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Figure 1 Sucrase-isomaltase (SI) 15Phe-driven IBS risk effects are stronger in low-starch 
consumers. The prevalence of IBS (%) across quartiles of starch intake (g/day) is reported, together 
with respective counts and number of individuals in each quartile group (Q1–Q4).

Figure 2 15Phe genotype influences Blautia faecal abundance. (Left) Genotype-stratified correlation between starch intake and Blautia faecal 
microbiota abundance (each circle represents an individual). A trend was identified when comparing the two sucrase-isomaltase (SI) 15Phe genotype 
groups for their starch-bacteria correlations (age/sex/body mass index (BMI)/total energy (TE)-adjusted generalised linear model (GLM) with negative-
binomial distribution, and interaction term for genotype and starch intake), in that increasing starch intake corresponds to higher Blautia abundance 
in 15Phe carriers compared with non-carriers (uncorrected P=0.054). (Right) Blautia faecal microbiota abundance in the two SI genotype groups 
stratified according to IBS status was significantly increased in IBS cases carrying the 15Phe variant (P=0.00041, beta=0.80), while there was no 
significant association in non-carriers (P=0.31, beta=0.33). Association analysis was performed using GLM age/sex/BMI/TE adjusted (glm.nb in 
stats/R). Plots were made using ggplot in ggplot2/R with stat_smooth and method=lm (left panel), and square root transformation of Blautia relative 
abundance (right panel).

Sucrase-isomaltase 15Phe IBS 
risk variant in relation to 
dietary carbohydrates and 
faecal microbiota composition

Recently in Gut, a coding sucrase-isomal-
tase (SI) variant (15Phe at single nucle-
otide polymorphism rs9290264) with 
35% reduced disaccharidase activity 
was reported to increase IBS risk and to 

correlate with more frequent stools. These 
observations were not assessed in relation 
to key dietary factors including carbohy-
drate (ie, SI substrates) consumption.1

Here, we studied two large German 
population-based cross-sectional cohorts, 
namely PopGen (n=639; average age 
61.4; 44.8% female) and FoCus (n=759; 
average age 53.0; 58.5% female), with 
available genotype (genome-wide arrays), 
dietary (12-month food frequency ques-
tionnaire, FFQ), faecal microbiota (16S 
sequencing) and IBS status (self-reported 
from questionnaire) data, as previously 
described in detail.2–4

In a combined age/sex/body mass index 
(BMI)-adjusted logistic regression anal-
ysis of the two data sets, carriers of the 
15Phe variant (52.86%) reported IBS 
significantly more often than non-carriers 
(3.69% vs 1.84%, respectively; P=0.044, 
OR=2.04), thus replicating and extending 
previous findings.1 When taking into 
account the consumption of SI substrate 
carbohydrates (polysaccharides and disac-
charides; g/day) estimated from FFQ, this 
association appeared strongest for indi-
viduals with lowest intake (not shown). 
In particular, as illustrated in figure 1, 
starch was the individual carbohydrate 
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component where the largest difference 
in IBS prevalence was observed between 
15Phe carriers and non-carriers (7.8% vs 
1.9%, respectively; P=0.029, OR=4.17). 
This suggests that 15Phe-driven genetic 
IBS risk effects may be better detectable 
in low-carbohydrate consumers (possibly 
driven by starch intake), where relative 
differences in SI enzymatic activity might 
have more pronounced consequences on 
the presence of symptom-generating undi-
gested carbohydrates in the large bowel 
(compared with other intake groups, 
where colonic accumulation of undigested 
carbohydrates may result from higher 
intake irrespective of genotype).

We then studied PopGen and FoCus 
faecal microbiota profiles in relation to 
carbohydrate consumption and SI 15Phe 
genotype. Expectedly, intake of poly-
saccharides (P=0.008), disaccharides 
(P=0.008), their sum (P=0.01) and 
starch (P=0.007) correlated with micro-
biota composition in an age/sex/BMI/
total energy (TE)-adjusted multivariate 
analysis of variance model (mvabund/R 
using default settings, after excluding 
rare taxa with >95% zeros).5 Of note, 
similar effects were also observed when 
comparing 15Phe carriers with non-car-
riers (mvabund/R as above with genotype 
as covariate, P=0.016) irrespective of 
carbohydrate intake, thus suggesting SI 
genotype may be relevant to faecal micro-
biota composition. In order to gain further 
insight into the SI genotype-carbohy-
drate-microbiota interaction, we focused 
on 26 genera known to use intestinally 
available polysaccharides and disaccha-
rides for their growth, namely ‘carb-di-
gesters’ as defined and characterised 
previously by others.6 Although multiple 
testing correction returned no significant 
results, nominal trends for genotype-de-
pendent starch-microbiota correlations 
were observed for Blautia, Oscillibacter, 
Ruminococcus and unclassified Entero-
bacteriaceae (typifying results for Blautia 
shown in figure 2). This is noteworthy, 
since similar changes in the relative abun-
dance of most of these genera have been 
previously detected in patients with IBS.7–9 
Of note, while we observed increased 
Blautia abundance in faecal samples from 
IBS cases also in our data set (generalised 
linear model age/sex/BMI/TE adjusted, 
P=0.00035, beta=0.66 vs controls), this 
was strongly affected by SI genotype 
and only significant in 15Phe carriers 
(P=0.00041, beta=0.80 vs P=0.31, 
beta=0.33 for non-carriers) (figure 2).

In conclusion, we report here prelimi-
nary evidence linking the IBS-associated SI 
15Phe variant to detectable diet-mediated 

effects on faecal microbiota composition 
and IBS risk. This adds to previous find-
ings, and warrants further studies of the 
complex SI genotype-dietary carbohy-
drate-microbiota interactions in order to 
infer causality in relation to overall risk of 
IBS.
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