmosphere interactions has the potential to improve seasonal to interannual
climatic predictions*>6, and improve predictions of vegetation resilience to climate
anomalies’. However, global variations in the strength of biosphere-atmosphere feedbacks
remain unknown, in part because of the difficulty of observing biospheric fluxes®.

Recent advancements in space-borne observations of solar-induced fluorescence (SIF) have
enabled for the first-time a global proxy for gross primary productivity (GPP) and vegetation
phenology. SIF is a by-product of photosynthesis® related to light-use efficiency (LUE) and
to the fraction of absorbed photosynthetic active radiation (FAPAR)1. On a canopy or
regional scale and at a monthly resolution it is nearly proportional to GPP across various
ecosystems. This large-scale correspondence is strongly related to the changes in canopy
structure and phenology on absorbed photosynthetic active radiation, in addition to the more
subtle changes in LUE111213.14 g|F is also generally highly correlated with
evapotranspiration (ET)® (Supplementary Fig. 1) and correlates with vegetation-driven
changes in surface albedo. Here, we use SIF as an integrated measure of vegetation
variability, capturing both growth and changes in photosynthetic capacity (Methods).

Previous studies of land-atmosphere interactions have typically relied on correlations
between land and atmospheric variables1®:17:18, However, these variables seasonally
coevolve, and thus it is difficult to determine whether one variable is causally forcing the
other, or if the two are both driven by separate factors1®20, Here, these shortcomings are
overcome by employing a Multivariate Conditional Granger causality (MVGC) statistical
technique using vector autoregressive models (VARs)?L. This method determines both the
strength of the predictive mechanism between variables and the time scale over which these
links occur (Methods).

MVGC observational data forcings

We apply the MVGC VAR statistical technique to eight years of monthly SIF measurements
from the Global Ozone Monitoring Experiment 2 (GOME-2) sensor2, SIF-precipitation
interactions are assessed using remote sensing-based estimates from the Global Precipitation
Climatology Project (GPCP)23 and SIF-radiation interactions are assessed using
photosynthetic active radiation (PAR) from Clouds and the Earth’s Radiant Energy System
(CERES)?*. We also use surface air temperature reanalysis data from ERA-Interim?®, as
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temperature can independently impact and interact with photosynthetic activity!8. SIF data
is relatively noisy, and thus spatial averaging is used to smooth it prior to analysis
(Methods). It should be acknowledged that the smoothing could distort results in highly
heterogeneous regions where signals from various biomes may be aggregated. Note that,
although the linear scaling factor between monthly SIF and GPP varies between ecosystems
and climates?? the pixel-by-pixel data normalization used here removes the geographical
variations of this factor (Methods). The analysis presented here is independent of the scaling
factor.

To identify biosphere-atmosphere coupled feedbacks, we first examine their directional sub-
components, i.e. the atmospheric forcing (atmosphere 2 biosphere), as assessed by the
response of SIF (GPP) to atmospheric drivers (the fraction of variance in SIF explained by
precipitation and PAR), and the biospheric forcing (biosphere # atmosphere), as assessed by
precipitation and PAR response to SIF (the fraction of variance in precipitation and PAR
explained by SIF) (Fig. 1). An F-test with a null-hypothesis of 0-Granger causality (G-
causality) (p-value <0.1) is used. The total feedback strength is then defined as the product
of these two directional components (Fig. 2). The sign of the feedback is defined as the sign
of the first order coefficient of the VAR model from the G-causality analysis. To ensure the
results presented here are robust and independent of the seasonal cycle (i.e. due to land-
atmosphere interactions), a bootstrap test that conserves the seasonal cycle but breaks the
causality by shuffling months from different years is used (Supplementary Fig. 2) and
clearly destroys the feedback.

Globally, precipitation positively explains the highest fraction of biosphere (SIF) variability
in regions that are transitional between wet and dry climates, e.g. semi-arid or monsoonal
(Fig. 1a), consistent with previous studies’16. Many of these regions also have high fractions
of C4 plants2®, which have higher water use efficiency than C3 species?’, and are therefore
expected to be more sensitive to water limitations. The impact of the biosphere on
precipitation (Fig. 1b), as assessed by the G-causality of SIF on precipitation, is seen in
seasonally dry regions where increases in GPP, in response to increased soil moisture and
vegetation growth, is linked with higher latent heat flux and reduced sensible heat flux
(Supplementary Fig. 1). Although the impact of SIF on precipitation is less widespread than
that of precipitation on SIF, it is significant in many of the same regions. The feedbacks are
almost always positive because the monthly positive effect of evapotranspiration on moist
convection dominates negative feedback pathways induced by mesoscale surface
heterogeneity28 and the effects of changing albedo. The time scales involved in the feedback
mechanisms can vary between regions. The subseasonal signal may represent variability due
to early greening induced by increased water supply or to browning induced by water stress,
while seasonal and interannual signals may indicate changes in vegetation growth regulated
by water availability during cell division. The strongest signals are detected subseasonally in
monsoonal Australia, seasonally in Eastern Asia, and both seasonally and interannually in
the Sahel and Southern African Monsoonal regions (Supplementary Fig. 3). The dominance
of seasonal and interannual time scales in the Sahel, related to biomass variability, is
consistent with previous understanding®2°,
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PAR has the greatest impact on biosphere fluxes (Fig. 1c) in regions where photosynthesis
and vegetation growth is energy limited such as the high latitudes, humid regions of the
Eastern US, parts of the Mediterranean, and tropical rainforest regions3%:31, This agrees with
the findings of previous studies showing that net primary production (NPP) in these regions
is driven by radiationl8. The biosphere exerts control on PAR in the Eastern US, central
Eurasia, African deciduous woodlands as well as in the European Mediterranean region (Fig.
1d). In these very dry or very wet regions, ecosystems rarely enter the transitional regime
where stomatal closure depends on soil moisture, and increases in SIF are accompanied by
increases in both sensible and latent heat (Supplementary Fig. 1)32. The increased sensible
heat flux leads to a deeper boundary layer and reduced cloud cover (Supplementary Fig. 4),
therefore increasing PAR (Fig. 1d). In the Eastern US, the increase in PAR is mostly
attributed to a reduction of low- and mid-level (i.e. congestus) cumulus clouds, typical of
summer conditions in this humid climate (Supplementary Fig. 4). By contrast, in the
European Mediterranean, PAR is most sensitive to mid- and high-level clouds. In central
Eurasia all cloud cover levels negatively impact surface PAR but high-level clouds are the
primary reason for the PAR change. The strongest feedbacks between SIF and PAR tend to
be on a seasonal scale indicating an increase in ecosystem-scale photosynthetic capacity due
to vegetation growth, with exceptions in Madagascar, Australia and central Eurasia where
subseasonal and interannual feedbacks dominate (Supplementary Fig. 3). In all PAR
feedback regions, PAR is also negatively correlated with precipitation (Supplementary Fig.
4). We note that the European Mediterranean has been highlighted as a hotspot of land-
atmosphere coupling in an earlier modeling study, emphasizing the strong coupling between
surface turbulent fluxes and the boundary layer response in the region33. While a similar
coupling mechanism may occur in other regions, they do not exhibit a strong response
because other processes (e.g. topography, different land-ocean circulation...) overshadow
the regional impact of the biosphere there.

MVGC observational data coupled feedbacks

The results of the atmospheric and biospheric forcings (Fig. 1) are combined to determine
the total variance explained in the coupled biosphere-atmosphere system (Fig. 2 and
Supplementary Fig. 5). Hotspot regions for the precipitation @ SIF & precipitation feedback
(Fig. 2a) - which can explain up to 20-30% of the observed precipitation variance - are
concentrated in grasslands and savannas (transitional zones) such as monsoonal regions in
the Sahel, Eastern India and Northern Australia, as well as the African savanna, Madagascar
and the Brazilian savannas. There are other monsoonal regions that despite large shifts in
rainfall during the year are not hotspots either due to a lack of ET response to
precipitation34, or a lack of precipitation response to changes in ET35. An example of this is
the Central Great Plains in North America (a hotspot per previous modeling-based studies of
soil moisture-atmosphere interactions38), where soil moisture has been shown to have a
weak triggering effect on precipitation2%-37, Indeed, summertime precipitation in this area is
dominated by eastward propagating mesoscale convective systems mostly independent of
the land surface3s.

The PAR 2 SIF 2 PAR feedback (Fig. 2b) has hotspots (20-30% of explained variance) in
the humid Eastern United States, Southern Brazil, as well as in the Mediterranean basin in
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Europe. By contrast, in the tropical rainforest regions of Africa and South America there is
little response detected for the full feedback loops with either precipitation or PAR (Fig. 2
and Supplementary Fig. 5) suggesting that other factors (such as ecosystem
characteristics3?) dominate the variability of the biosphere there.

Although feedbacks between the biosphere and atmosphere are detected in almost all
regions, several ‘hotspot families’ stand out: 1) regions that are either semi-arid or
monsoonal for the precipitation feedback and 2) humid regions (the Eastern US) and the
Mediterranean for the PAR feedback. No regions exhibit both feedback pathways; one
always dominates the other when it is present.

MVGC ESM analysis

The distribution of feedbacks in the observational record is next used to assess Earth System
Models (ESMs) (Supplementary Table 1). The distributions of feedback strengths for model
and observational results (Fig. 3) summarize the differences between the biosphere-
atmosphere feedback detected by each CMIP5 model (Supplementary Figs 6, 7 and 8) and
the observational record. In the model analysis, GPP is used as a proxy for the biosphere in
lieu of SIF. Our results are normalized in terms of explained variance for each pixel so that
the proportionality factor of SIF and GPP does not impact the pixel-wise metric results. To
increase robustness, 50 years of data are used for the model analysis (1956—2005) rather
than the shorter period we are constrained by for the observational analysis*C.

The median of all ESMs fall below the first quartile of the observational data results for the
precipitation @ biosphere 2 precipitation feedback (Fig. 3a). Models significantly
underestimate the magnitude and the range of both the atmospheric and biospheric forcings
(except for CMCC-CESM) (Supplementary Fig. 6), although underestimation is more severe
in the case of the precipitation @ biosphere component. The observational PAR 2 biosphere
2 PAR feedback strength (Fig. 3b) also has a higher median value than that of the ESMs.
Both the precipitation and PAR atmospheric forcings are underestimated because of
photosynthesis misrepresentation in ESMs (Supplementary Fig. 6)*1. Despite some spatial
similarities between modeled feedbacks and observational results (Supplementary Figs 7 and
8), models systematically underestimate the impact of the biosphere on precipitation, and
noticeably miss the variance explained by observations in monsoonal Australia. On the other
hand, the modeled impact of the biosphere on PAR varies drastically between models and
can be either over- or under-estimated (Supplementary Fig. 6). These inter-model
discrepancies are likely due to the misrepresentation of convection in models, and the
challenges of correctly representing it over land regions*2:43, Interestingly, in general, ESM
errors in representing the atmospheric forcing on the biosphere are even more severe than
errors in representing the biospheric forcing on the atmosphere. This suggests that better
representations of photosynthesis and water stress sensitivities would have a larger impact
on improving the ESM representation of biosphere-atmosphere feedbacks, than improved
convection representation.

This study provides the first causal observational diagnostic of biosphere-atmosphere
feedbacks on subseasonal to interannual time scales. These feedbacks are strong in semi-arid
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and monsoonal regions, which are key in determining whether the yearly global terrestrial
biosphere acts as a net CO, source or sink’:16. As such biosphere-atmosphere feedbacks
regulate interannual hydrology and climate in these regions as well as the global carbon
cycle. Additionally, due to the high percentages of atmospheric variability explained by
vegetation processes, subseasonal and seasonal climate predictions can greatly benefit from
better vegetation characterization in ESMs. In turn this will improve subseasonal to seasonal
climate and hydrologic forecasts, which are crucial for optimizing management decisions
pertaining to food security, water supplies, and disaster management such as droughts and
heat waves.

Observational remote sensing data is used for SIF, precipitation, and PAR, while quasi-
observational reanalysis data is used for temperature. GOME-2, version 2.622 (overpass time
of 9:30am) is used for SIF, precipitation data is obtained from version 1.2 of GPCP23, PAR
from CERES?4, and surface air temperature (1000mb) data from ERA-Interim?° (see Data
availability). While a longer observational data record would allow further insight into
interannual variability, we are limited by the satellite data record availability.

There is a certain amount of uncertainty inherent to each product that is described in detail

in their data quality summaries. The SIF data is especially noisy (particularly in South
America where there are less frequent measurements due to clouds, specifically in the
rainforest, and noise from the South Atlantic Anomaly)?2. Thus, in addition to a standard
normalization (described below), SIF data is averaged with the 8 adjacent pixels surrounding
the pixel of interest to smooth the remaining noise. On rare pixels, we note that SIF appears
to cause an increase in both precipitation and PAR (Figs 1b and d) but this effect is attributed
to the use of nine-pixels spatially smoothing of the SIF signal.

The monthly SIF data is calculated from daily measurements (level 2) when the effective
cloud fraction is <30%. It should be noted that effective cloud fraction is not equivalent to
geometric cloud fraction but is instead based on a Lambertian model that considers cloud
reflectance and albedo®44546, |t has been demonstrated that in a typical pixel with a true
cloud fraction of 40% that over 80% of the SIF signal can still be retrieved for very thick
cloud optical thicknesses (up to 10)47. The effective cloud fraction is typically lower than the
geometric one.

While cloud filtering could result in a slight bias, it has been shown that altering the effective
cloud fraction threshold between 0 and 50 percent only minimally affects the spatial and
temporal patterns of SIF22. Therefore, we expect minimal bias due to the filtering at the
monthly resolution that we consider in our analysis. The one region where the cloud
coverage filtering may reduce G-causality detected is in the wet tropics where there is a
higher prevalence of clouds. It is possible that the PAR 2 SIF 2PAR feedbacks might be
underestimated in this region because of the cloud contamination.
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SIF-GPP relationship

This study uses SIF as a proxy for GPP. SIF is mechanistically linked to GPP%48, through
both light use efficiency and fAPARA4?, and has been shown to have a near-linear relationship
with GPP at both canopy and ecosystem scales!1:12:50.51.46.52 \\hile the hourly leaf-level
relationship between SIF and GPP has been estimated as curvilinear (SIF continues to
increase after the maximum rate of photosynthesis has been reached)!!, the relationship at
larger and longer time scales (e.g., monthly) becomes linear likely due to the effects of
averaging across a canopy of leaves representing varying light conditions!?.

The linearity between SIF and GPP has been observed across biomes using a variety of
datasets, including flux tower validation*652, As is shown in Supplementary Fig. 1, SIF
correlates strongly with monthly global GPP estimates from Fluxnet-MTE in regions outside
of the wet tropics. The SIF-GPP correlation is lower in the wet tropics as the machine
learning upscaling approach of the Fluxnet-MTE GPP product has the greatest uncertainty in
these regions, as there are few(er) eddy covariance towers there that are used for
training®3:54. Additionally, tropical forest GPP exhibits minimal seasonality®®, and thus the
lower correlation can be attributed to the fitting of noise (R2 by construction will be small).
It has nonetheless been shown that the minimal seasonality in SIF observed in the Amazon
correctly corresponds to the seasonality of carbon dioxide®® and MODIS near-infrared
reflectance related to photosynthesis®®. As a result, SIF has been used as a proxy for GPP
interannual variabilityl1.

The linear scaling factor between SIF and GPP varies spatially. Yet, when we normalize the
data prior to running the G-Causality, the differing slope values should not impact results
since we look at each pixel (location/ecosystem) separately.

Conditional MVGC

We base our analysis on Multivariate Granger causality, using a MVGC MATLAB
toolbox?1, which allows for time and frequency domain MVGC analysis of time series data.
The method fits multivariate VAR models to time series. Conditional MVGC compares VAR
models with and without (potentially causal) variables. For example, if the addition of past
values of precipitation improves the quality of the VAR model prediction for SIF (that uses
the autoregressive histories of other variables: SIF, PAR and temperature), then precipitation
is considered to have a G-causal influence®’. If there is no significant information gained
(based on an F-test with a null-hypothesis of no G-causality), then the variables are
considered not to have a causal link.

Prior to applying the MVGC technique, the data obtained are aggregated to 1-degree by 1-
degree monthly data. Monthly data are used to reduce random noise in the original SIF daily
data and to achieve consistency with the monthly-aggregated resolution of Coupled Model
Intercomparison Project Phase 5 (CMIP5) model data. For each dataset, the long-term mean
value is subtracted from each pixel and it is normalized by its long-term standard deviation.
After normalization, SIF data is averaged with the 8 adjacent pixels surrounding the pixel of
interest to smooth the remaining noise inherent in the SIF data from GOME-2. Single
missing monthly values (approximately 4% of the pixels per month) are interpolated using
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temporal splines. Prior to performing the normalization and running the MVGC analysis,
partial correlations are calculated between non-normalized SIF and atmospheric variables,
and if the absolute correlation falls below a value of 0.1, the atmospheric variable is
considered non-significant for that pixel and is not included in the analysis. Although results
of the analysis are not shown for surface air temperature (temperature at 2000mb), it is used
in the analysis, to account for its influence when determining the feedbacks involving
precipitation, PAR and SIF. For example, by including temperature in the analysis we
guarantee that the G-causality between PAR and SIF is not instead a reflection of the effects
of temperature (or related to vapor pressure deficit), which can be correlated with PAR. For
all analyses, we use a conservative p-value calculation given the high auto-correlation in the
variables of interest, which reduces the degrees of freedom in the number of samples.

Note that we intentionally do not remove the seasonal cycle in pre-processing. Small
stochastic amplitude and phase modulations of the seasonality (e.g. large monthly cloud
cover or colder than usual temperatures in a particular year) induce non-additive widening of
the amplitude and phase spectra so that subtracting the climatology artificially reduces
specific frequencies and phases, potentially removing part of the causal signal. This risk is
amplified by the relatively short remote sensing record used, which could lead to an
imperfect definition of the climatological seasonal cycle. Indeed, where the seasonal signal
amplitude and phase have a causal effect we want to capture this (such as the rainfall impact
on vegetation green-up and SIF in monsoonal regions). Because the VAR models can
capture seasonal periodicity, the MVVGC analysis is not affected by the risk of false
attribution of causality due to simple lagged seasonality, as is further demonstrates in the
examples below.

After normalization of the data and checking that partial correlations between SIF and the
other variables fall above 0.1, the Akaike information criterion is calculated and defines the
best model order up to the maximum model order, specified as 6 months
(‘tsdata_to_infocrit.m’ function in the MVGC MATLAB toolbox). The best actual model
order used displays the memory of the biosphere-atmosphere interactions (Supplementary
Fig. 9): model orders of 1 correspond to regions where memory in the system is short and
causal influence between the atmosphere and biosphere is weak. Using the calculated model
order, an ordinary least-square regression is used to determine the multivariate-VAR model
coefficients (‘tsdata_to_var.m’). The autocovariance function is created
(“var_to_autocov.m’), and from this we calculate the time domain pair-wise conditional
causalities (‘autocov_to_pwcgc.m’). To test time-domain significance, we calculate the p-
values, which are compared to our chosen p-value of less than 0.1 (*‘mvgc_pval.m’). An F-
test with a null-hypothesis of no G-causality is used and only significant pixels are displayed
in figures. To perform the analysis in the frequency domain and identify subseasonal (<3
months), seasonal (3 to 12 months) and interannual (>1 year) feedbacks, we calculate the
spectral-conditional G-causality (‘autocov_to_spwcgc.m’) (Supplementary Fig. 3).

We check that the G-causality in the frequency domain integrates to the time domain by
integrating the frequency results (‘smvgc_to_mvgc.m’) and then subtracting the output from
the time domain result. Checks are performed throughout the process so that the analysis is
automatically exited should there be a failed calculation.
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A sample first order VAR model to explain the variability of SIF is displayed in equation 1
with A, P, Tand sig representing the VAR coefficient matrix, precipitation, temperature, and
significance (1 for significant, O for insignificant at p< 0.1) accordingly.

SIF(t) = AspySIF(_ 1y + Aponsipy P 1)518p onsiky + Awear onsiry PAR — 1y

. ; (1
SI8pAR on SIF) T A(T onSIF) Lt = 1ySE(T on s1F) T €

With the addition of the auto-regressive histories of each variable, the VAR model captures
the original SIF data more accurately. We acknowledge that other factors not included in this
analysis can affect SIF variability (such as naturally and anthropogenically caused
disturbances), and is one of the reasons (along with sensor noise) that we cannot predict
100% of the variable variance, even with our full VAR model.

Synthetic Bootstrap Tests

To demonstrate the effectiveness of this method, we perform several additional tests of the
conditional MVGC on synthetic data where causal links can be specified. In the first three
test scenarios PAR and precipitation (P) time series are assumed to be sinusoidal with
amplitude modulation — AM — and frequency modulation — FM —, as well as additive noise
(equations 2 and 3). We define two similar test cases except that one has a causal link
(equation 4) while the other does not (non-causal) (equation 5). We assume that the noise is
normally distributed (and thus have a white noise/flat spectrum in the frequency domain). To
test the frequency response, PAR is assumed to have a yearly frequency w = 27/(12 months)
(equation 2) while precipitation is assumed to have twice-yearly frequency 2w (i.e. two
wet/dry seasons per year) (equation 3).

PAR(f) = 100(1 + 0.25A" AR)sin((l + %FIPAR)a)t - 7r/2) +25¢PAR @
Py L .p P
P(1) = 100(1 +0.254! )sm((l + o F, )Zwt - 77:/4) +25¢", @

with APAR AR (PAR AP P (P i.d. normally distributed with unit variance M0,1).

In the causal case, SIF is defined as a lagged version of precipitation and radiation (with £in
months) (equation 4):

SIF = 0.2(1 + 0.25A5F)P(1 — 2) + 0.8(1 + 0.25BF)PAR(1 — 1) + 25¢51F . o)

with A5 BAIE e5'F iid. normally distributed with unit variance M0,1). We use 50 years
of synthetic data and one realization for the test.

The conditional G-causality finds that only radiation and precipitation are causing SIF and
not the converse (Supplementary Fig. 10). In addition, the magnitude of radiation on SIF is
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four times stronger than the one of precipitation on SIF, as expected based on the time series
generated (equation 4).

To emphasize that these results are not spurious, we perform a second, similar test but with a
non-causal time series (equation 5). This non-casual SIF time series is not induced by PAR
nor precipitation. It is statistically similar to the causal scenario, composed of lagged
sinusoids with similar frequencies to PAR and precipitation, but without a causal
mechanism. For the precipitation and radiation time series we allow for both amplitude and
frequency modulations so that both amplitude and phase are stochastic (similar to radiation
and precipitation monthly time series).

SIF = 20(1 +0.25a5" )sin((l + %bf’F )Zwt —x/2— (2/12)27[) +80(1 +0.255F

)sin((l + %df’F )a)t —nlh— (1/12)272) +25¢65F

®)

The conditional MVGC analysis of this non-causal time series shows no significant G-
causality, as expected (Supplementary Fig. 10).

In the third test we bootstrap every month of equations 2—4 across years, clearly destroying
the causality in the time series (as the same month from another year is used) while
preserving the climatology (and seasonal cycle). As seen in Supplementary Figure 10, the
test again finds no causality in the time series, further confirming the quality of the method
and its applicability for our type of time series.

In a fourth and final synthetic data analysis, we test whether we can detect a causal full-
feedback loop. We repeat the original causaltest (equation 4), switching the original
equation for PAR (equation 2) for one that also includes SIF as a driver (equation 6).

PAR = PAR + 0.4 SIF var (PAR)/ var (SIF). (6)

As expected, in addition to the causality detected previously in the causaltest of
precipitation and PAR on SIF, we also detect significant causality of SIF on PAR
(Supplementary Fig. 10).

Observational Bootstrap Test

To further test the assumption that the observed causation of the biosphere on the
atmosphere is not an artifact of the seasonal cycle, we perform a bootstrap analysis with
100-realizations at the global scale. Observational data is sampled by randomly swapping
the same months across years for each variable: that is the seasonality is preserved while the
causal link from month to month is destroyed. As expected, very few pixels showed any G-
causality (Supplementary Fig. 2): only 6.2% of the SIF 2 precipitation results, and 6.9% of
the SIF 2 PAR results were found to be significant at the 95% confidence level (had more
than 5/100 realizations per pixel with significant results based on an F-distribution with a p-
value < 0.1). The resulting averaged pair-wise conditional G-causality shows almost no
signal, with a peak of less than 0.05 compared to 0.3 for the original dataset (Supplementary
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Fig. 2). In addition, the resulting geographical patterns reflect mostly random noise. This
further emphasizes the physical nature of our assessed causation between the biosphere and
the atmosphere.

Vector Autoregressive Models

The VAR models obtained from the G-causality analysis are used to quantify the fraction of
variance in the biosphere explained by the atmosphere and vice versa. We tested for
normality and homoscedasticity of the residuals during the VAR fits and excluded pixels that
did not meet these criteria (3—6% of pixels depending on the feedback). Using the VAR
coefficients generated by the analysis (to account for cross variations), VAR models are
created for each atmospheric variable with and without the inclusion of SIF. VAR models are
also created for SIF with and without the inclusion of each atmospheric variable. The
fractions of observed SIF variance explained by each atmospheric component is computed
(equation 7):

var (S]FAR fit withX) — var (SIFAR fit without X)

Sx—siF= var (SIF) @
as well as the fraction of each atmospheric variable observed variance explained by SIF
(equation 8) (Fig. 1):

_var (Y picwinsi®) — Var (Y g i without SIF) ®
fSIF—»Y_ var (Y)
These are combined to obtain the full feedback fractions (equation 9) (Fig. 2 and
Supplementary Fig. 5):
¥ _var (SIF g i wien ) = Var (STF 4 fit without X)
X—>SI—-Y ™ var (SIF) )
var (Y g icwith sIR) ~ V& (Y 4R fit without STF)
X
var (Y)

The feedback is defined as positive or negative by taking the VAR model first order
coefficients, which is then compared with the VAR model coefficient with the greatest
absolute magnitude as further verification. The leading order coefficient of the AR model
could be used in lieu of the first order one but given the rapid decay of the autocorrelation
function and the reduced VAR model order (typically less than 2, Supplementary Fig. 9) we
use the sign of the first order coefficient. The two estimates of the sign differ in limited
regions.

CMIP5 Model Simulations

For the Earth System models from the CMIP5 collection (Supplementary Table 1), the same
analysis used for the observational data is applied. Only those models that included GPP
data are used. The time period of 1956-2005 is used to obtain statistics that are robust across
interannual variability®?. The true feedback strengths have likely not changed significantly
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from this earlier, longer time period and the period used for the observational analysis, but
we acknowledge that land-use and land-cover changes can affect the feedback metrics (but
are also model dependent). One realization of the historical run was used for each model®®.

VAR models are created based on coefficients calculated in the MVVGC analysis for each
ESM, and the fraction of variance explained in biosphere-atmosphere coupling from each
variable is calculated using equations 5-7.

Code availability

The code used as the basis for the study can be accessed from http://www.sussex.ac.uk/
sackler/mvgc/.

Data availability
All data supporting the findings of this study are freely available from the following
locations:

. GOME-2 SIF: https://avdc.gsfc.nasa.gov/pub/data/satellite/MetOp/GOME_F/

. GPCP precipitation: http://iridl.Ideo.columbia.edu/
SOURCES/.NASA/.GPCP/.V1DD/.V1p2/

. CERES PAR: https://ceres-tool.larc.nasa.gov/ord-tool/jsp/SYN1degSelection.jsp

. CERES cloud coverage: https://ceres-tool.larc.nasa.gov/ord-tool/jsp/ISCCP-
D2Selection.jsp

. ERA-Interim temperature and boundary layer height: http://apps.ecmwf.int/
datasets/data/interim-full-mnth/levtype=sfc/

. Fluxnet-MTE surface flux and GPP data: https://www.bgc-jena.mpg.de/geodb/
projects/Data.php

. CMIP5 model data: https://pcmdi.lInl.gov/

Additional intermediate datasets produced as part of the study can be made available upon
request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Atmospheric forcings and biospheric forcings
X 2 Y represents the fraction of variance of Y explained by X,

(atmosphere 2 biosphere) (a,c), and biospheric forcing (biosph

for the atmospheric forcing
ere @ atmosphere) (b,d). The

signs of the fractions in the top row show whether the atmospheric variable increases
(positive) or decreases (negative) the biosphere flux, while in the bottom row they show
whether the biosphere increases or decreases the atmospheric response. Oceans and regions
where SIF partial correlations are less than 0.1 are shown in white. Pixels without

significance are shown in gray (p-value<0.1).
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Fig. 2. Hotspots of terrestrial biosphere-atmosphere feedbacks
The fraction of biosphere-atmosphere coupling variance explained for the full feedback

loop: precipitation @ SIF @ precipitation (a) and PAR 2 SIF # PAR (b). The sign of the
fraction shows whether the feedback is positive or negative. Oceans and regions where SIF
partial correlations are less than 0.1 are shown in white. Pixels without significance are
shown in gray (p-value<0.1).

Nat Geosci. Author manuscript; available in PMC 2019 November 08.



1duosnue Joyiny VSN 1duosnuey Joyiny YSYN

1duosnue Joyiny VSN

Green et al.

Page 18

a Precip — Biosphere — Precip b

°
»
b3
°
N
b
|
|

3
72, ([}
Sy (1 !
% (-
R
e
% D3 i
% fC}---
07 1
=1=4
o (T4
% [+
% I+
% -1
BE=
5 D
=
T
= ——
e
» O+
% (0T
=3

Fraction Explained
o
=

kY 3 S © S S R e & &
& E N & F S > &P S RONPLAIN ZPOICE IR
S A K ETF SN TFESS S A K ETF ST EES
¢ & & C KOSy 3 & & ¢ F & © Q7 O S 35 & &
& & & & & AN o & & & & AU

Fig. 3. Comparison of observational and Earth System Model results
Boxplots showing the distributions of significant observational and model results for the

fractions of variance explained for the feedbacks of precipitation 2 biosphere 2
precipitation (a) and PAR 2 biosphere 2 PAR (b). Boxes are defined by the upper quartile,
median and lower quartile of the data while whiskers are defined by the outliers. Only
significant pixels are represented (p-value<0.1).
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