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Abstract

Objective: We explored underlying metabolism-related dysfunction by examining metabolomic 

profiles in adults categorized as lean, having normal weight obesity (NWO), or overweight-

obesity.

Methods: Subjects (n=179) had fasting plasma analyzed using liquid chromatography and high-

resolution mass spectrometry for high-resolution metabolomics (HRM). Body composition was 

assessed by dual energy x-ray absorptiometry. NWO was defined as a body mass index (BMI) <25 

and body fat >30% for females and >23% for males. Differentiating metabolomic features were 

determined using linear regression models and likelihood ratio tests, with false discovery rate 

(FDR) correction. Mummichog was utilized for pathway and network analyses.

Results: A total of 222 metabolites significantly differed between the groups at FDR q=0.2. 

Linoleic acid, beta-alanine, histidine, and aspartate/asparagine metabolism pathways were 

significantly enriched (all, p<0.01) by metabolites that were similarly upregulated in the NWO and 

overweight-obesity groups compared to the lean group. Network analysis linked branched chain 
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amino acids and amino acid metabolites as elevated in the NWO and overweight-obesity groups 

compared to the lean group (all, p<0.05).

Conclusions: Metabolomic profiles of individuals with NWO reflected similar metabolic 

disruption as individuals with overweight-obesity. HRM may help identify people at risk for 

developing obesity-related disease, despite normal BMI.
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Introduction

Obesity is a leading risk factor for major diseases including cardiovascular disease, type 2 

diabetes, and cancer and health conditions such as depression, obstructive sleep apnea, and 

decreased physical functioning(1). Individuals with obesity have excess fat mass and 

metabolic dysregulation resulting in increased all-cause mortality risk(1). Body mass index 

(BMI), calculated using simple anthropometric measures of height and weight, is used 

clinically to define obesity as a BMI above 30 kg/m2. While BMI is useful for identifying 

individuals at extreme levels with very high or low adiposity, BMI values in more moderate 

ranges are not well correlated with body fatness(2, 3). This is because BMI utilizes total 

body weight and does not account for body composition components such as lean mass and 

fat mass, which independently influence disease risk.

Within the range of intermediate BMI values is a group of individuals with a body 

composition phenotype termed normal weight obesity (NWO)(4). These individuals have a 

BMI within the normal weight range (18.5–24.9 kg/m2) but exhibit excess fat mass. The 

current reported estimates for NWO are as high as 30%(4, 5). Individuals with NWO have 

an increased risk of cardiometabolic disease and mortality compared to individuals who are 

normal weight and lean and individuals who are metabolically healthy with obesity(6). 

Previous studies show that individuals with NWO have elevated cardiometabolic disease risk 

factors demonstrated by hyperlipidemia, hypertension, glucose intolerance, insulin 

resistance, increased inflammation, increased oxidative stress, and decreased physical 

functioning(7). Although there is a growing literature of metabolic dysregulation in NWO, 

there is a need to define the nutrition and metabolism-related pathophysiology of NWO.

High-resolution metabolomics (HRM) is an innovative platform that is useful for exploring 

obesity-related disease from a systems-biology approach(8). HRM is a powerful tool for 

nutrition research because it enables the profiling of thousands of small-molecular weight 

metabolites in human biosamples and allows the investigation of important questions 

regarding the complex metabolite interactions which derive from diet, endogenous nutrient 

metabolism, the microbiome, and exogenous chemicals(8). Metabolomics has been used to 

identify specific metabolic signatures related to BMI and obesity(9, 10). However, there is 

little known regarding the metabolomic profiles of individuals with NWO in comparison to 

other body composition subtypes utilizing HRM. In this study, we used HRM to investigate 

differences in the plasma metabolome between three body composition subtypes: lean, 

Bellissimo et al. Page 2

Obesity (Silver Spring). Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



NWO, and overweight-obesity. We hypothesized that individuals with NWO would have 

metabolomic profiles that are similar to subjects who are overweight-obese and distinct from 

subjects who are lean.

Methods

Subjects and Study Design

Emory University and Emory Healthcare employees were randomly invited to join the 

Emory-Georgia Tech Center for Health Discovery and Well Being Predictive Health Institute 

(http://predictivehealth.emory.edu) cohort study between December 2007 and December 

2010. Participants underwent extensive dietary, metabolic, and other phenotypic 

assessments, as described in detail elsewhere (11). All subjects provided written informed 

consent and the study was approved by the Emory University Institutional Review Board. 

Exclusion criteria were the addition of a new prescription medication for chronic disease 

treatment within the previous year (other than anti-hypertensive or anti-diabetic agents), 

acute illness within 12 weeks of the study visit, hospitalization for an acute or chronic 

disease within the previous year, history of substance/drug or alcohol abuse, current active 

malignant neoplasm, women who were pregnant or breastfeeding, or having an uncontrolled 

(non-medicated) or poorly controlled autoimmune, cardiovascular, endocrine, 

gastrointestinal, hematologic, infectious, inflammatory, musculoskeletal, neurologic, 

psychiatric, or respiratory disease (11). All data included in this analysis were collected at 

baseline visits. The current study included a subset of individuals with available baseline 

plasma HRM data. Demographic, education, and income information were self-reported. 

Subjects were classified as having a history of chronic disease (yes/no) if they reported a 

current diagnosis of diabetes, hypertension, or hyperlipidemia, or if subjects were currently 

taking anti-hypertensive, anti-diabetic, or lipid-lowering medications.

Clinical Markers, Physical Fitness, and Diet Quality Scores

Fasting concentrations of glucose, insulin, and lipids were measured by Quest Diagnostics 

(Valencia, CA). The homeostatic model assessment of insulin resistance (HOMA-IR) was 

calculated according to Matthews et al.(12). Systolic and diastolic blood pressure were 

measured using an automated machine (Omron, Kyoto, Japan). Physical fitness (VO2 

maximum) was assessed using a GE T2100 Treadmill (GE Healthcare, Waukesha, WI) 

following a modified Bruce protocol. Subjects completed the Cross-Cultural Activity 

Participation Study (CAPS) (13) to determine if individuals met the 2007 American College 

of Sports Medicine/American Heart Association physical activity and strength guidelines. 

Dietary intake was assessed with the 2005 Block food frequency questionnaire 

(NutritionQuest, Berkeley, CA). Any reported intakes below 500 calories or above 5,000 

calories were considered implausible and excluded. Three validated diet quality scores, 

Alternate Healthy Eating Index (aHEI)(14), Dietary Approach to Stop Hypertension 

(DASH)(15), and Alternate Mediterranean Diet Score (MDS)(16), were calculated from 

FFQ output, as previously described(17).
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Body Composition Analysis and Body Composition Subgroups

Whole and regional body composition were assessed by dual energy x-ray absorptiometry 

(DXA) using a Lunar iDXA densitometer and enCORE (v.12.2) with CoreScan® software 

(GE Healthcare, Madison, WI, USA). BMI was calculated from height and weight measured 

using an electronic scale and stadiometer (Tanita TBF-25, Tanita Health Management, 

Arlington Heights, IL). Participants were then classified into one of three body composition 

subtypes (lean, NWO, or overweight-obesity) based on sex-specific body fat percent values 

and BMI. For males, a body fat percent above 23 was considered elevated, and for females, a 

body fat percent above 30 was considered elevated based on published literature(18). 

Participants were categorized as having a lean body composition subtype if BMI was 

between 18.5 and 24.9 kg/m2 and body fat percent was below the sex-specific cut-off values. 

NWO was defined as a BMI between 18.5 and 24.9 kg/m2 and a body fat percent above the 

sex-specific cut-off values. Lastly, overweight-obesity was categorized as a BMI ≥25 kg/m2 

and a body fat percent above the sex-specific cut-off values. Waist circumference was 

measured three times by a health professional trained in anthropometry using a tape 

measure, and the average value is reported.

Plasma High-Resolution Metabolomics (HRM)

Plasma HRM was performed on 179 fasted individuals using published methods(19) in the 

Emory University Clinical Biomarkers Laboratory. In brief, fasting plasma previously stored 

at −80°C was treated with acetonitrile and an internal standard mixture using an established 

protocol(19). Following protein precipitation, fasting plasma samples were analyzed in 

triplicate with a Fourier transform mass spectrometer (MS, Dionex Ultimate 3000, Q-

Exactive HF, Thermo Fisher, Waltham, MA) using C18 liquid chromatography (LC) and 

positive electrospray ionization (ESI) to maximize the detection of low-molecular weight 

chemicals. After analysis of all participant samples and quality control samples, LC/MS data 

was extracted using the R-based packages apLCMS(20) and xMSanalyzer(21) to provide a 

mass to charge (m/z) feature table of detected ions denoted by relative retention time and 

accurate mass. Batch correction was completed by ComBat(22). Data pre-processing 

included: 1) filtering of features based on coefficient of variation (CV); 2) filtering of 

samples based on Pearson correlation between averaged technical replicates and percent 

missing values (features were retained only if there was a signal in at least 50% of samples); 

and 3) log10 transformation, quantile normalized, and mean centering. A total of 9,967 

metabolomic features were included in this analysis following data filtering.

Metabolite Identification

The R package xMSannotator was used for metabolite annotation, which uses multiple 

criteria to provide a score-based annotation(23). Identities of multiple endogenous 

metabolites, including the amino acids, have been confirmed by comparing coelution with 

an authentic standard(24) in the Emory Clinical Biomarkers Laboratory and are equivalent 

to a Level 1 identification according to the Schymanski et al. criteria(25). Additional 

annotations were made with a high or medium confidence (≥ Level 2) with M+H adducts. 

When identity confirmation was not available, metabolites were annotated by searching 

metabolite databases such as Human Metabolome Database (http://www.hmdb.ca) and 
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Metlin (https://metlin.scripps.edu) for metabolite m/z matches. For selected features which 

could not be annotated based on MS1 data only, ion dissociation spectra (MS/MS) were 

collected on a Thermo Scientific Fusion Mass Spectrometer for MS/MS spectral library 

matching using the mzCloud database (https://www.mzcloud.org).

Statistical Analyses and Bioinformatics

Descriptive statistics (mean ± SD) were performed for clinical variables. Distributions were 

assessed for normality, and any non-normally distributed clinical variables were natural log-

transformed for use in parametric statistics and back-transformed for data presentation. 

Analysis of covariance (ANCOVA) tests, adjusting for age, race, sex, and history of chronic 

disease (yes or no), were used to test for overall group differences in clinical, body 

composition, and lifestyle factors. Post-hoc comparisons between specific groups were 

assessed with Tukey’s honestly significant different tests. Fisher’s exact tests were used for 

comparison of categorical variables due to small numbers in the variable levels. HRM 

bioinformatics analyses were performed using R. HRM analyses used multiple linear 

regression analyses with likelihood ratio tests, adjusting for age, sex, race, and history of 

chronic disease to determine differences between the three body composition groups (lean, 

NWO, and overweight/obesity). False discovery rate (FDR) was controlled for with the 

Benjamini-Hochberg procedure (q= 0.2). Metabolites that significantly differed between the 

groups were analyzed by the Mummichog pathway enrichment and modular analysis 

program(26). Significantly enriched metabolic pathways that included less than four 

metabolites were excluded from findings. Modular analyses are also produced from 

Mummichog, which are unbiased from established biological pathways and construct 

independent networks of highly correlated metabolites(26). To test for differences in 

significantly enriched pathways and network metabolites between body composition 

subtypes, intensity values for individual metabolites within each pathway and network were 

compared, adjusting for age, race, sex, and history of disease. Post-hoc analyses of differing 

metabolites also controlled for group differences in VO2 maximum. In a subset of the cohort 

(n=86), sensitivity analyses were performed on metabolites of interest between individuals 

classified as having NWO and overweight-obesity using student’s T tests. Individuals were 

matched by age (within two years), race, and sex. Out of 43 individuals classified as having 

NWO, 32 were matched to individuals classified as having overweight-obesity on all three 

criteria and 11 were matched on two of the three criteria. Statistics comparing clinical 

variables and individual metabolite intensity values were performed in JMP Pro (version 13, 

SAS Institute Inc., Cary, NC).

Results

Demographic and clinical characteristics for all subjects are shown in Table 1. Distributions 

of age and race did not significantly differ between the three groups (p=0.07 and p=0.3, 

respectively). There were significantly more females in the NWO group (p<0.05) compared 

to the lean and overweight-obesity groups. The overweight-obesity group had a significantly 

higher proportion of individuals with a history a chronic disease compared to the lean or 

NWO groups (p=0.01). In general, the population was highly educated and reported a high 

annual household income, which were similar between all groups (p>0.05 for both). Fasting 
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plasma glucose, total cholesterol, LDL cholesterol, and diastolic blood pressure did not 

significantly differ between the groups (p>0.05). Fasting insulin, HOMA-IR, and 

triglycerides, were similar between the lean and NWO groups (p>0.05) but were 

significantly higher in the overweight-obesity group (p<0.05). Systolic blood pressure 

differed only between the NWO and overweight-obesity groups (p<0.05). HDL cholesterol 

levels did not differ between lean and NWO groups but were significantly lower in the 

overweight-obesity group (p<0.05). The proportion of subjects in each group with adverse 

clinical biomarkers is shown in Supplemental Table 1 (Table S1).

Body Composition, Diet Quality, and Physical Fitness

Body composition and lifestyle variables are presented in Table 2. Per body composition 

subtype classification, BMI was similar between the lean and NWO groups (p>0.05) but was 

significantly higher in the overweight-obesity group (p<0.05). Body fat percent increased 

significantly from subjects classified as lean to NWO to overweight-obesity (p<0.05). 

Although lean body mass did not differ between the lean and overweight-obesity groups, it 

was significantly lower in the NWO group (p<0.05). Visceral adipose tissue (VAT) increased 

significantly with each group, while waist circumference was only significantly higher in the 

overweight-obesity group (p<0.05). VO2 maximum was highest in the lean group and 

significantly lower in the NWO and overweight-obesity groups (p<0.05). Based on self-

reported data, there were no differences between groups for aerobic physical activity or 

strength training (p>0.05). MDS and aHEI diet quality scores were similar across all groups 

(p>0.05). DASH diet quality score was significantly higher in the lean group compared to 

the overweight-obesity group (p<0.05).

High-Resolution Metabolomics

Of the 9,967 filtered metabolomic features, 1,533 features were significantly associated with 

the body composition subtypes at p<0.05 (Figure 1A). Following FDR correction, there 

were 222 significantly associated metabolites (q=0.20), which were used as input for 

Mummichog (26) pathway enrichment and modular analyses. Significantly enriched 

pathways are shown in Figure 1B. There were ten significantly enriched pathways 

predominantly related to lipid and amino acid metabolism. Representative metabolites 

within the significantly enriched pathways are shown in Figure 2. All metabolites included 

in Figure 2 were matched by an M+H adduct and have a Level 1 or Level 2 annotation with 

high or medium confidence (23, 27). Metabolites within the linoleic acid metabolism 

pathway, such as linoleic acid and oxidized linoleic related metabolites, were higher in the 

NWO and overweight-obesity groups compared to the lean group (p<0.05 for all). 

Metabolites within beta-alanine, histidine, and aspartate/asparagine metabolism were 

significantly elevated in the NWO and overweight-obesity groups compared to the lean 

group. Glutathione and glutamate metabolism contained metabolic features that were 

similarly elevated in the NWO and overweight-obesity groups compared to the lean group, 

and metabolites that were elevated in only the overweight-obesity group compared to the 

lean group. The significantly enriched pathways lysine metabolism, glycine and serine 

metabolism, and urea cycle contained metabolites that were higher in the overweight-obesity 

group compared to the lean group. Following further adjustment with VO2 maximum, lysine 

levels were similar between all three groups. No other findings in pathway analyses changed 
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after adjusting for VO2 maximum, as shown in Figure 2. Significantly enriched pathways 

with all tentatively annotated metabolic features are shown in Supplemental Table 2 (Table 

S2).

Figure 3 depicts a module analysis of metabolites significantly differing between the body 

composition subtypes (p<0.05 for all metabolites). The network was predominantly 

comprised of amino acids and amino acid-related metabolites (17 out of 21 metabolites) 

including the branched chain amino acids (BCAA) leucine/isoleucine, cystine, pyruvate, 

histidine, 5-oxoproline, ornithine, and putrescine, which were significantly elevated in the 

NWO and overweight-obesity groups compared to the lean group. Additional amino acid 

metabolites such as the BCAA valine, 3-methyl-2-oxobutanoic acid (a valine-related 

metabolite), the aromatic amino acids (AAA) tyrosine and threonine, glutamate, and 

phenylpyruvate (a phenylalanine-related metabolite), were higher in the overweight-obesity 

subtype compared to the lean subtype, but these metabolite intensities in the NWO group did 

not differ from either of the other groups. Following additional adjustment for VO2 

maximum, 5-oxoproline levels were significantly elevated in the overweight-obese group 

compared to the lean group but did not differ significantly in the NWO group. All of the 

metabolic features tested followed the same pattern after adjusting for VO2 maximum, as 

noted in Figure 3.

In sensitivity analyses of matched subjects classified as NWO and overweight-obesity, there 

were no changes in statistical findings from the results reported above and shown in Figure 2 

and Figure 3; all metabolite intensities remained similar between the NWO and overweight-

obese groups.

Discussion

In this Atlanta-based cohort, we found that adults with an NWO phenotype had 

metabolomic profiles that were similar to individuals who have overweight-obesity and 

distinct from individuals who are lean. In particular, linoleic acid, beta-alanine, histidine, 

and aspartate/asparagine metabolism, and some BCAA, were upregulated in the NWO and 

overweight-obesity subtypes compared to the lean subtype. We also found dysregulation of 

amino acid metabolism related to valine, tyrosine, and phenylalanine in the overweight-

obesity group compared to the lean group.

Analysis of classic clinical measures showed similar profiles between individuals with NWO 

and individuals who are lean for lipid levels, insulin resistance (via HOMA-IR), and blood 

pressure. While other studies have shown elevated clinical measures in individuals with 

NWO compared to lean individuals(7, 28), we did not find those distinctions in this cohort. 

Only triglyceride concentrations were similar between individuals with NWO and 

overweight-obesity. All other clinical variables were comparable between NWO and lean 

groups. While the lean group exhibited higher physical fitness, further adjustment of VO2 

maximum did not alter our main findings, therefore, we conclude the differences in 

metabolite intensities is more likely due to differences in the body composition subtypes 

rather than differences in fitness levels. The combined results of the clinical measures and 
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HRM in individuals with NWO shows that HRM may be a more sensitive measure to detect 

metabolism-related dysfunction prior to altered clinical measures in middle-aged adults.

Linoleic acid is an essential omega-6 poly-unsaturated fatty acid (n-6, PUFA) whose effects 

on cardiometabolic health have been debated(29, 30). In our study, linoleic acid metabolism 

was significantly upregulated in the NWO and overweight-obesity groups compared to the 

lean group, indicating disruption of this metabolic pathway with elevated adiposity. 

Additional studies have shown increased total linoleic acid in subjects with a BMI >30 

kg/m2 (31), while others reported decreased levels of linoleic acid but increased levels of 

linoleic acid-related metabolites(32, 33). As it can be converted to arachidonic acid, linoleic 

acid has been suggested to promote pro-inflammatory pathways(34, 35). Evidence suggests 

that obese individuals may have a greater pro-inflammatory response to linoleic acid 

consumption compared to lean individuals(34, 36). Previous studies have shown that 

individuals with NWO have increased circulating pro-inflammatory biomarkers(7). Through 

their actions on PPARϒ (peroxisome proliferator-activated receptor gamma) activation(37), 

the oxidized linoleic acid metabolites, 9-HODE and 13-HODE, may promote both 

inflammation and adipocyte differentiation(34). Further, through competition with the 

shared Δ6 desaturase enzyme, a high intake of linoleic acid may blunt the anti-inflammatory 

effects of alpha-linolenic acid (ALA, a precursor to docosahexanoic acid and 

eicosapentanoic acid)(34, 38). In aggregate, upregulated linoleic acid metabolism may be 

indicative of increased inflammation in settings of excess adiposity.

Previous studies have reported elevated amino acid concentrations in individuals with 

obesity. Our findings show similarly increased levels of amino acids and related metabolites, 

including histidine, in individuals with NWO compared to individuals classified as lean. 

Studies utilizing principal components analyses to investigate relationships between 

cardiometabolic health and the plasma metabolome have identified histidine as a 

significantly associated metabolite (39, 40), although others have found a negative 

association or no relationship between histidine with BMI and obesity(9, 31, 41). 

Metabolites enriched within histidine and beta-alanine overlapped with glutamate 

metabolism and may represent anaplerotic substrates(31). Lysine metabolism was 

upregulated in the overweight-obesity group. Lysine is an essential amino acid that is needed 

to synthesize carnitine for fatty acid transport into the mitochondria for oxidation. Both 

carnitine and lysine have been shown to be elevated in obesity(41), and here we report 

higher levels of carnitine in subjects who have NWO and overweight-obesity compared to 

subjects who are lean. Acylcarnitines, especially C3 and C5 acylcarnitines(42), have been 

found to be elevated in obesity, perhaps as a result of incompletely oxidized BCAAs. 

Finally, pathways related to nitrogenous waste excretion, aspartate and asparagine 

metabolism, were dysregulated in the NWO and overweight-obesity groups compared to the 

lean group, in line with other obesity and cardiometabolic disease research(43). Our findings 

of altered amino acid metabolism are in line with published reports regarding obesity 

pathophysiology and represent new findings for individuals with NWO.

In line with previous obesity-related research(42, 44), we found dysregulation of BCAAs, 

AAAs, and related metabolites associated with greater adiposity in the modular analysis. 

There is now a well-established metabolic signature of obesity including elevated 
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concentrations of BCAAs and AAAs (particularly tyrosine and phenylalanine) related to 

insulin resistance, mitochondrial oxidative capacity overload(42) and, ultimately, increased 

risk of developing type 2 diabetes(44). The altered flux of BCAA catabolism exceeds 

mitochondrial oxidative capacity and ultimately leads to release of BCAAs into the 

blood(42). The increase in AAA may be due to competition for the same cellular transport 

protein used by large neutral amino acids. Elevated levels of glutamate, alanine, and 

pyruvate in obese individuals, which we also show in subjects with NWO, may also be 

linked to altered BCAA metabolism and overload of the Krebs cycle(42). Glutamate is 

produced in the first step of BCAA catabolism and increased concentrations of glutamate 

may shift pyruvate towards conversion to alanine(42). In summary, we found altered BCAA 

and AAA metabolism in subjects with NWO and overweight-obesity, which may reflect the 

underlying pathophysiology of insulin resistance and mitochondrial energy metabolism 

overload.

In this study, individuals with NWO had significantly lower lean body mass compared to the 

lean and overweight-obesity groups, and individuals with NWO had significantly higher 

VAT compared to lean individuals. Furthermore, individuals with NWO and overweight-

obesity had significantly lower fitness levels compared to lean individuals. Relevant to our 

metabolomics findings, resistance and aerobic training in overweight, insulin resistant adults 

showed reductions in whole plasma molar sum of the BCAAs and improved clearance of 

acyl groups(45). Thus, the plasma metabolomic differences observed between individuals 

with NWO and those who are lean may reflect a combination of differences in body 

composition and fitness, or other variables that were not assessed.

To our knowledge, this is the first study to examine plasma metabolomic profiles of 

individuals with NWO and fills an important gap in knowledge about this population. This 

novel approach allowed for the comparison of detailed health profiles between groups 

beyond classic clinical laboratory assessments. Furthermore, the use of pathway enrichment 

analysis provides context to associations of disease with metabolic pathways instead of 

single metabolites. Pathway analysis also provides the advantage of being downstream from 

genetic changes and allows insight into products of genetic or epigenetic alterations. A 

limitation of the study was its cross-sectional nature, which impedes our ability to infer 

causality in the results. Health status, education, and income were collected by self-report, 

and therefore may be subject to recall bias. This cohort is predominantly composed of 

individuals who reported a high education and income, which may not be reflective of the 

general United States population. Our power to determine differences in outcomes between 

groups may have been limited by small numbers. For example, several metabolites in the 

NWO group had intermediate values that were between lean and overweight-obese subjects 

but were not statistically significantly different. This may be due to small numbers between 

groups or heterogeneity in the metabolic health of individuals with NWO. Finally, there are 

no established cut points to define obesity based on body fat percent and applying another 

threshold to define obesity in this population may have yielded different results.

This study reports novel findings in this adult population that individuals with NWO have 

altered metabolomic profiles, denoting underlying metabolic dysfunction similar to 

individuals with overweight-obesity, despite having a normal BMI and generally normal 
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clinical biomarkers. Specifically, linoleic acid and amino acid pathways were dysregulated 

in the NWO and overweight-obesity subtypes compared to the lean subtype. Thus, the 

plasma metabolome may be a useful measure of health status to detect perturbations that 

predict early metabolic changes. Larger, prospective studies are needed to determine if HRM 

can identify normal weight individuals at risk for obesity-related diseases and if targeted 

interventions in individuals with NWO can reduce such risk.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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What is already known about this subject?

• Obesity increases a person’s disease and mortality risk.

• Body mass index (BMI) is typically used to assess obesity and categorize 

disease risk.

• Individuals with a normal weight but high body fat (normal weight obesity, 

NWO) have increased disease and mortality risk but may be overlooked when 

screening for obesity by BMI.

What does this study add?

• This study characterizes the plasma metabolome of individuals with NWO 

compared to individuals classified as lean or having overweight-obesity using 

high-resolution metabolomics.

• Individuals with NWO exhibited altered plasma metabolomic profiles similar 

to individuals with overweight-obesity, including oxidized linoleic acid and 

related metabolites and dysregulated amino acid metabolism.

• High-resolution metabolomics may be a helpful tool to identify individuals 

who have increased disease risk despite having a normal BMI.
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Figure 1. 
Panel A, Manhattan plot of metabolites significantly different between body composition 

subtypes. There were 1,533 metabolic features that were significant at a p<0.05 (grey open 

circles) and 222 metabolic features that were significant at an FDR q<0.2 (black triangles). 

Panel B, Pathway enrichment analysis of the 222 metabolites significantly associated with 

the body composition subtypes at a q<0.2.
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Figure 2. 
Representative metabolites within significantly enriched metabolic pathways. All 

metabolites have been matched by an M+H adduct in positive electrospray ionization mode. 

Abbreviations: NWO, normal weight obesity; HPODE, hydroperoxy-octadecadienoic acid, 

an intermediate of linoleic acid metabolism and precursor for the oxidized metabolite 

octadecadienoic acid; HODE, hydroxyoctadecadienoic acid, a derivative of linoleic acid; 

EpOME, Epoxyoctadecenoic acid, a peroxidation product of linoleic acid.

*Indicates that findings were confirmed in post-hoc analyses with further adjustment for 

VO2 maximum, and in a subset of the cohort (n=86) with subjects categorized as having 

normal weight obesity or overweight-obesity matched by age, race/ethnicity, and sex.

† Following further adjustment with VO2 maximum, metabolite was similar between all 

three groups.
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Figure 3. 
Modular analysis of correlated metabolic features that were significantly associated with the 

three body composition subtypes. Abbreviations: IDP, Inosine diphosphate

*Indicates that findings were confirmed in post-hoc analyses with further adjustment for 

VO2 maximum, and in a subset of the cohort (n=86) with subjects categorized as having 

normal weight obesity or overweight-obesity matched by age, race/ethnicity, and sex.

‡ Following further adjustment with VO2 maximum, metabolite was significantly elevated 

in the overweight-obesity group compared to the lean group.
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Table 1.

Demographic and clinical characteristics

Lean (n=26) NWO (n=43) Overweight/Obesity (n=110)

Age (y) 47.3 ± 2.0 47.8 ± 1.6 50.6 ± 1.0

Female [n (%)] 15 (58) 35 (81)a 66 (60)

White [n (%)] 23 (88) 35 (81) 79 (72)

Education

  Less than high school 1 (4) - -

  Completed high school 1 (4) - 4 (4)

  Some college 1 (4) 5 (12) 21 (19)

  Four years of college 6 (23) 12 (28) 25 (23)

  Any graduate school 17 (65) 26 (60) 60 (55)

Annual household income

  ≤ $50,000/year 1 (4) 1 (3) 14 (14)

  > $50,000–$100,000/year 6 (24) 6 (15) 33 (32)

  > $100,000–$200,000/year 10 (40) 21 (53) 31 (30)

  > $200,000/year 8 (32) 12 (30) 25 (24)

Chronic disease [n (%)] 5 (19) 6 (14) 38 (35)a

Plasma glucose (mg/dL) 95.7 ± 4.8 93.1 ± 4.0 94.9 ± 3.1

Plasma insulin (μIU/mL)* 2.7 ± 0.5a 3.6 ± 0.5a 5.5 ± 0.6b

HOMA-IR* 0.6 ± 0.1a 0.8 ± 0.1a 1.3 ± 0.1b

Total cholesterol (mg/dL) 193.9 ± 9.4 201.4 ± 8.0 197.8 ± 6.1

LDL-C (mg/dL) 105.3 ± 8.2 117.8 ± 7.0 118.4 ± 5.3

HDL-C (mg/dL) 72.7 ± 3.8a 63.5 ± 3.3a 55.5 ± 2.5b

Triglycerides (mg/dL) 81.1 ± 11.4a 101.2 ± 9.7a,b 117.2 ± 7.4b

Systolic Blood Pressure (mmHg) 119.4 ± 3.6a,b 118.1 ± 3.1a 126.1 ± 2.3b

Diastolic Blood Pressure (mmHg) 74.7 ± 2.5 75.5 ± 2.1 79.9 ± 1.6

Values are mean ± SE or n (%). Values not connected by the same letter are significantly different at p< 0.05. Plasma variables adjusted for age, 
sex, race, and history of chronic disease. Abbreviations: NWO, group with normal weight obesity; HOMA-IR, homeostatic model assessment of 
insulin resistance; LDL-C, low density lipoprotein cholesterol; HDL-C, high density lipoprotein cholesterol.

*
Variables were natural log-transformed for analyses and back transformed for data presentation and reported as geometric mean ± SE.
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Table 2.

Body Composition Variables, Physical Fitness, and Diet Quality Scores

Lean (n=26) NOW (n=43) Overweight-Obesity (n=110)

BMI (kg/m2) 23.9 ± 0.9a 24.3 ± 0.7a 30.8 ± 0.6b

Total body mass (kg) 69.7 ± 2.9a 68.5 ± 2.5a 87.6 ± 1.9b

Lean body mass (kg) 50.3 ± 1.5a 44.4 ± 1.2b 51.1 ± 1.0a

Fat mass (kg) 16.5 ± 1.8a 21.5 ± 1.5b 33.6 ± 1.1c

Total body fat (%) 23.1 ± 1.0a 31.3 ± 0.8b 37.7 ± 0.6c

Visceral adipose tissue (kg)* 0.22 ± 0.04a 0.5 ± 0.1b 1.3 ± 0.2c

Waist circumference (cm)

  Males 82.3 ± 3.2a 85.8 ± 3.2a 97.6 ± 2.6b

  Females 77.0 ± 2.9a 77.5 ± 2.1a 91.7 ± 1.7b

VO2 Maximum (mL/min/kg) 42.9 ± 2.3a 34.6 ± 2.0b 34.2 ± 1.5b

Met MVPA Guidelines‡ 6 (23) 10 (23) 28 (25)

Met Strength Guidelines‡ 10 (38) 8 (19) 23 (21)

Mediterranean Diet Score 4.7 ± 0.4 4.1 ± 0.4 3.9 ± 0.3

DASH Diet Score 5.5 ± 0.3a 5.0 ± 0.2a,b 4.9 ± 0.2b

Alternative Healthy Eating Index 48.6 ± 2.6 46.8 ± 2.2 45.0 ± 1.7

Values are mean ± SE or n (%). Values not connected by the same letter are significantly different at p< 0.05. Variables adjusted for age, sex, race, 
and history of chronic disease. Abbreviations: NWO, group with normal weight obesity; BMI, body mass index; MVPA, moderate to vigorous 
physical activity; DASH, dietary approaches to stop hypertension.

*
Variable was natural log-transformed for analyses and back transformed for data presentation and reported as geometric mean ± SE.

‡
Met the 2007 guidelines of 30 minutes of moderate activity exercises at least 5 times per week, 20 minutes of vigorous activity three times per 

week, or a combination of both. Subjects reported meeting the strength guidelines by performing muscular strengthening exercises at least twice 
per week.
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