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Abstract

A large fraction of ions observed in electrospray liquid chromatography–mass spectrometry (LC–

ESI-MS) experiments of biological samples remain unidentified. One of the main reasons for this 

is that spectral libraries of pure compounds fail to account for the complexity of the metabolite 

profiling of complex materials. Recently, the NIST Mass Spectrometry Data Center has been 

developing a novel type of searchable mass spectral library that includes all recurrent unidentified 

spectra found in the sample profile. These libraries, in conjunction with the NIST tandem mass 

spectral library, allow analysts to explore most of the chemical space accessible to LC–MS 

analysis. In this work, we demonstrate how these libraries can provide a reliable fingerprint of the 

material by applying them to a variety of urine samples, including an extremely altered urine from 

cancer patients undergoing total body irradiation. The same workflow is applicable to any other 

biological fluid. The selected class of acylcarnitines is examined in detail, and derived libraries 

and related software are freely available. They are intended to serve as online resources for 

continuing community review and improvement.
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The comparison of metabolomic patterns from liquid chromatography coupled to mass 

spectrometry is recognized as a promising new approach to characterize the health state of a 

subject.1–5 However, there are many challenges confronting the analysis of metabolomic 

data. Among them, the identification of molecules is a major bottleneck. In fact, the 

annotation of unknown metabolic signals has been called the most difficult challenge in 

metabolomics.2 A recent paper illustrates the difficulties of annotating molecular features 

having true biological significance.4 Moreover, in most cases, multivariate statistical 

differentiation of the case versus control samples has little value if the metabolites 

responsible for any differences are not known.

To assist in the identification problem, our group has developed a novel type of mass 

spectral library, one that includes all recurrent unidentified mass spectra in a material.6–8 

Unlike traditional spectral libraries, which consist of reference spectra of known compounds 

derived from neat standards, these libraries are derived from recurring spectra of unknown 

identity in the target material itself, where spectra are extracted, clustered, and where 

possible annotated prior to entry into a library. Building the library itself follows a similar 

methodological procedure to the one described for libraries of neat compounds, though with 

a different set of spectrum and measurement annotation.

The general procedure for library building is as follows. First, the spectral libraries are 

generated from experimental data obtained in multiple replicate runs for each sample over a 

wide range of experimental conditions. This leads to the generation of a substantial number 

of product ion spectra for commonly occurring ions. Then spectra are compared using 

spectral similarity9 and clustered10 to generate consensus spectra.11 Next, spectra are 

annotated using a novel procedure, also developed in our group, the so-called hybrid search.
12,13

NIST supports accurate and comparable measurements by certifying and providing over 

1300 Standard Reference Materials (SRM) with well-characterized composition or 

properties or both (http://www.nist.gov/srm/program_info.cfm), including several biological 

materials, such as human plasma and urine. These materials can be used to generate 

representative mass spectral data from complex samples. As expected, while using available 

spectral libraries, such as METLIN14 or the NIST tandem mass spectral library,15 a 

substantial portion of the recorded spectra are not reliably identified. Here we discuss our 

methodology for building spectral libraries of unidentified but annotated recurrent spectra 

using tandem mass spectral data derived from NIST urine SRM samples. Then, we 
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demonstrate the utility of this approach by analyzing an extreme case, urine samples of 

patients undergoing total-body-irradiation.

METHODS

Standard Reference Materials, Sample Preparation, and LC–MS Analysis

NIST has developed a variety of standard reference materials (SRMs) that are commercially 

available, well-characterized pooled samples representative of a diverse population. Seven 

urine SRMs materials were used for developing the recurrent unidentified spectral libraries 

(Table 1). The sample preparation and methods were similar to methods described in 

previous work7,8 (see also the Supporting Information). A simplified workflow depicting the 

experimental procedure is shown in Scheme 1. The first step was protein precipitation by 

ethanol (or methanol). This was followed by centrifugation, collection of supernatant, drying 

under nitrogen, and reconstitution in water/acetonitrile (v/v, 90:10). Most LC runs were 

performed using reversed phase chromatography with C18 stationary phases, 30 min 

gradient with mobile phase A being 0.1% (v/v) formic acid in water and mobile phase B 

0.1% (v/v) formic acid in acetonitrile. We also have performed 140 runs using normal phase 

LC–MS analysis using hydrophilic interaction liquid chromatography (HILIC) columns 

following previous work.16

Most mass spectra were recorded on a Fusion Lumos Orbitrap (Thermo Scientific 

Corporation) using two varieties of fragmentation: so-called “Higher Energy Collision 

Dissociation” (HCD, a beam-type collisional activation), and ion trap fragmentation (IT-FT), 

both using the Orbitrap for high mass accuracy spectra detection. A wide energy range was 

covered in HCD fragmentation using both positive and negative modes. In most cases, five 

replicates of each sample were acquired, each at seven different HCD collision energies. 

Data processing was carried out using in-house and publicly available software sources, such 

as XCMS online and its Rversion.17,18 In-house software was used for clustering, building 

consensus spectra and annotating spectra, as well as for building spectral libraries. Library 

search identifications were performed with the new version of the NIST Tandem Library and 

Search Program (June 2017 version).

Data Preprocessing

The raw data was processed using the NIST pipeline, an in-house suite of programs for 

monitoring LC–MS performance19,20 and for comparison purposes using XCMS.17,18 The 

NIST pipeline software performs a library search for a full LC–MS/MS data file. It connects 

tandem spectra for MS1 data and performs a range of data analysis functions such as 

abundance, peak width, and spectral purity determination and can compare runs to report 

variations. While it was initially developed for proteomics analysis of peptides by data 

dependent acquisition, the software has evolved for small and intermediate-sized molecule 

analysis by electrospray dynamic data acquisition. This software contains multiple 

component applications which are controlled by a Perl program. It starts by processing raw 

mass spectrometry data files and sequentially passes the data through several programs that 

perform MS1 data analysis (ProMS), identification by library matching (NIST MS Search 

program 2.3), and performance metrics for LC–MS analysis (NIST_metrics, see ref 19). 
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Finally, a component program was used to generate the MSP files (NIST spectral format) 

containing all recurrent unidentified spectra.

Spectral Similarity, Clustering, and Consensus Spectrum Building

Spectral similarity was based on a weighted dot product9 between library reference and user 

spectra

∑matching AL
1/2Au

1/2

∑all L AL ∑all U AU

where A is the base-peak normalized abundance. Spectra obtained under the same 

fragmentation conditions were clustered by m/z precursor ion values using a simple density-

based clustering algorithm.10 Dot products are calculated for each pair of spectra. The 

spectral scan with the greatest number of matches was assigned as the cluster seed, spectra 

matching the seed are considered belonging to that cluster (details can be found in ref 10). 

The upper limit for mass accuracy was 10 ppm and the dot product threshold 0.7. The 

process ends by generating a “consensus” spectrum by taking the medians of m/z and 

abundance values. Typically, consensus spectra could contain hundreds of individual spectral 

scans. It is worth mentioning that for data from beam-type instruments, consensus spectra 

were generated for six or more collision energy values ranging from low parent ion 

conversion to full fragmentation.

MS/MS Hybrid Searches

This method is called a “hybrid” because it combines matching both ion m/z and mass losses 

from the precursor ion (neutral losses for singly charged ions).12,13 It is used to identify 

tandem mass spectra of compounds that differ from library compounds by a single “inert” 

chemical group. Peaks containing this group will, of course, be shifted by the mass of this 

group, as will the mass of the molecule that contains this group. This difference, termed 

DeltaMass, is used to shift the product ions in the library spectrum that contain the 

modification, thereby allowing library product ions that contain the unexpected modification 

to match the query spectrum. Peaks that match before or after shifting are treated equally, 

and if a single peak matches both before and after shifting, the abundance is partitioned. The 

dot product and score between the hybrid spectrum and the unknown are then calculated 

according to the equation above (see refs 12 and 13 for details). The hybrid search is 

implemented in the MS Search Program and can be used interactively or in a batch run.

Spectral Library Building

The workflow for building recurrent spectral libraries is summarized in Figure 1. It involves 

(i) sample preparation and optimization of analytical methods, (ii) spectral extraction and 

identification procedures, (iii) collecting all unidentified recurrent spectra, (iv) clustering 

similar spectra, (v) finding consensus spectra, and (vi) applying a putative identification to 

annotate spectra using the hybrid search12,13 and literature information. First, the 

nontargeted profiling of the urine SRMs is performed using a variety of experimental 

conditions and at least three good quality replicates, and all unidentified spectra are 
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extracted. Then, similar spectra with the same precursor m/z and fragmentation conditions 

are clustered using a spectrum similarity score.9 Then, the consensus spectra are annotated 

using the hybrid search.

Following the annotation process the spectra in the library are classified as annotated 

recurrent unidentified spectra (ARUS) or known-unknowns with a cluster designation and 

description. Each single consensus spectrum is accompanied by relevant metadata such as 

sample and processing conditions, exact mass, retention time (RT), relative MS1 intensity, 

MSn spectra, and a putative identification derived from the combined annotation 

information. The presence of coeluting species and in-source ions will be discussed in the 

last section.

RESULTS AND DISCUSSION

Standard Reference Materials and Data Acquisition Results

The purpose of this brief section is to place in context the large variability of MS1 data 

prompting the necessity of the ARUS library and other tools to minimize its impact in 

metabolomics studies. The data acquisition conditions were optimized using the NIST 

pipeline on repeated runs of a sample and correcting in subsequent runs the problems 

identified by fluctuations in key metrics.19 Thus, the repeatability of the chromatographic 

results and metabolite coverage were used for optimizing gradient LC parameters and MS 

settings, such as initial isocratic hold, gradient time, purging and re-equilibration time, 

injection volume, ion source parameters, MS1 and MS2 resolution, mass range, and the 

number of MS2 scans following each MS1 scan in the data-dependent runs.

Table 1 shows the NIST urine SRMs used in this work, including a brief description. More 

information about any of these materials can be found in the Certificate of Analysis issued 

by NIST (https://www.nist.gov/srm).

Our workflow involved repeated measurements on SRMs to acquire multiple spectra for 

consensus spectrum creation for each ion. We completed more than 1000 runs of urine, 

using these SRM samples and different activation methods, i.e., HCD at six different 

normalized collision energies and ion-trap (IT-FT) in a Ultimate 3000/Orbitrap Fusion-

Lumos LC–MS system. It included 518 HCD runs in positive mode, 267 HCD runs in 

negative mode, 160 IT-FT runs in positive mode and 165 in negative mode. Unless otherwise 

specified, most analyses were derived from high-resolution Orbitrap spectra.

The data acquisition plan included several replicates organized in batches as described in the 

Methods section and in previous publications.7,8 As a measure of repeatability we typically 

used the relative standard deviation (RSD) of the intensities of each ion across experiments. 

Using the same LC–MS instrumentation, the same material experiments were repeatable and 

no more than five replicates were necessary to find thousands of ions with RSD below 2%. 

However, intensity fluctuations were more pronounced when comparing just slightly 

different matrixes. For example, the extracted peaks from the LC–MS analysis of seven 

samples of different urine SRMs using the Ultimate 3000/Orbitrap Fusion-Lumos LC–MS 

system, only 4327 out of 63818 extracted ions from all samples have RSD less than 20%. 
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These significant intensity fluctuations and the fact that the reproducibility of retention times 

across different chromatographic setups and methods is still poor21–23 make clear the need 

for implementing data processing and analysis tools for avoiding uncertainty, particularly 

regarding low abundance components. The ARUS library provides a reliable tool to make 

comparisons between samples and laboratories.

Normal MS/MS Library Search Performance

As commonly noted,1–8 a large fraction of compounds present in biological fluids, such as 

urine, cannot be identified by current methods. This is illustrated in Figure 2 which shows 

identified (red) and unidentified (black) ions in an LC–MS/MS run of a urine reference 

material (SRM 3667) in a plot of log abundance against retention time. Ions were located 

using the NIST ProMS program24,25 and identified using the NIST MS Search 2.3 program 

with the NIST 2017 tandem mass spectral library. Precursor and product ion mass tolerances 

were 20 and 40 ppm, respectively, using a minimum score threshold of 600. ProMS 

identified isotope clusters for all ions, charge states, RT, monoisotopic m/z, and signal 

intensity (peak areas derived from all observable isotope peaks) for each ion detected in all 

LC–MS/MS runs.

Only 13% of the MS-sampled ions generated significant scores and hence were tentatively 

identified using the current NIST tandem mass library, without ambiguity. The black dots 

show that nearly 90% of detected ions could not be identified. For a comprehensive review 

of identification criteria see refs 26 and 27. Some prominent spectral features and many low 

abundance components remain unidentified. It is worth mentioning that the NIST 2017 

library contains 13 808 compounds,28 118 082 precursor ions (approximately 80% positive 

ions, 20% negative ions), for a total of 574 826 spectra. Therefore, it appears unlikely that 

simply increasing the coverage of the library will lead to the identification of a significantly 

larger fraction of ions soon. The analysis of complex samples usually presents many 

complicating factors, in-source ion fragments, modifications, contaminants, artifacts, matrix 

effects, etc. To overcome this identification challenge, we describe here the construction of a 

new kind of tandem mass spectral library that includes all recurrent unidentified spectra 

(RUS) found in a material. In principle, used in conjunction with the NIST tandem mass 

spectral library, these libraries greatly expand all the chemical space accessible to mass 

spectrometry analysis for a given material.

Spectrum Annotation

Unidentified clustered spectra were annotated to the degree possible using the hybrid search 

and a separate analysis of in-source fragments. In this way, a large fraction of good quality 

spectra can be partially identified at least until the library become more comprehensive and 

increasingly useful. Even in the worst case, where no compound identification information 

can be derived from a spectrum, future determinations of such spectra will connect to these 

earlier experiments where the spectra were obtained and once an identification is made it can 

be added to the library. Even if the spectrum is identified as an artifact, this annotation 

would be valuable in future studies to aid in the exclusion of these spectra.
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The present annotation procedure for the recurrent unidentified spectra is based primarily on 

results of hybrid searches. All consensus spectra included in the ARUS library were 

searched against the NIST 2017 tandem mass spectral library using the hybrid search 

algorithm with a minimum score threshold of 700. The following nomenclature was 

included within compound names in the library: Name_-Adduct 

Type_Score_DeltaMasss_Formula_LibID, where Name, DeltaMass, Score and Formula are 

derived from the best hit in a hybrid search. LibID is a sequential number assigned to spectra 

in the archive. In case of not matching, known-unknown “Names” were simply given as 

cluster numbers. Also, see pseudocode showing the class definitions in the Supporting 

Information). “Recurrent” denotes other identification with names not matching predefined 

compound name fragments.

Illustration of Hybrid Search Results—As an example of the use of the hybrid search, 

Figure 3 shows a library match (highest score) to a glutamine derivative. The experimental 

spectrum was extracted from a LC–MS/MS run of a urine SRM 3667 sample. In the 

reference spectrum, unshifted peaks are colored blue, shifted peaks are pink, and peaks prior 

to shifting are gray.

The precursor mass difference, DeltaMass is shown as a blue double arrow and the m/z 
values of the reference and experimental spectra are shown as blue and red triangles, 

respectively. The name for this compound in the library is N-Acetyl-L-glutamine_[M + H]
+_Score = 877_DeltaMasss = 82.0757_Form = C7H12N2O4_LibID = 127769. (The formula 

C6H10 corresponds to a mass difference of 82.078.) It also shows multiple high scoring hits 

validating the same compound class. In other words, multiple hits to the same class increase 

the confidence of the hybrid identification.

Hybrid Search and Chemical Class Identification—Shown in Figure 4 is an example 

that illustrates the usefulness of information derived from the hybrid search results. 

Characteristic peaks and neutral losses are shown in Figure 4 for the family of carnitines. 

The experimental spectrum shows prominent peaks at m/z values 60, 85, and 144 and 

neutral losses of 59, 161, and in this case, it also shows a neutral loss at 179, corresponding 

to the simultaneous loss of the carnitine backbone in addition to the loss of H2O from the 

OH group along the fatty acid chain from a hydroxylated carnitine.

Hydroxylated and diacid carnitines represent subclasses of carnitines and can be 

distinguished by specific neutral losses (see Table SI_1). The hybrid search correctly 

matches the experimental spectrum to several carnitine derivatives. In this case, the specific 

oxo-carnitine, C5-oxo-carnitine, can be found based on the rationalization of the DeltaMass, 

characteristic peaks, specific neutral losses and prior information about the compound.27 

This example illustrates the utility of the hybrid search in elucidating fragmentation 

reactions. Three more examples of compound annotation are given in the Supporting 

Information.

Tandem Mass Spectral Libraries of Annotated Recurrent Unidentified Spectra (ARUS)

As mentioned before, we have extracted recurrent unidentified tandem mass spectra from 

approximately 1 000 runs for the 7 urine reference materials shown in Table 1. About 540 
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compounds have been identified using the NIST tandem mass spectral library (see Table 

SI_2 for identifications in a single run). As described earlier, unidentified recurrent spectra 

were extracted, clustered, and converted to consensus spectra, each of which had no 

matching spectrum in the library (score below 600). The library contains 94 558 HCD 

spectra of positive ions, 30 000 negative ion spectra, 15 835 IT-FT ion trap spectra of 

positive ions, and 13 847 IT-FT spectra of negative ions. The HCD spectra were recorded at 

six different collision energies. The urine ARUS library now contains approximately 8 000 

different ions (this estimation is based on hybrid search results), about 15-fold greater than 

the number of different identified precursor ions. A multitable in the Supporting Information 

(Table SI_2), using this library, shows all matched spectra for a positive and negative 

ionization mode run of SRM 3667 from both normal and hybrid searches (1055 different 

compounds).

To illustrate the potential for classification by using the ARUS library, Figure 5 shows the 

results for the above positive ionization run (see Spectrum Annotation for the chemical-

name based classification method). Roughly half of the matched compounds (scores above 

700) have been coarsely classified in as follows: glucuronides (5%), acylcarnitines (8%), 

amino acids and related compounds (5%), PEGs (4%), glutamates (3%), nucleosides (2%), 

sugars (2%), steroids (2%), and others (31%). In addition, about 13% of the components 

have been directly identified using the NIST MS/MS spectral library. Searching single runs 

against the current libraries (NIST MS/MS and ARUS) typically match more than 80% of 

the spectra. Manual examination suggests that the other 20% is composed primarily of low-

quality spectra.

As a specific example of class identifications made by the hybrid search we present a more 

thorough analysis of acylcarnitines (Supporting Information). There are several reasons to 

pay particular attention to this group, acylcarnitines are relatively well-known, ionize well 

using electrospray, their relative retention times are fairly stable with an RSD within the 

series better than 3% and these compounds are very relevant to the clinical laboratory. A 

separate library for this family can be found at http://chmdatafnx.chemref-838.nist.gov/

dokuwiki/doku.php?id=chemdata:nist17:carnitine). This library uses literature data29 and 

our own data and considers isomers, retention, fragmentation, and abundances. A recent 

database has been published containing exact mass, retention time, and MS/MS information 

on 753 acylcarnitines.30

Getting Started with the ARUS Library and Potential Applications

To run the ARUS library, download the installation program for the NIST Search Software 

and the library from the NIST Website (https://chemdata.nist.gov/). The installation of the 

search program is straightforward; however, a detailed manual can be found on the Website. 

A copy of the library must be present in the folder “MSSEARCH” before opening the 

browser.

In general, this type of library can be useful in many usual tasks of omics studies (i) 

answering where, how often, and in what conditions certain ions are observed, (ii) assigning 

class ID for compounds not in current tandem mass spectral libraries or not commercially 

available, (iii) connecting samples in an unambiguous way for control-case studies or 
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interlaboratory comparisons (each molecular feature is represented by a spectrum in the 

library). The library is offered without warranty and will be in continuous development in 

the future (http://chmdatafnx.chemref-838.nist.gov/dokuwiki/doku.php?id=chemdata:arus). 

Eventually, data from other instruments such as Agilent and Waters QTOF was also 

collected. Although no systematic comparison has been made between data from different 

instruments, the library coverage for all instruments is similar. However, mass accuracy and 

ranges need to be adjusted accordingly in order to yield similar library scores for the same 

ions.

ARUS Library Performance

In this section, we compare the performance of the urine ARUS MS/MS library using single 

runs of pooled and individual patient samples.

Pooled Samples—The ARUS library was derived from pooled urine SRMs, therefore, 

should reflect the most common urine components. However, it is not obvious that these 

pooled samples would be representative of all samples or experimental conditions. The first 

test of the ARUS library was performed on random selected single runs of the seven SRMs 

used to build the library.

Section A of Table 2 shows the total number of quality spectra extracted from each SRM 

sample run, the number of spectra matched to the urine ARUS library (percent of matched 

compounds in parentheses), and the number of identifications of three major chemical 

classes in urine, glucuronides, carnitines, and steroids. After eliminating redundant 

identifications, about 50% of the total number of spectra in a single run (48–52% in the 

present examples) were consistently matched to the ARUS library, even though these 

samples have slightly different degrees of dilution (as observed from differences in the 

creatinine levels). The lower end of this range corresponds to SRM 3674. This SRM is the 

same urine pool as SRM 3673, except that it was spiked with hydroxypolycyclic aromatic 

hydrocarbons (hydroxy-PAHs) and it could influence the ionization efficiency of certain 

components. As expected, these results showed a significant ion coverage for all pooled 

samples (≈50% of all ions). The specific coverage of three different chemical classes 

showed there were no significant composition biases between pooled samples as it should be 

because the SRMs are derived from healthy individuals and pooled in similar conditions.

Individual Patient Samples—Urine samples collected from patients undergoing total 

body irradiation (TBI) at Memorial Sloan-Kettering Cancer Center were run under the same 

conditions as the SRMs. (See ref 31 for details of the sample collection protocol. A material 

transfer agreement exists between NIST and Georgetown University approved by the NIST 

Human Subjects Protection Office and the GU Institutional Review Board.)

Section B of Table 2 shows that results for urine from the healthy individual are similar to 

that observed in pooled samples. Regarding the analysis of the TBI patient urine sample, the 

percent of spectra matched to the ARUS library is slightly lower (46% vs 50%) than the 

average represented by other samples. Another 17% of the spectra matched the NIST 

tandem mass spectral library. The numbers for glucuronides (188), carnitines (258), and 

steroids (48) are lower than the average, but still a significant percentage of these 
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compounds present in urine was found. The TBI patient urine represents an extreme case 

because the degree of dilution of this urine is higher (based on the relative concentration of 

creatinine), and also the changes in the urinary metabolite profiles due to total body 

irradiation are pronounced.31 A more detailed analysis of the differences between samples of 

urine standard reference materials and samples from patients undergoing total body 

irradiation can be found in the Supporting Information.

In general, using the ARUS urine spectral library, in conjunction with the NIST MS/MS 

library, we have been able to annotate between 70% and 80% of the tandem spectra 

observed in the LC–MS/MS analysis of urine samples from individual patients.

Postfiltering Methods

Compound identification criteria in metabolomics have been extensively discussed in the 

literature.26,27,32–35 ARUS identifications should be considered level 3, “putatively 

characterized compound classes”, as defined by the Chemical Analysis Working Group of 

the Metabolomics Standards Initiative.35 In general, identifications cannot be considered 

confident if the pure compound was not directly included in a parallel experiment (or a 

labeled experiment) and identifications are confirmed by retention time. Therefore, for 

confident identification, ARUS IDs need to be verified by other means. This curation 

process is necessary because of the many complicating factors implicated in the 

identification process (see refs 8 and 27).

In this section, the ARUS library identifications reported in Table SI_2 and discussed in the 

previous sections were subjected to three additional procedures that we found helpful in the 

overall verification process.

Fragmentation Rules from Empirical Observations—A computer program 

(available upon request) was developed to make use of characteristic product ion peaks and 

neutral losses to define broad fragmentation classes in compounds of urine (see compound 

modifications in Table SI_1 in the Supporting Information). If found, the closest MS1 scans 

before and after the query spectrum were examined for related ions (according to Table 

SI_1). Mass differences corresponding to known chemical modifications of the component 

and the masses of major product ions were added or subtracted to the m/z value and 

searched for in the MS1 scans. A normalized score between 0 and 999 was implemented. A 

score closer to 999 means most peaks or neutral losses associated with this particular ion 

were found in the MS1 scan, on the contrary a score of 0 means there is no additional MS1 

information supporting the ID. All peaks were weighted equally and normalized to one and 

the mass tolerance for the searches was 0.001 Da. This way, 25% of all MS2-sampled ions in 

the single run example discussed throughout this paper were found to be members of certain 

chemical classes. In fact, this information is mostly redundant, as it is frequently found 

making sense of the DeltaMass of hybrid searches (it means DeltaMass can be found in 

Table SI_1, chemical modifications of urine compounds). Therefore, this information was 

not used in the ARUS library (it is only shown in Table SI_2).

In-Source Ion Groups over Narrow Retention Range with Related Fragment/
Precursor/Adduct Mass—A considerable number of ions found in most runs were in-
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source fragments, dimers and adducts derived from fragmentation and adduction. Probable 

in-source fragment ions were usually found by using the NIST MS Search program; it works 

similar to the hybrid search but without mass shifting.36 In a retention time window of 0.3 

min, the MS2 spectra near the query spectrum (8 scans on each side) were also examined 

looking for product ions with the same m/z values observed in the MS1 scan. For example, 

in the single run, p-acetamidophenyl glucuronide was identified at a retention time 3.15 min. 

Eighteen different ions were related to this ion within a symmetric RT-window of 1 s (see in-

source fragment ions in Supporting Information). Another example that shows the 

usefulness of this analysis was the ion at m/z 105.034 that was found 104 times along the 

chromatogram of the single run example (not a background ion), usually connected to 

phenylacetylated derivatives (mostly drugs). In the single run example, in-source fragments 

represented about 27% of all MS2-sampled ions. This information is particularly important 

to avoid redundancies in the identifications and was added to the comment field of the 

spectrum in the ARUS library.

Prior Information—The likelihood of correct identification is increased if the compound 

is already a known, detectable component of the mixture. This concept of prior probability 

was discussed previously.26 We have combined eight lists16,29,30,32,34,37,38 of identified 

compounds in metabolite profiling by LC–MS of human urine. The list in ref 32 is derived 

from the human metabolome database (HMDB).35 Prior probability scores for the ith 

components of the mixture were calculated according to PPi = wi
Li
L . All weights (w) were 

considered equal and normalized to 999, thus, the score ranges from 0 to 999, the latter 

meaning that the compound have been previously found in all lists (L), and of course, 0 

meaning that the ion is not present in any of the LC–MS metabolite lists. This PP-score is 

probably not very useful when dealing manually with a small number of components but 

could be useful in computer-based decision-support systems. Additional information is 

presented in the Supporting Information (Table SI_2).

Overall Quality—A quality index, based on the MS1, MS2, and prior probability 

information, with four levels: E, excellent; G, good; A, acceptable; and P, poor was 

developed for Table SI_2 and manually adjusted in some cases. Also, most identifications in 

Table SI_2 were accompanied by a relative extensive comment about the uncertainties and 

difficulties associated with a particular library match, and it could help other researchers to 

make a decision based on their own experience. A set of rules for assigning these four 

quality levels is given in the Supporting Information. Retention times were found to be too 

variable to be of use for identification purposes, especially considering the often-similar 

retention times of isomers.

CONCLUDING REMARKS

Libraries of recurrent unidentified spectra were derived from many LC–MS experiments 

over a range of conditions for a number of urine reference materials. Using in-house 

procedures, these spectra were collected, clustered, and used for generating a freely available 

searchable library of annotated consensus spectra (https://chemdata.nist.gov/dokuwiki/

doku.php?id=chemdata:nist17#annotated_recurrent_unidentified_spectra_arus).
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As more data becomes available, it is hoped that this resource will continue to evolve to 

become more complete and annotated, where individual entries become identified with more 

confidence and eventually shifted to the main library. The primary objective of this approach 

is simple, to confidently identify as many ions as possible from a material. However, as 

shown before, other applications are possible, among them probably the most important for 

the omics community is providing a means of connecting chemical components present in 

different samples and between different analytical platforms in a unique and unambiguous 

way.

In addition to their direct use in future urine analysis, it is hoped that these libraries will be 

further extended and serve as an open resource that can be used in conjunction with existing 

resources, such as MassBank,39 m/zCloud,40 and HMDB.41 Requisite tools for library 

building are publicly available also, so the libraries can be used and modified by other 

members of the community. The strategy outlined here is applicable to other materials and 

varieties of chemical analysis that generate recurrent unidentified mass spectral fingerprints.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Workflow for building spectral libraries of recurrent spectra.
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Figure 2. 
Nontargeted global metabolite profile of a single sample of SRM 3667, “Creatinine in 

Urine”. Identified MS2-sampled ions (red circles), unidentified MS2-sampled ions (black 

circles).
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Figure 3. 
Hybrid search results for a spectrum from a urine SRM 3667 sample matching multiple 

library matches of glutamine derivatives. The NIST library browser shows data in six 

windows: (a) spectrum list, (b) measured spectrum, (c) histogram of the distribution of 

scores (top match in red), (d) spectral comparison, (e) match list, and (f) library annotation.
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Figure 4. 
Illustrating a hybrid search resulting in multiple library matches to carnitine derivatives. 

Important neutral losses are shown with black arrows.
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Figure 5. 
Chemical classes in a single run of urine SRM 3667 (positive mode). For example, out of 

136 glutamate ions (larger red circles),18 were found as direct matches to the NIST MS/MS 

Library and 118 as matches to the urine recurrent library.
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Scheme 1. 
Simplified Overview of the Experimental Procedure to Prepare Samples for Liquid 

Chromatography–Mass Spectrometry Analysis
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Table 1.

NIST Urine Standard Reference Materials (SRM)

Standard Reference Material (SRM) brief description

3667 creatinine in frozen human urine

3671 nicotine metabolites in human urine (frozen, 3 levels)

3672 organic contaminants in smokers’ urine (frozen)

3673 organic contaminants in nonsmokers

3674 organic contaminants in fortified smokers
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