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Abstract

This paper evaluates the retrieval of soil moisture in the top 5-cm layer at 3-km spatial resolution 

using L-band dual-copolarized Soil Moisture Active–Passive (SMAP) synthetic aperture radar 

(SAR) data that mapped the globe every three days from mid-April to early July, 2015. Surface 

soil moisture retrievals using radar observations have been challenging in the past due to 

complicating factors of surface roughness and vegetation scattering. Here, physically based 

forward models of radar scattering for individual vegetation types are inverted using a time-series 

approach to retrieve soil moisture while correcting for the effects of static roughness and dynamic 

vegetation. Compared with the past studies in homogeneous field scales, this paper performs a 

stringent test with the satellite data in the presence of terrain slope, subpixel heterogeneity, and 

vegetation growth. The retrieval process also addresses any deficiencies in the forward model by 

removing any time-averaged bias between model and observations and by adjusting the strength of 

vegetation contributions. The retrievals are assessed at 14 core validation sites representing a wide 

range of global soil and vegetation conditions over grass, pasture, shrub, woody savanna, corn, 

wheat, and soybean fields. The predictions of the forward models used agree with SMAP 

measurements to within 0.5 dB unbiased-root-mean-square error (ubRMSE) and −0.05 dB (bias) 

for both copolarizations. Soil moisture retrievals have an accuracy of 0.052 m3/m3 ubRMSE, 

−0.015 m3/m3 bias, and a correlation of 0.50, compared to in situ measurements, thus meeting the 

accuracy target of 0.06 m3/m3 ubRMSE. The successful retrieval demonstrates the feasibility of a 

physically based time series retrieval with L-band SAR data for characterizing soil moisture over 

diverse conditions of soil moisture, surface roughness, and vegetation.
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I. Introduction

Surface soil moisture retrievals using radar observations have been challenging in the past 

due to the complicating factors of surface roughness and vegetation. Vegetation changes may 

alter measured normalized backscattering coefficients (σ0) by 5–10 dB (soybean and corn, 

see [1, Fig. 5]), a variability larger than the dynamic range of σ0 associated with soil 

moisture changes even at the L-band. In general, surface roughness (in terms of rms height) 

has a greater influence on σ0 as well than that of soil moisture (see [2, Figs. 5 and 6], [3, Fig. 

4]). The correlation length of surface roughness also should be accounted for, although its 

contribution to σ° is less significant than the rms height and vegetation effects. Despite these 

challenges, the radar-based retrievals are important mainly because of the high spatial 

resolution offered by synthetic aperture radars (SARs).

Past studies of L or C-band soil moisture retrieval over vegetated surfaces have treated 

vegetation as temporally static [4], [5] or modeled its effects by semiempirical functions [6]–

[9]. Surface roughness has been estimated when the surface had no vegetation [8] and was 

treated as invariant in time [10] or its effects were parameterized by a semiempirical model 

[9], [11]. Vegetation, rms height, and correlation lengths are implicitly assumed as time 

invariant in the change detection approach [12], [13], or are accounted for by machine 

learning methods [14]–[16] or Bayesian retrieval [10]. The fidelity of machine learning 

methods is determined by the population of training data sets. Empirical retrieval models 

[12], [17] usually make the implicit assumption that σ° in decibels is a linear function of soil 

moisture: this assumption is expected to result in retrieval errors at lower soil moisture 

values since the relationship becomes nonlinear for drier soils [3], [4].

In contrast, physical models for vegetation scattering and absorption can provide a 

systematic approach to predict σ0 and its variations with vegetation, roughness, and soil 

moisture. Such models have recently been advanced to incorporate full-wave simulation of 

the Maxwell’s equations for scattering from bare surfaces [3], [18]. For vegetation 

scattering, the radiative transfer [19] or discrete scattering using the distorted Born 

approximation (DBA) [20] approaches provide analytical solutions based on physically 

based approximations that are valid at L-band when the optical thickness is small except for 

mature corn or trees. These improved forward models are therefore expected to provide 

better predictions of physical scattering effects compared to existing semiempirical methods. 

As an example, early and late stages of soybean growth presented different σ0 values even 

when the soil moisture values were the same (see [1, Fig. 5]). In this case, a linear retrieval 

model would fail. As a solution, the discrete scattering model [21] was able to simulate the 

observed σ0 and to deliver accurate retrieval of soil moisture. Moreover, the radiative 

transfer method allowed multiple scattering by corn stalks and sufficiently increased VV for 

mature corn plants to match observations [22], [23], allowing reliable retrieval of soil 

moisture over the entire corn growth [22]. Backscattering from shrubland and pasture classes 
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have also been successfully modeled with discrete scattering models, which ensued 

successful soil moisture retrieval [24], [25]. The agreement between model and observation 

in these studies was within 1–2 dB RMSE.

These physical models were inverted to retrieve soil moisture by allowing systematic 

correction of the effects by vegetation, rms height, and correlation length as follows.

1. The inversion of the model enables successful correction of the vegetation effect, 

to the extent that the vegetation representation in the model is reliable. Iterative 

inversion of a physical model was performed for forest, corn, and soybean fields 

using airborne and ground-based snapshot observations [26], [27]. However, with 

spaceborne σ0 observations the speckle noise can be large (0.5–0.7 dB or 13%–

17% of the signal, in the case of Soil Moisture Active Passive mission (SMAP) 

[28]).

2. Large speckle noise may result in a large retrieval error (see [3, Fig. 5]), in the 

presence of ambiguity when different combinations of surface roughness and soil 

moisture produce the same σ0 (leading to ambiguity in retrieval of soil moisture). 

A time-series retrieval using two copol σ0 measurements resolves the ambiguity 

[3], adopting a reasonable provision that the surface roughness is time invariant 

within a short window of time because the timescale of roughness variation is 

generally longer than that of soil moisture [10].

3. With the dual copolarized approach [3], the soil moisture retrieval becomes 

insensitive to the correlation length of surface roughness except for very rough 

surfaces, because cl/s adds a quasi-bias that does not alter where the minimum of 

the cost function occurs (the location of the minimum is the retrieved soil 

moisture). As a result, an accurate retrieval of soil moisture was feasible without 

correlation length information.

These sets of inversion approaches were tested successfully using ground and airborne 

observations of σ0 with the resulting accuracies better than 0.06 m3/m3 for bare surface [3], 

pasture [25], soybean [21], and corn [22]. Since each vegetation type has its own distinct 

scattering mechanisms, forward models and retrieval have been developed for 12 classes of 

the global landcover, encompassing a wide range of soil and vegetation conditions to support 

the global retrieval by SMAP [25].

The primary new investigations of this paper are as follows. The forward models and the 

retrieval methods are applied to the SMAP data. Soil moisture retrievals of the order of 

SMAP’s spatial and temporal resolution (3 km and three days) have not been achieved 

previously for two primary reasons. First, the tradeoff of supporting high-resolution SAR 

observations (i.e., 100 m or better) is limited by the coverage in space and time provided. 

Only a climatology of soil moisture was feasible, for example, when 1-km resolution data 

were used [29]. The second reason is the lack of reliable algorithms to retrieve soil moisture 

for diverse vegetation and soil conditions globally. Compared with the previous test of the 

retrieval algorithm using the airborne field campaign data, the SMAP’s global 3-km scale 

data introduce additional challenges to soil moisture retrieval including periodic ground 

structure of croplands, rapid temporal changes in vegetation water content (VWC), terrain 
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slope, and subpixel heterogeneity. This paper examines how the retrieval handles these 

challenges. The accuracy target of the retrieval set by the SMAP project was 0.06 m3/m3, 

which is a relaxation from the goal for SMAP’s radiometer-based retrieval (0.04 m3/m3). 

The accuracy goal was relaxed considering the short heritage of the global radar-based 

retrieval. Note that the products reported are available only for the period from April to July 

2015 due to the failure of SMAP’s L-band radar in early July 2015.

This paper is organized as follows. Section II describes SMAP data, ancillary input data to 

the retrieval, and in situ soil moisture data. Section III summarizes the forward modeling 

approach and the retrieval algorithm. The assessment of the forward model fidelity is 

presented in Section IV. The evaluation of the retrievals is discussed in Section V.

II. Data

The 1.26 GHz L-band SMAP satellite provided multipolarized (HH/VV/HV) σ° at 1-km 

resolution with 2–3 day repeat intervals from April 24, 2015 to July 7, 2015 [28]. SMAP’s 

conical scan provides a 1000-km swath that resulted in a global revisit every 8 days at the 

equator and 2–3 days poleward. However, the 300-km wide low-spatial resolution gap near 

the nadir degrades the revisit with typically 8 days to map the globe without a gap. The 

SMAP radar measured σ0 with a single-look spatial resolution of 250 m in range and 400 m 

in azimuth after SAR processing. Following spatial multilooking, the σ° values were 

produced at a 1-km spatial resolution. Prelaunch simulation studies of soil moisture retrieval 

during the mission design indicated that the total error (Kp) in σ° measurement should be 

~0.7 dB or better to achieve the accuracy target of 0.06 m3/m3 on a global scale [25]. The 

total error includes speckle, relative calibration, and residuals after correcting for Radio-

Frequency Interference contamination. To achieve 0.7 dB Kp, the 1-km σ0 was multilooked 

spatially to 3 km, followed by averaging fore-and-aft scans (the temporal separation between 

fore-and-aft looks less than 200 s is therefore geophysically negligible). All data having 

favorable conditions for soil moisture retrieval (no snow cover, no frozen ground, no 

permanent water, no wetland, no urban, no snow, and noise-subtracted σ0 value in natural 

unit greater than 0) were processed. Retrievals over regions with dense vegetation (typically 

forests) and in the nadir gap are flagged in the retrieval process to indicate the susceptibility 

of these retrievals to large errors. The results reported in this paper used version T12400 of 

the SMAP radar data (nearly identical to the validated release dated April 30, 2016).

The radiometric calibration of 1-km σ0 was accomplished by comparing it with Aquarius 

scatterometer observations and with SMAP real-aperture σ0 over fairly homogeneous 

Amazon scenes over a 1° × 1° area. These vicarious targets were used because SMAP’s 

single-look pixel is too large to calibrate with a corner reflector. The Aquarius σ0 was 

calibrated over the Amazon to match the L-band spaceborne PALSAR data within a relative 

difference of 0.1 dB (copol) and 0.2 dB (crosspol) in terms of spatiotemporal mean of 

differences [30] (as the PALSAR pixels are small enough to calibrate with corner reflectors). 

Compared with the SMAP real-aperture σ0, additional procedures for calibrating SMAP 

SAR σ° included illumination area calculation and nadir handling, which prompts the need 

for intercomparison between the two SMAP σ0 values. Over the Amazon, SMAP SAR σ° 

are within 0.2 dB of Aquarius and SMAP real-aperture observations [31] (spatiotemporal 
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mean of differences). The geometric accuracy of the SMAP SAR σ0 was verified with 

respect to the coastline database and the locations of corner reflectors, and the accuracy 

meets the mission requirements (1 km or better in 3-sigma deviation).

To facilitate rigorous validation of soil moisture retrieval, well-characterized sites with 

accurately calibrated in situ measurements are used; these sites are designated as “Core 

Validation Sites” (CVS). The analyses with the CVS meet the criteria established by the 

Committee on Earth Observing Satellites Stage 1 validation [32]. Other approaches for 

performing the validation incorporate sparsely populated ground observations with typically 

one station within an SMAP 3-km pixel, numerical model products, and different satellite 

products. However, these validation sources were deemed secondary, considering that their 

spatial representativeness of the 3-km soil moisture may not be strong or the fidelity as a 

reference is not sufficiently high.

A candidate validation site becomes a CVS only if the following six criteria are met:

1. a minimum of two in situ sensors within an SMAP’s 3-km pixel;

2. a reasonable geographical distribution of measurements within the pixel;

3. some gravimetric calibration of the sensors within a site;

4. quality assessment of the measured soil moisture time series;

5. determination of a spatial scaling function of the sensor measurements up to 3 

km;

6. maturity as a large-scale reference.

Most of the in situ sensors are probes converting conductivity into soil moisture, and require 

a calibration to a gravimetric measurement of soil moisture. A scaling function (currently an 

equal-weight arithmetic average) supports a mapping of observations at a few locations to a 

3-km soil moisture estimate. The criterion of requiring a minimum two sensors was based on 

a statistical analysis to achieve 0.06 m3/m3 when within-pixel deviation is assumed to be 

0.05 m3/m3 [33]. Henceforth 14 sites around the globe satisfied the criteria and were 

selected to ensure the geographic distribution and diversity of conditions of CVS (Fig. 1 and 

Table I). Full details of the CVS selection are available in [34] and [35].

III. Forward Model (Datacube) and Time-Series Retrieval Algorithm

A reliable forward model is an integral component of a robust retrieval algorithm (the other 

components include well-calibrated input data, accurate ancillary data, and an effective 

retrieval algorithm). The forward models used were developed based on physical models of 

radar scattering. The physical simulation incorporates a full-wave numerical calculation of 

bare surface scattering [2]. For vegetated surfaces, the scattering theory of the DBA is 

applied to model the single-scattering radar backscattering from discrete scatterers for a 

vegetation-covered soil layer, composed of three elements (surface, volume, and double-

bounce) [21], [24]. For thick vegetation such as corn, a radiative transfer theory allows the 

modeling of multiple scattering [22]. These models were trained to agree with airborne or 
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ground observations with residual copol RMSE of ~1.5 dB (bare soil [2]), 1.8 dB (grass 

[25]), ~ 1 dB (soybean [21]), ~1.7 dB (corn [22]), and 2.7 dB (woody savanna [24]).

Since the SMAP radar has three independent measurement channels (HH, VV, HV), at most 

it is possible to retrieve three independent parameters. Thus, the forward model needs to be 

simplified to require less than three independent input parameters. Being ideally the most 

dominant effects in characterizing L-band backscattering from isotropic flat vegetated 

surfaces, these are the dielectric constant of soil, soil surface roughness rms height, and 

VWC. The use of VWC to represent vegetation in radar scattering model has been common 

in semiempirical models such as water cloud model [10]. This simplification clearly results 

in some errors in soil moisture retrieval, especially in heavily vegetated areas such as forests, 

since a single vegetation parameter is insufficient to capture all vegetation effects. In 

consideration of this fact, the SMAP’s radar-based retrieval focused primarily on the areas 

with VWC of 5 kg/m2 or less. Allometric relationships between VWC and a set of 

vegetation parameters were derived using field samples for each of the 12 global vegetation 

classes in order to reduce the number of unknowns (for example, [26] for forest, [25] for 

grass, [21] for soybean, and [22] for corn). The forward models are used in the form of 

lookup tables, so that the retrieval becomes a fast search of the lookup table rather than a 

processing-intensive computation using the scattering models. The lookup table is referred 

to as a “datacube” because it has three axes for independent input parameters [36].

The baseline algorithm for SMAP’s radar-only retrieval inverts the datacube lookup table 

representation [25] (1). Soil surface roughness is retrieved simultaneously with soil moisture 

and specified as being constant in time to help resolve retrieval ambiguities (see [3, Figs. 3 

and 5]), while the VWC is obtained from an ancillary source for each time-series point. 

These concepts were implemented using time-series dual-copol observation inputs, with the 

search of the lookup table for a soil moisture solution designed to minimize the cost function 

C between computed and observed σ°

C(s, εr1, εr2, …, εrN)
= w1, HH σHH, 1

0 − σHH, fwd
0 (s, εr1, f VMC1) + c 2

+ w1, VV σVV , 1
0 − σVV , fwd

0 (s, εr1, f VMC1) + c 2

+ w2, HH σHH, 2
0 − σHH, fwd

0 (s, εr2, f VMC2) + c 2

+ w2, VV σVV , 2
0 − σVV , fwd

0 (s, εr2, f VMC2) + c 2

+ ⋯ + wN, HH σHH, N
0 − σHH, fwd

0 (s, εrN, f VMCN) + c 2

+ wN, VV σVV , N
0 − σVV , fwd

0 (s, εrN, f VMCN) + c 2

(1)

where the overbar denotes parameters that are retrieved. Numeric subscripts, 1, 2, …, N, are 

time indexes. Radar backscattering coefficients from observations and from the forward 

model are shown by σ0 and σfwd
0  (both in dB), respectively. s is the bare surface roughness, ε 

is the soil dielectric constant, w is the weight (uniform between channels and time instances 

because the error characteristics of σ0 are uniform across the channels; see [3, Appendix]). f 
is a retrieved factor for VWC adjustment, ranging from 0 to 2. c is a correction of any bias 
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between measurement and model (physical sources of the bias in the forward model include 

missing physics such as the effect of topography, and mismatch of the number of discrete 

scatterers between nature and model). A dielectric model presented in [37] converts the 

estimated dielectric constants into soil moisture. To avoid an ill-posed retrieval, the number 

of unknowns should be less than the number of independent observations. The number of 

unknowns is N + 3, where N is the number of time-series instances and 3 corresponds to 

surface roughness, vegetation scaling factor, and bias. During the time period of N SMAP 

measurements, there are 2N copol observations (Table II), while the number of independent 

data could be 1.7N as estimated using the Aquarius radar data [38]. A minimum of N is 

deduced as 4.2 in order to facilitate a well-conditioned outcome. At least 16 temporal 

instances are available from SMAP data and are used in the retrieval. The surface roughness 

rms height is assumed to be constant during the time series; this assumption appears 

reasonable for regions without management activity and erosion. Management activity is 

rare in natural lands. Erosion becomes weak with vegetation canopy presence. The 

assumption would contribute to retrieval errors in regions with significant changes in surface 

roughness (e.g., in croplands) over the course of the time series. Directional roughness rms 

height was characterized for croplands at the field scale (e.g., [39]). At the 3-km scale, 

however, the directionality is expected to average out, and is not considered in this study.

The retrieval is implemented as detailed in the SMAP Algorithm Theoretical Basis 

Document (ATBD) [39] and its flowchart is shown in Fig. 2. Time-series records of HH and 

VV are prepared and used as input to the retrieval. For each CVS site, a dominant type of 

vegetation is identified by referring to the landcover fraction derived with landcover 

databases (annual for U.S. and Canadian crops and climatology otherwise; see the ATBD for 

the complete list of landcover and crop-cover databases) and a local survey provided by 

CVS hosts (Table I). Accordingly, the forward models (datacubes) are selected for the CVS 

and are inverted in the retrieval. At a given set of candidate f and c, the optimizer searches ε 
and s; the search repeats for every candidate of f and c, and find the set of f, c, ε and s that 

gives minimum cost; the set becomes a final retrieval output. To create a global map of 

retrievals, the dielectric constant estimates at individual pixels are assembled. Finally, these 

are converted into soil moisture using the dielectric model [37].

Within St. Josephs site, corn occupied a smaller area than soybeans, but the corn σ0 can be 

four times (6 dB) larger than the soybean σ0 (see [1, Fig. 5]). The polarimetric signature also 

resembles that of the corn σ0 (see Section V), so that corn is selected to represent the St. 

Joseph’s site. The dominant landcover of the Kenaston site is wheat and lentils. In the 

absence of a lentils datacube, a wheat datacube is chosen because they both have a dominant 

vertical stem. Lentils have more leaves but L-band radar backscatter is relatively insensitive 

to thin leaves. For Valencia, the dominant landcover is vineyard, yet a vineyard datacube is 

not available. Alternatively, a corn datacube was used after noting that the observed 

polarimetric signature from the site shows an HH larger than VV (see Section V), which 

could occur when strong double-bounce is generated by the vertical trunks of grapevines. 

The simple and generally applicable rule based on the polarimetric property was effective in 

revising the cropcover classification for the crop CVS sites.
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IV. Forward Model Evaluation

The forward models were trained using the measurements over land surfaces that do not 

have topography, subpixel heterogeneity in vegetation, azimuth anisotropy, and periodic row 

structure of crop fields. In contrast, these features of land surfaces are present within 3-km 

SMAP pixels on the global terrain. The first task of this section is to quantify the differences 

between the forward models and the SMAP observations of σ0 in the presence of these 

features. The second task is to demonstrate how the differences between the model and data 

are minimized through the optimization of (1) during the soil moisture retrieval. The 

physically based forward model requires three input parameters to predict σ0: soil moisture, 

surface roughness, and VWC. Ground truth information on these parameters at the CVS is 

currently available only for soil moisture. Ancillary VWC information is derived from a 

climatological VWC model. A first evaluation of the forward model is performed with the 

least number of optimized parameters

σfwd
0 = F(mυ, in situ, s, VWCclim) (2)

where F denotes the forward model, mυ,in situ is in situ soil moisture, and VWCclim is the 

VWC climatology. Characterizations of surface roughness over a 3-km area are also not 

available from the CVS, so that retrieved roughness is used (s̄). After the optimization the 

forward model σ° may be written as

σfwd
0 = F(mυ, s, f × VWCclim, c) (3)

where mυ is the retrieved soil moisture, f̄ is the retrieved scaling factor, and c̄ is the retrieved 

correction of bias in σ0.

Before optimization, the discrepancy between the SMAP observation and the forward model 

prediction is somewhat large. The standard deviation [equals the unbiased root-mean-

squared error (ubRMSE)] of the difference is 1.2 dB for both the polarizations when 

averaged over the 14 CVS, with the averaged bias smaller than 0.5 dB [Fig. 3(a)]. Some of 

the large bias are analyzed below. The differences are within the range of the previous 

results. When the model σ0 was compared with the 80-km resolution spaceborne Aquarius 

observations (see [25, Fig. 8]) over homogeneous landcover and small terrain slope, they 

agreed with a mean difference of 2 dB over vegetated nonforest areas globally. The standard 

deviation of the difference between simulation and observation is about 2.5 dB (noncrop 

fields) and 4 dB (cropland and bare soil). This result suggests that the current evaluation is 

within expectation, since the spatial characteristics of σ0 is likely to be scalable over 

homogeneous flat natural terrains.

These σ0 differences before the optimization are significantly reduced as the bias, VWC, and 

soil moisture are optimized during the retrieval [Fig. 3(b)–(d)]. Eventually, the average of 

the difference over the 14 CVS are 0.5 dB (ubRMSE) and within −0.05 dB (bias) for both 

the polarizations [Fig. 3(d)]. The following error definitions are used [41]:
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(ubRMSE)2 = (Δ(t) − Δ)2

N

bias = Δ = Δ(t)
N , (RMSE)2 = (Δ(t))2

N

(4)

for the unbiased rms error, bias, and rms error, respectively, and where and N is number of 

time series inputs. For soil moisture, ubRMSE is more relevant than RMSE when retrieved 

soil moisture is assimilated into land surface or coupled models because a bias is removed 

before assimilation. An overview of the interpretation of the comparison results is presented 

below.

1. Terrain Slope: The large bias at Walnut Gulch1 before the optimization [Fig. 

3(a)] is most likely associated with local topography. An elevation difference 

from ridge to valley is roughly 25 m over ground distances of around 170 m. 

While the site is located on hilly terrain, the forward model does not simulate 

how σ0 varies on a slope as the local incidence angle changes. A hill slope 

toward SMAP would generate a larger σ0 return. Consequently, the negative bias 

is expected as shown in Fig. 3(a). This bias is largely removed by the bias 

correction procedure [compare Fig. 3(a) and (b)]. The hills of Walnut Gulch2 are 

gentler than in Walnut Gulch1, which may explain the smaller bias in site 2. The 

size of the bias is similar between HH and VV. This is consistent with the 

airborne SAR observation where HH and VV showed a similar amount of 

change in response to the local incidence angle variations between 25° and 55° 

over a wide range of soil moisture conditions and vegetation types of grass, 

pasture, oat, and corn (see [42, Fig. 3]). The comparable size of bias between HH 

and VV supports the formulation in (1) that one correction factor is used for HH 

and VV.

2. Crop Row Structure: Anisotropic periodic structures on ground may explain the 

large ubRMSE found in Monte Buey [Fig. 3(a)]. This site consists of flat 

agricultural fields with uniform row directions in each field (Fig. 4). Seeding and 

harvesting were performed in the directions of field boundaries to allow tractor 

movements. These practices produced periodic row structures, which the forward 

model does not simulate. The structures were formed by the plants because there 

was no tillage. The SMAP σ0 is modulated by these structures, because SMAP’s 

azimuth viewing angle with respect to the row direction on the ground has six 

preferred values per 8-day repeat cycle (Fig. 4). For example, near the location at 

500-km distance from nadir, the azimuth angle is almost perpendicular to the 

spacecraft velocity vector; while at 200-km from nadir, the angle is ~20° (fore-

scan) and ~160° (aft-scan). The temporal fluctuations are found in SMAP real 

aperture (at 36 km) and SAR (1-km resolution) observations, suggesting that the 

fluctuations are caused by the widespread periodic structures on the ground.

3. VWC Climatology: The VWC input to the forward model calculation is initially 

the daily climatology based on the optical normalized difference vegetation 

index. Its scaling factor (f̄) is optimized to better represent the contemporary 
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VWC. The VWC was modified in eight locations [Monte Buey, Yanco 1–4, 

Walnut Gulch1, St. Josephs, and Kenaston2 (see Figs. 4 and 5)]. The impact of 

revising VWC is shown most clearly in reducing the bias difference in the Yanco 

3–4 sites [compare Fig. 3(b) and (c)].

4. Subpixel Heterogeneity and Fidelity of Scattering Model: Only one vegetation 

type of a forward model applies to a 3-km SMAP pixel during soil moisture 

retrieval, which implies that the soil moisture retrieval intrinsically assumes that 

the pixel is homogeneous. Except for the Monte Buey and Walnut Gulch1 sites, 

heterogeneous vegetation types are present within a 3-km pixel (Table I). Neglect 

of heterogeneity is expected to contribute to the differences in σ° in Fig. 3. The 

contribution will become greater as σ0 within a 3-km associated with different 

vegetation types becomes more heterogeneous (e.g., grass versus woody savanna 

in TxSON1, or bean and corn in St. Josephs). This effect is, however, reduced at 

Kenaston because of the structural similarity of different vegetation types and 

low crop developments during most of the observation period. The heterogeneity 

problem may be regarded as a part of the broader deficiency in scattering 

modeling. The deficiency is expected, because the models were trained over 

well-controlled homogeneous fields. The adjustment of soil moisture corrects for 

the deficiency in the forward model, as shown by the reduction in the σ0 

difference [compare Fig. 3(c) and (d)]. Alternative approaches to resolve the 

heterogeneity are to premix the datacubes according to the subpixel fraction of 

landcover, or to perform retrieval at finer resolution and average to 3 km. These 

approaches significantly increase the computing requirements to perform global 

retrievals, but may be explored in the future.

In summary, the forward model and SMAP observations agree within 0.5 dB (ubRMSE) and 

−0.05 dB (bias) for both the polarizations [Fig. 3(d)]. These performance figures of the 

forward model are comparable with the prelaunch error budget designed to support soil 

moisture retrieval with an uncertainty of 0.06 m3/m3. In the prelaunch error budget (see [40], 

[25, Fig. 10]), a 0.7 dB (1σ) uncertainty in σ0 that was defined for the fore-and-aft scan 

averages of SMAP observations [42] ensued the soil moisture retrieval errors of smaller than 

0.06 m3/m3 for nonforest landcover classes based on the Monte Carlo analysis. Based on 

these encouraging agreements, we will present the soil moisture retrieval results at the 14 

CVS in the following section.

V. Soil Moisture Retrieval

The time-series comparisons of SMAP retrievals and upscaled averages of in situ 
measurements for the 3-km pixels at the CVS are presented in Figs. 4–6, and the statistics 

are summarized in Table III. Generally, good agreement is observed between the in situ and 

SMAP retrievals over diverse types of land and crop covers, but occasional large differences 

are found. Examples for specific sites are as follows.

The Monte Buey site is a cropland with mostly soybeans in central Argentina. The large 

fluctuations in the retrievals are most likely caused by the periodic row structures of 

vegetation modulating σ° (Fig. 4, see the detailed discussion in Section IV), because the 
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forward model does not yet incorporate the effects of row structures. After day 160 (June 9), 

the retrieval becomes too dry. This pattern in soil moisture is a response to the similar trend 

in σ0, suggesting that the dry bias is not an algorithm issue. Instead, this is expected because 

the harvest ended around day 153 with surface roughness having changed during the harvest. 

The optimized VWC of ~0.1 kg/m2 is much smaller than the climatology of ~1 kg/m2, but is 

consistent with dry vegetation during the senescence stage and with plant residues after 

harvest. As a separate experiment, soil moisture, VWC, and surface roughness were 

optimized during this postharvest period. The bias in estimated soil moisture of the 

postharvest period improved from −0.158 to −0.054 m3/m3. The surface roughness increased 

(from 2.15 to 2.47 cm) and VWC is reduced (VWC factor, f, changing from 0.3 to 0.05), 

which are consistent with the post-harvest conditions.

The Kenaston sites are in the Canadian prairies where wheat and lentils were seeded around 

the end of May (day 153). Kenaston2 has more lentils than winter wheat (Table I). A lentil 

plant resembles wheat or soybean structurally. Lentils have more leaves than wheats do but 

L-band radar backscattering is relatively insensitive to thin leaves. A wheat datacube was 

used for both the sites. Both the Kenaston sites show the large retrieval anomalies on day 

126 (May 6), 162 (June 11), and 185/186 (July 4/5): these are responses to the anomalous σ0 

(Fig. 5). These anomalies are coincident with light precipitation shown in the figure. When 

the rainfall is light and moistens only the surface soil, there can be difference between in situ 
(measured at 5-cm depth with the horizontally placed probes) and the L-band remote sensing 

(typically penetrating a few centimeters deep, but less when the soil is wet). Another 

possibility is the light rain wetting only the vegetation but not soil. However, the film of rain 

on the vegetation surface will be much thinner than leaf. A leaf with fluid inside does not 

contribute significantly to L-band backscattering, and even more so the thin rain film would 

do. When the roughness and soil moisture are retrieved after excluding the anomalous σ0, 

the ubRMSE of Kenaston1 improves to 0.060 m3/m3 with a correlation of 0.57 (from 0.102 

m3/m3 and 0.40, respectively in Fig. 5 and Table IV); for Kenaston2, they improve to 0.058 

m3/m3 and 0.64 (from 0.087 m3/m3 and 0.27).

The Yanco sites are located in the semiarid climate zone with little topography in Southwest 

Australia. Dominant land-cover types are pasture and wheat crops (Table I). In the Yanco 1–

3 sites [44], the retrievals follow in situ data well with a ubRMSE smaller than 0.06 m3/m3. 

Optimized VWC is lower than the climatology, which is realistic considering that a pasture 

field in the semiarid area does not support the 1 kg/m2 level of VWC [45] and the wheat 

seeded in early May reached only 10 cm height at the end of June (day 181). Some of the 

retrieval errors are examined as follows.

1. The retrievals have a dry bias after day 167 in Yanco1. Wheat crops that 

occupied ~90% of the area were seeded in May and grew from mid-June (day 

166). Correspondingly, VWC should differ before and after around day 166, 

which is not correctly represented by the optimized VWC (green dots in Fig. 5). 

The misrepresentation and incomplete correction of the vegetation effect are 

likely one of the main causes of the dry bias.

2. At Yanco1, 2, and 4, anomalously wet retrievals were found on day 130 and 155 

for Yanco 1 and 2, and day 139 and 155 for Yanco 4. These are responses to the 
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anomalously high σ0. Any effect by periodic structures on the ground would be 

persistent in time as in the Monte Buey case, which is not the case here. These 

are attributed to the difference in sensing depth between radar and in situ probes 

in the presence of light rain, as explained in detail for the Kenaston sites. In 

Yanco, the in situ probes were placed vertically and measured soil moisture of 

top 5 cm, which, however, would not prevent the sensing depth discrepancy. 

Unfortunately, there is no concurrent precipitation data at the Yanco sites to 

confirm the causality.

3. The dry bias after day 167 is influenced by the anomalous σ0 on day 139 and 

155, which alters the roughness estimate. When the roughness is retrieved after 

excluding the anomalous σ0, both of the ubRMSE and bias improve to 0.033 

m3/m3 with correlation of 0.89 (from 0.063 m3/m3 and 0.52, respectively in Fig. 

5 and Table IV).

4. At Yanco 1, the estimated roughness of 3.7 cm is large while the retrieved VWC 

is small at ~0.2 kg/m2. These estimates are consistent with the field knowledge. 

In situ VWC was at about 0.2 kg/m2 and soil was rough with furrows due to 

tillage. The tillage and seeding were completed toward the end of April. Until 

early July, the ground was covered by bare soil, 10-cm tall wheat, stubbles, and 

20-cm tall pasture.

The Walnut Gulch sites are arid grassland and shrubland in Arizona, USA. During the 

SMAP radar period, the soil stayed dry at the residual level until it rained during late June 

when the monsoon began (Fig. 5). As a result of the small temporal variability, the ubRMSE 

of soil moisture retrieval of both the sites are very small (Table III). For the same reason, the 

correlation between in situ and retrieval is misleadingly low.

St. Josephs is an agricultural landscape in Indiana, USA. The 3-km pixel was covered 

approximately 44% by soybean and 38% by corn according to the local survey. Although the 

optimized cost [C in (1)] is similar between soybean and corn datacubes when each of them 

is used for retrieval, the ubRMSE of soil moisture retrieval is a factor of two smaller with the 

corn datacube. Corn’s acreage is smaller than that of soybean within the 3-km pixel, but corn 

σ0 can be 6 dB (four times) higher than soybean’s (see [1, Fig. 5]). Then the small areal 

fraction of corn can dominate σ0 of a heterogeneous pixel. The following observations 

support the hypothesis that the 3-km σ0 may be representing corn. The observed SMAP HH 

is often larger than VV (Fig. 5). Furthermore, soybean VWC does not reach beyond 1.5 

kg/m2, while the VWC at St. Josephs ranges from 1.5 to 4 kg/m2—the values for growing 

corn. Lastly, St. Josephs σ0 values are ~3 dB larger than Monte Buey σ0 where the landcover 

is 100% soybean.

Valencia site in Spain is covered mostly by vineyards (around 43%) with a fraction of 

natural vegetation (Mediterranean forests, matorral, and shrubs) of around 34%, urban and 

bare soil to about 6%, and other types of orchard trees (around 17%). However, a vineyard 

datacube is not available. As an alternative, the corn datacube is used after noting that the 

observed polarimetric properties show HH larger than VV. Physically, a grapevine has a 

prominent vertical trunk that is likely to scatter like a corn stalk.
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TxSON is a rangeland located in central Texas, USA, on relatively flat terrain. During the 

period of data availability there were several rainfall events followed by dry downs. The 

climatology VWC of ~1 kg/m2 is realistic for savanna grassland with scattered trees in a 

semiarid climate. Random grazing by livestock is not expected to produce temporal changes 

in the surface roughness. The large dynamic range of soil moisture is well described by the 

retrievals.

Tonzi is woody savanna in California. HH being larger than VV is perceived to be the 

double-bounce scattering from trees, which is confirmed by the analysis of scattering 

mechanism in Fig. 7. The amount of vegetation is the largest of all the CVS sites due to 

standing trees. Even in this relatively high biomass conditions, wetting and gradual dry 

downs are correctly monitored by the retrievals.

The retrievals discussed above were performed using automated procedures (when choosing 

datacubes by referring to landcover database and when performing optimization) with a 

minimal amount of manual adjustment, so that the method may be applied globally over a 

long period of time. One of the exceptions to this strategy is the choice of the input ratio of 

correlation length to surface roughness (cl/s). Since CVS measurements do not provide the 

values of cl/s, a single number of 10 is used as an initial input for noncorn types (cl/s is 

difficult to characterize using measurements at 3-km scale). In the corn retrievals, σ0 is fairly 

independent of the ratio under the strong double-bounce conditions [22] and datacubes were 

generated with cl/s of 15 only. An exception is at TxSON2: the best retrieval was achieved 

with cl/s of 4. In the bare surface analysis, the retrieval was found insensitive to cl/s (see [3, 

Table III]), because different choices of cl/s added a quasi-bias and did not alter where the 

minimum of the cost function occurs (the location of the minimum is the retrieved soil 

moisture). In the CVS analysis, however, the sensitivity of soil moisture retrieval to cl/s is 

not fully understood. Over the cl/s range of 4 to 30, soil moisture retrieval was unaffected in 

terms of ubRMSE between 0.039 and 0.044 m3/m3 in the Yanco3 grassland; however, 

ubRMSE varied from 0.053 and 0.113 m3/m3 in the TxSON2 grassland.

The use of the physically based forward model provides an insight into the scattering 

mechanisms. The scattering mechanism is analyzed for Yanco2, Yanco3, Monte Buey, 

Tonzi, Kenaston2, and TxSON2 sites only, because the bias correction of these sites is 

sufficiently small (1 dB). The size of the bias correction has to be small, otherwise it will not 

be obvious to which of the three scattering mechanisms the bias can be attributed. In the two 

Yanco pasture fields, the surface scattering is dominant. σ0 of TxSON pasture fields is larger 

than Yanco values by more than 3 dB: surface scattering was similar between the TxSON 

and Yanco fields, but vegetation components explained most of the differences between the 

two locations. TxSON sites have sizeable fraction of trees (Table I), which contributes to the 

large scattering from vegetation. Scattering mechanism of the Monte Buey bean fields is 

similar to the Yanco pasture fields, where the surface scattering dominated. This similarity 

results from the fact that σ0 of the bean field was as small as the Yanco pasture fields. The 

optimized VWC of the Monte Buey site is as small as 0.2 kg/m2 or lower, which is the 

vegetation amount of pasture fields, leading to the small σ0 of the bean field. Kenaston site 

is covered by wheat crops. The wheat stalk and leaf are so thin that their volume scattering is 

negligible, but the double bounce scattering from the vertical stalks become significant as 
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the vegetation grows. Tonzi woody savanna case shows strong double bounce contributions 

from tree trunks. Even if the surface scattering is similar to those of the other fields, the 

double bounce is by far dominant.

In Summary, for the 14 CVS data sets, wetting and dry downs are well captured by the 

retrieval, with an overall correlation coefficient of 0.50 and a ubRMSE of 0.052 m3/m3, 

which meets the self-imposed target of 0.06 m3/m3 [40]. Generally, the statistics for 

noncroplands are better than those of croplands (ubRMSE of 0.040 versus 0.067 m3/m3 Fig. 

6 and Table III). Croplands pose more challenges as discussed above, notably temporal 

changes in vegetation and surface roughness, periodic row structures, and a diversity of crop 

types that produce distinctively different scattering mechanisms. Some of the differences in 

the CVS comparisons may be generated by nonalgorithmic caused such as the discrepancy 

in sensing depth of radar versus in situ sensors. Excluding these cases, the ubRMSE 

improves by nearly a factor of two (Table IV) on each CVS and, since these cases occur on 

as many as five CVS, the overall ubRMSE is expected to improve. The correlation could 

improve as well if the arid Walnut Gulch comparisons are excluded, where the correlation 

has little meaning when soil moisture varied little in time.

VI. Conclusion

SAR-based soil moisture retrieval over diverse conditions of soil moisture, surface 

roughness, and vegetation on a global basis has rarely been performed due to the lack of data 

and difficulty of performing robust and reliable retrievals. To account for significantly 

different mechanisms of radar response to soil moisture among vegetation types, the forward 

models (datacubes) were developed for each of 12 landcover classes. The unknown surface 

roughness is estimated and constrained using the time-series approach. The estimated 

roughness is within the expectation of 0.5–4 cm. The ill-posed retrieval conditions are 

mitigated by incorporating the dual-copolarization SAR inputs (Table II). While the 

algorithms were tested previously over homogeneous field campaign sites, the current results 

are the tests over challenges in the global 3-km SMAP data including periodic ground 

structure of croplands, temporal changes in VWC, terrain slope, and subpixel heterogeneity.

Before the optimization of the retrieval process, the forward model had somewhat large 

differences from the observed SMAP σ0, most likely because of deficiencies in accounting 

for the effects of terrain slope, unknown correlation length of surface roughness, periodic 

structure of croplands, uncertainty in vegetation input, and subpixel heterogeneity [Fig. 

3(a)]. After the optimization, the difference over the 14 core validation sites (CVS) is 

reduced to 0.5 dB (ubRMSE) and within −0.05 dB (bias) for both the polarizations [Fig. 

3(d)]. This level of agreement is comparable with the prelaunch error budget to support soil 

moisture retrieval with an uncertainty target of 0.06 m3/m3.

The soil moisture retrievals were assessed at the rigorously selected 14 CVS covering a 

range of vegetation types that included grass, pasture, shrub, corn, wheat, bean, and woody 

savanna around the world from mid-April to early July 2015. The ubRMSE of soil moisture 

retrieval is found to be 0.052 m3/m3, which meets the accuracy target (see Figs. 4 and 5, and 

Table III). The difference over croplands is larger than those of noncroplands (see Fig. 6 and 
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Table III), which is anticipated because of the complexities of the cropland such as periodic 

structure on the ground, temporal changes in surface roughness due to tilling operations, 

temporal changes in VWC, and subpixel heterogeneity. The retrievals were performed by 

automated procedures with a minimal amount of manual adjustment, so that the method may 

be applied globally and operationally. The anomalous retrievals might have occurred when 

the sensing depth differs between SMAP radar and in situ sensors. Excluding these cases 

manually, the ubRMSE of the affected CVS improves by a factor of two (Table IV), and the 

overall ubRMSE is expected to improve accordingly.
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Fig. 1. 
Locations of the 14 core validation sites. Several sites are close to each other and appear as a 

single dot.
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Fig. 2. 
Flowchart of algorithm.
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Fig. 3. 
Forward model σ0 minus SMAP σ0 in dB, shown in terms of mean difference (dashed lines) 

and ubRMSE (solid lines) per each CVS. mv denotes soil moisture. opt stands for 

“optimization” and is the derived value by the soil moisture retrieval process [defined in (1)]. 

VWCclim is the VWC climatology. Optimized values of soil moisture, VWC, and bias 

correspond to mυ, f̄VWC, and c̄ in (1). (a) Model σ0 is computed using in situ mv and 

VWCclim. (b) Model σ0 using in situ mv, VWCclim, and optimized bias. (c) Model σ0 

using in situ mv, optimized VWC, and optimized bias. (d) Model σ0 using optimized mv, 

optimized VWC, and optimized bias.
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Fig. 4. 
Azimuth viewing angle and normalized radar cross section (NRCS, σ0) at Monte Buey site. 

rtr refers to retrieved soil moisture. clim and optml refer to VWC values from climatology 

and optimized. Surface roughness is estimated. XtrkDist is the cross-track distance from 

nadir. (Right) Optical image of Monte Buey site (courtesy of Google.com). The yellow pin 

indicates the center of the SMAP 3-km grid. The gridlines mark along- and cross-track 

boundaries of an SMAP 1-km grid cell. May 1, June 1, and July 1 correspond to days 121, 

152, and 182, respectively. There were no precipitation measurements.
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Fig. 5. 
Captions are the same as in Fig. 4. rtr* shows the retrievals made by excluding the spurious 

NRCS as input to the time-series algorithm. There were no precipitation measurements.

Kim et al. Page 38

IEEE Trans Geosci Remote Sens. Author manuscript; available in PMC 2019 November 08.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Fig. 6. 
Scatter plot of CVS retrievals grouped together for croplands and noncroplands.
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Fig. 7. 
Scattering mechanisms shown by the forward models. The abscissa is the day of year in 

2015 and the ordinate is in dB. The forward model σ0 is sampled with the retrievals of soil 

moisture, surface roughness, and vegetation water content.
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TABLE I

List of Core Validation Sites and the Choice of the Forward Model (Datacube) Type to Use During Retrieval. 

The Choice Is Based on Landcover Database and Local Field Survey. W. Savanna Denotes Woody Savanna 

Landcover Type. Full Details of the Core Sites Are Given: Yanco [44]–[46], Walnut Gulch [47], Kenaston 

[48], Valencia [49], [50], and TxSON (http://www.beg.utexas.edu/txson/). n/a Stands for “Not Applicable”

Name Latitude, Longitude Datacube choice Fractional landcover (% within a 3-km grid)

IGBP Crop

Yanco1 −34.720, 146.094 Grass n/a wheat (88), grass (11)

Yanco2 −34.748, 146.094 Grass n/a grass (55), wheat (44)

Yanco3 −34.977, 146.312 Grass n/a grass (88), shrub (11)

Yanco4 −35.006, 146.281 Grass n/a grass (88), wheat (11)

Walnut Gulch1 31.694, −110.088 Grass n/a grass (100)

Walnut Gulch2 31.721, −109.995 Shrub n/a shrub (55), grass (44)

St. Josephs1 41.448, −84.943 Crop Corn bean (44), corn (38)

Monte Buey1 −32.970, −62.505 Crop Bean bean (100)

Tonzi2 38.395, −120.918 W.Savanna n/a w. savanna (100)

Kenaston1 51.432, −106.416 Crop Wheat spring wheat (70), lentils (15)

Kenaston2 51.394, −106.416 Crop Wheat lentils (50), winter wheat (40)

Valencia1 39.570, −1.291 Crop Corn grape vine (43), shrub (34)

TxSON1 30.434, −98.791 Grass n/a grass (55), w. savanna (44)

TxSON2 30.244, −98.698 Grass n/a grass (88), savanna (11)
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TABLE II

Examination of a Well-Constrained Retrieval Condition. N Is the Number of Time-Series Instances. N Is 

Larger than 16 for All CVS

Number of independent observation 2N

Number of free parameters N+3
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TABLE III

Validation of Retrievals at 13 Core Validation Sites Performed Over the 2.5-Month Period in 2015. R Refers to 

Pearson Correlation. (*) In Walnut Gulch, the Temporal Variation in In Situ Soil Moisture Is Very Small, 

Leading to the Negative or No Correlation

 (m3/m3) ubRMSE Bias RMSE R

Cropland

 St. Josephs1 0.051 −0.044 0.068 0.50

 Kenaston1 0.104 −0.025 0.107 0.40

 Kenaston2 0.087 −0.037 0.094 0.27

 Monte Buey1 0.08 −0.016 0.082 0.59

 Valencia1 0.032 0.026 0.041 0.42

 Yanco1 0.049 −0.02 0.053 0.83

 Crop Average 0.067 −0.019 0.074 0.50

Grassland

 Walnut Gylch1 0.014 0.024 0.028 −0.47*

 TxSON1 0.047 −0.038 0.060 0.80

 TxSON2 0.053 −0.029 0.060 0.72

 Tanco2 0.058 −0.013 0.059 0.75

 Tanco3 0.040 −0.017 0.069 0.81

 Tanco4 0.063 −0.008 0.063 0.52

Shrubland

 Walnut Gulch2 0.017 −0.013 0.022 0.08*

Woody Savanna

 Tonzi2 0.030 0.002 0.030 0.853

Non–crop Average 0.040 −0.012 0.054 0.51

All Site Average 0.052 −0.015 0.062 0.50
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