
Sun et al., Sci. Adv. 2019; 5 : eaay4275     8 November 2019

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

1 of 8

M A T E R I A L S  S C I E N C E

Machine learning–assisted molecular design 
and efficiency prediction for high-performance  
organic photovoltaic materials
Wenbo Sun1*, Yujie Zheng1*, Ke Yang1*, Qi Zhang1, Akeel A. Shah1, Zhou Wu2, Yuyang Sun2, 
Liang Feng3, Dongyang Chen4, Zeyun Xiao5†, Shirong Lu5†, Yong Li6, Kuan Sun1†

In the process of finding high-performance materials for organic photovoltaics (OPVs), it is meaningful if one can 
establish the relationship between chemical structures and photovoltaic properties even before synthesizing 
them. Here, we first establish a database containing over 1700 donor materials reported in the literature. Through 
supervised learning, our machine learning (ML) models can build up the structure-property relationship and, 
thus, implement fast screening of OPV materials. We explore several expressions for molecule structures, i.e., images, 
ASCII strings, descriptors, and fingerprints, as inputs for various ML algorithms. It is found that fingerprints with 
length over 1000 bits can obtain high prediction accuracy. The reliability of our approach is further verified by 
screening 10 newly designed donor materials. Good consistency between model predictions and experimental 
outcomes is obtained. The result indicates that ML is a powerful tool to prescreen new OPV materials, thus ac-
celerating the development of the OPV field.

INTRODUCTION
Organic photovoltaic (OPV) cells provide a direct and economical 
way to transform solar energy into electricity. Recently, OPV research 
has undergone a rapid growth, and the power conversion efficiency 
(PCE) has exceeded 17% (1, 2). Until the present time, the main-
stream of OPV research has focused on building up the relationship 
between a new OPV molecular structure and its photovoltaic prop-
erties. This process usually involves design and synthesis of photo-
voltaic materials, characterization of the optoelectronic properties of 
the material, as well as assembly and optimization of the photovoltaic 
cells. Such a traditional approach requires delicate control of chemical 
synthesis and device fabrication, laborious purification and experi-
mental steps, substantial resource input, and a long research cycle. 
Thus, the OPV development is inefficient and slow, e.g., only less 
than 2000 OPV donor molecules have been synthesized and tested 
in a photovoltaic cell since the first report in 1973 (3). Nevertheless, 
these data, generated from decades of exploration, are priceless. Un-
fortunately, until now their potential value has not been fully exploited 
when searching for high-performance OPV materials.

To extract useful information from the data, a sophisticated pro-
gram that can scan through a large dataset and extract relationships 
among the features is required. Machine learning (ML) (4) provides a 
set of computational tools that are capable of learning and recognizing 

patterns and relationships, predicting outcomes or making decisions, 
and reducing the size of a dataset, based on error (or loss function) 
minimization or probabilistic rules (e.g., maximizing a likelihood) 
using a training dataset (5). This data-driven approach enables ML 
to predict a wide range of material properties without the need for 
fundamental understanding of the chemistry or physics behind these 
properties (6). In recent years, ML-based methods have found great 
success in the prediction of the activity/properties of materials (7, 8), 
material discovery (9, 10), drug development (11), and material 
design (12). Appropriate expressions of chemical structures are 
another prerequisite for applying ML to materials discovery. In this 
regard, the development of cheminformatics (13) has established 
a useful toolbox that predates the application of ML. For example, 
molecular fingerprints emerged along with the development of 
similarity searching in medicinal chemistry in the 1980s (14).

Application of ML to the OPV field has also been explored in 
recent years (6, 15, 16). For example, Pyzer-Knapp et al. (17) trained 
an artificial neural network (ANN) to predict the frontier molecular 
orbitals and obtained a good accuracy. Their data were extracted 
from the Harvard Clean Energy Project (CEP) (18), in which the 
chemical structures of these molecules were generated from 26 basic 
building blocks by theoretical calculations. We used a convolutional 
neural network (CNN) and the data from the CEP to predict the 
PCE and achieved 91.02% prediction accuracy (19). We further 
proved that the CNN was capable of extracting features from pictures 
of chemical structures. Nagasawa et al. (20) established a database 
of polymer-fullerene–based OPV devices containing approximately 
1000 experimentally tested materials. Using molecular access system 
(MACCS) fingerprints and the value of the highest occupied molecular 
orbital, the bandgap, and the molecular weight for the description of 
the molecules, their four-class classification model based on the 
random forest (RF) method for PCE prediction obtained an accuracy 
of 48%. Notably, the accuracy of the prediction could be substantially 
improved by using the xyz coordinates (21), combing the electronic 
and structural features (16), or using improved descriptors (15). For 
example, recently, Sahu et al. (15) adopted 13 microscopic properties 
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of organic materials as descriptors for the prediction of PCE. Their 
model was able to build up a relationship between the molecule’s 
properties and PCE with a correlation of r = 0.79. However, there 
remain several drawbacks to the application of ML for screening OPV 
materials. For example, the chemical structures of realistic molecules 
reported in the literature are usually much more complicated when 
compared with those in the CEP (18). The differences in structure 
may lead to inaccurate ML predictions. Furthermore, the micro-
scopic properties of molecules are primarily obtained from high-
accuracy quantum calculations. The high computational costs of 
these calculations render them incompatible for large-scale fast virtual 
screening. Therefore, to achieve rapid screening and high prediction 
accuracy simultaneously, a sufficiently accurate and easily accessible 
programming language expression of molecules is urgently needed. In 
addition, a more general model is desirable to incorporate more 
realistic molecules, so that the results from ML can be used reliably 
for new material design. Moreover, the reliability of the ML methods 
should be verified by experiment using new materials, especially in 
the early stages of this new approach.

In this work, we established a database containing 1719 experi-
mentally tested OPV donor materials collected from the literature. 
We first studied the importance of programming language expression 
of molecules for ML performance. To determine the most suitable 
one, we tested different types of expressions, including images, ASCII 
strings, two types of descriptors, and seven types of molecular 
fingerprints. The descriptors are used to classify materials into 
“low” and “high” performance based on the PCE value. Fingerprints 
led to the best performance (81.76% accuracy in predicting the PCE 
class), and their length had a notable influence on the accuracy of 
the predictions. Moreover, we used a variety of ML algorithms for 
the classification. RF models outperformed others when dealing 
with a small database in our scenario. Last, we independently verified 
the ML models by synthesizing 10 new OPV donor materials [9 of them 
have not been reported before, and the remaining one was reported 
very recently (22)]. The predictions of the model were in good agree-
ment with the experimental results. Through this work, we set up a 
new methodology for OPV research, i.e., prescreening the designed 
OPV molecules by ML models and then only focusing on those that 

passed the ML virtual assessment in subsequent experiments. This 
approach will greatly accelerate the process of developing new, highly 
efficient organic semiconducting materials for OPV applications.

METHODS
ML algorithms
Five types of supervised ML algorithms were used in this study, in-
cluding back propagation (BP) neural network (BPNN) (23), deep 
neural network (DNN) (24), deep learning (25), support vector 
machine (SVM) (26, 27), and RF (28, 29). These are advanced algo-
rithms, and brief descriptions with additional details are provided in 
the Supplementary Materials. Among these methods, BPNN, DNN, 
and deep learning are based on the ANN (25, 30).

Database
The database contains 1719 realistic OPV donor materials collected 
from the literature. To obtain a more general model, polymers and 
small molecules were mixed together in the database. Whether the 
acceptor is a fullerene or a nonfullerene was also ignored. If a certain 
donor material has been reported several times, the highest PCE is 
chosen. All these criteria ensured the model can learn the maximum 
potential of a certain material.

In the established database, the median value of PCE is 2.82%, and 
the average value is 3.48%. As shown in Fig. 1A, the number of data 
points in the PCE range above 8% was small. To obtain an unbiased 
model, the number of data points in each of the two categories needs 
to be balanced, i.e., making the number of molecules in both categories 
roughly equal. Thus, we split the data into two categories (Fig. 1A) 
and selected 3% as a preliminary threshold. The molecules with a 
PCE in the range of 0 to 2.99% were regarded as “low performance” 
(represented in green in Fig. 1A), while those with a PCE higher 
than 3.00% (represented in purple in Fig. 1A) were regarded as 
“high-performance” OPV molecules.

To discuss how the threshold of PCE influences the prediction 
accuracy, a higher threshold (10%) was selected to construct a new 
database. There are 48 molecules whose PCE values are more than 10%. 
To maintain a balance of the two categories, we selected 52 molecules 

Fig. 1. Information about our database of OPV donor materials. (A) Distribution of PCE values of the 1719 molecules in our database. (B) Schematics of expressions of 
a molecule, including image, simplified molecular-input line-entry system (SMILES), and fingerprints.
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randomly through stratified sampling from samples whose PCE values 
are below 10%. Consequently, the database with 10% as threshold 
contains 100 molecules.

Datasets for training and testing
When using 3% as threshold, around 90% (1549 molecules) and 10% 
(170 molecules) of the data were divided into independent training 
and testing subsets, respectively. The training subsets were used to 
train the models, i.e., establishing a relationship between the structure 
and the PCE. The testing subsets were used to test the models, i.e., 
to determine a prediction accuracy for the trained models. The two 
subsets are independent of each other. The same ratio (9, 1) was used 
to divide training and testing subsets when using 10% as threshold. 
To perform cross-validation while training our models, three data-
bases containing different molecules in their respective training and 
testing subsets were used for each threshold.

Programming language expression of molecules
As shown in Fig. 1B and tables S1 and S2, various expressions of a 
molecule, including images, ASCII strings, two types of descriptors, 
and seven types of molecular fingerprints, were used as input for the 
ML models to predict the PCE. All the machine description language 
of molecules considered in this work is easily accessible, allowing for 
the rapid screening of a large number of donor materials.

Image is an intuitive expression of a material. The simplified 
molecular-input line-entry system (SMILES) (31) that describes the 
structure of chemical species using short ASCII strings was trans-
formed from the monomer of a polymer or from the small molecule. 
Notably, this string is a sequence of characters composed of letters 
and symbols, which are not suitable for an ML algorithm. Thus, we 
converted each character to its corresponding ASCII value and then 
obtained a string of numbers. Technically, all strings should have 
the same length for the input of ML models. To this end, “0” was 
added at the end of the short strings. Descriptors (32) that contain 
molecular properties and fingerprints (33) that reflect the substructures 
as well as special patterns can be generated from SMILES. All the 
descriptors and fingerprints were obtained through ChemDes (an 
online transformer) (34).

RESULTS
Importance of programming language expressions 
for donor materials in modeling
The programming language expression is one of the important aspects 
in the ML approach as it transforms the raw data into a machine-
readable representation (25). Various expressions for the same molecule 
comprise vastly different chemical information, or this information 
is presented in different abstract levels. A desirable form of expression 
should cover almost all the features of the molecule but contain no 
redundant information. Here, a set of ML models are used to explore 
the different expressions of a molecule by comparing their predicted 
accuracy for the PCE.

The image of a chemical structure is a direct and original expression 
of a molecule (Fig. 1B). However, features connected with PCE are 
not reflected in an image and are regarded as hidden features. To over-
come this problem, we use deep learning, which can extract features 
from images. The confusion matrix shown in Fig. 2A indicates the 
performance of the deep learning model. The predicted accuracies 
of the best-performing deep learning model for the first (0 to 2.99%) 

and second (above 3.00%) categories are 70.79 and 67.90%, respec-
tively. The overall accuracy is 69.41%. The unsatisfactory performance 
of the deep learning model with image as expression is attributed to 
the small size of our database (a typical feature of deep learning models 
is that they require large training sets). When the number of molecules 
in the database reaches 50,000, the accuracy of the deep learning 
model can exceed 90% (19). To fully train a deep learning model 
usually requires a large database containing millions of samples 
(35, 36). Here, each category only has hundreds of molecules, making 
it difficult for the model to extract enough information to achieve 
high accuracy. Fine-tuning a pretrained model (36) can considerably 
reduce the amount of data required, but thousands of samples are 
still needed to provide a sufficient number of features. Therefore, 
increasing the size of the database is one of the solutions when using 
images to express molecules.

The SMILES code provides another original expression for a 
molecule (Fig. 1B) (31). Through a traversal over the whole chemical 
structure, a string that contains the information on atoms, bonds, 
rings, aromaticity, and branches can be obtained based on established 
rules. The results of using SMILES as inputs for BP, DNN, RF, and 
SVM models are shown in Fig. 2B. The average accuracies through 
cross-validation of all the four methods are low; the highest one, 
achieved by the RF model, is only 67.84%. There are two possible 
reasons: (i) SMILES is still close to raw data, and unlike deep learning, 
the four classic ML methods do not have the ability to extract hid-
den features. As will be shown later, a further conversion, e.g., to 
fingerprints, is needed for these classic ML methods. (ii) As men-
tioned above, 0 is added to keep the length for SMILES for different 
molecules. These 0s may affect the process of building logical rela-
tionships in the models. Thus, SMILES performs worse than images 
as descriptors of the molecules for predicting the PCE class.

Molecular descriptors describe the properties of a molecule using 
an array of real numbers rather than expressing the chemical structure 
directly (32). Here, two kinds of descriptors (PaDEL and RDKIt) that 
have different sizes of data are used. The PaDEL descriptor (table S1) 
(37) consists of 1875 different types of descriptors, which can be defined 
as one-dimensional (1D) descriptors (i.e., the number of certain groups 
or atoms), 2D descriptors (i.e., graph invariants and molecular prop-
erties), and 3D descriptors (i.e., geometry). Figure 2C depicts the 
results using a PaDEL descriptor as input for the BP, RF, and SVM 
models. The RF model attained the best performance (average ac-
curacy as high as 76.27%), far superior to the BP and SVM models. 
It needs to be noted that our DNN model cannot process a long 
array of real numbers in this experiment. The RDKIt descriptor 
(38) (196 bits; table S2) is much shorter than the PaDEL descriptor 
(1875 bits). The shorter length of the RDKIt descriptor implies it 
contains less information. The results of using RDKIt as the input 
are shown in Fig. 2D. The RF models again attain the best perform
ance. However, the prediction accuracy of RDKIt (75.29%) is only 
1% worse than that of PaDEL (76.27%). In contrast, the accuracy of 
RDKIt (67.65%) for the BPNN model is better than that of the PaDEL 
(62.35%). The accuracy of RDKIt for the SVM model is 47.65%, less 
than 50% (random classification), suggesting that SVM cannot 
establish a logical relationship between RDKIt descriptors and PCE. 
These results indicate that a large data size implies more descriptors 
that are not relevant to PCE, which will affect the ANN performance. 
In addition, a small data dimension means that the chemical in-
formation is insufficient to train SVM models effectively. There-
fore, looking for appropriate descriptors directly related to the target 
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object is the key when using molecular descriptors as inputs in ML 
approaches.

Molecular fingerprints are designed for large-scale database 
screening and take the form of an array of bits (39). They con-
tain “1”s and “0”s to describe the presence or absence of particular 
substructures/patterns in the molecule. Here, seven types of finger-
prints are used as inputs to train the BPNN, DNN, RF, and SVM 
models. The influence of the fingerprint length on the prediction per-
formance of different models is also considered. The results of using 
different types of fingerprints as inputs are summarized in Fig. 3.

MACCS fingerprints (40) have 166 bits, making them the shortest. 
Although it is short, the similarity of fingerprints among different 
molecules is relatively small. For example, both P3HT and PTB7 have 
166 bits in total, and 26 bits of content in the fingerprints are different, 
leading to a “degree of difference” of 15.66% (the complete MACCS 
fingerprints are shown in table S3). However, the results of using 
MACCS fingerprints as the input are unsatisfactory (the highest 
average accuracy achieved by the RF model is only 72.35%) because 
of the limited information they contain. PubChem fingerprints (41) 
have 876 bits, longer than MACCS. However, the differences between 
molecules for PubChem are small. For instance, the degree of dif-
ference is 10.39% for P3HT and PTB7, implying most of the bits are 
the same for these two materials. The small difference among mol-
ecules suggests that the substructures described by PubChem exist 
in most of the molecules, and models will struggle to identify the 

difference among molecules. Although an RF model can obtain an 
average accuracy of 74.90%, we cannot conclude that the PubChem 
fingerprints are suitable as an expression of a molecule for screening 
OPV donor materials.

The FP2 fingerprint (42) has 1020 bits, and it is a path-based 
fingerprint that indexes small-molecule fragments based on linear 
segments up to seven atoms. The performances of the four ML 
methods are stable and satisfactory. The SVM model has the highest 
average accuracy of 74.51% (Fig. 3D). In addition, the Extended 
fingerprint (1021 bits) is an extension of the Chemistry Development 
Kit fingerprint (43), with additional bits describing ring features. The 
prediction results for the Extended fingerprints are similar to those 
for the FP2 fingerprints. The best-performing approach is obtained 
using the RF method (Fig. 3C), attaining an average accuracy of 77.06%.

Both Daylight (44) and Hybridization fingerprints (43) have 
1024 bits, but the information expressed within these two fingerprints 
is quite different. Daylight fingerprints represents the pattern for each 
atom and its nearest neighbors. Hybridization fingerprints takes into 
account SP2 hybridization states rather than aromaticity. However, 
the verification results are similar for these two fingerprints used as 
inputs (Fig. 3). The highest average accuracies (obtained by the RF 
models) for the Daylight and Hybridization fingerprints are 79.02 
and 78.24%, respectively. We point out that the best combination of 
programming language expression and ML algorithm over all models 
is obtained with the Hybridization fingerprint and RF, which achieves 

Fig. 2. Testing results of ML models. (A) Testing of the deep learning model using images as input. (B to D) Testing results of different ML models using (B) SMILES, 
(C) PaDEL, and (D) RDKIt descriptors as input.
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a prediction accuracy of 81.76%. Moreover, it is observed that 
the prediction performances of the FP2, Extended, Daylight, and 
Hybridization fingerprints are close to each other. These fingerprints 
are organized with different rules of representation but have similar 
lengths (around 1000 bits). The similar prediction performance of 
different fingerprints with almost the same length indicates that the 
fingerprint length, rather than the contents of the fingerprints, has 
a notable impact on the prediction of PCE.

The Morgan fingerprint (45) is the longest, having 2048 bits. For 
the BPNN model, the Morgan fingerprint performs poorer than most 
of the fingerprints with lengths around 1000 bits. Notably, the other 
ML models still have satisfactory results, and the highest average 
accuracy of 79.80% is obtained with the SVM model.

From the results described above, we can conclude that, generally, 
the performances of all ML models improve when the fingerprint 
length increases from 166 to 1024 bits. This is understandable since 
more chemical information is included in longer fingerprints. In 
particular, DNN, RF, and SVM models can establish an accurate 
relationship between the chemical structure and PCE when the 
length of the fingerprint exceeds 1000 bits, while BPNN performs 
the best with fingerprints whose length is around 1000 bits. This may 
be due to the relatively poor data processing capability of BPNN, as 

activation functions used in BPNN are imperfect (more details are 
described in the Supplementary Materials). A long fingerprint carries 
much more information than BPNN requires, which may “mislead” 
the model, causing too much pressure on computation (making the 
model difficult to converge). In addition, the overall results suggest 
that molecular fingerprints with lengths above 1000 bits are the most 
suitable and effective inputs for building ML models to predict the 
PCE, owing to their ease of accessibility and the abundance of chemical 
information they contain.

Considering that a higher threshold value of ML models is more 
meaningful when designing highly efficient materials, we increased 
the threshold from 3 to 10%. As mentioned earlier in Methods, an 
increase in the threshold will reduce the number of molecules in the 
database. We trained RF models with Daylight fingerprints as the 
input. When the threshold is set at 10%, the average prediction 
accuracy is 86.67%, but the SD is large (±11.58%), which may be 
due to the small database that contains only 100 molecules.

Screening for high PCE donor material via ML
To efficiently predict the PCE of donor materials, four ML methods 
are used, and their performance for different machine language ex-
pressions are summarized in Fig. 4A. The RF method performs the 

Fig. 3. Performance of ML models. (A to D) The testing results of (A) BPNN, (B) DNN, (C) RF, and (D) SVM using different types of fingerprints as input.
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best, because its strategy is to choose multiple features rather than 
all features from the input for establishing the relationship (46), 
which is advantageous when dealing with complex and long inputs. 
For example, only the RF model performs well when using SMILES, 
PaDEL, and RDKIt descriptors to represent materials.

To further verify the reliability of our ML models, we designed 
10 new small molecular donor materials (D1 to D10, whose chemical 
structures are available in fig. S2). The OPV fabrication process can 
be found in the Supplementary Materials. To the best of our knowledge, 
nine of them have not been reported yet, and one was published very 
recently (22). Originating from the well-studied A--D--A structure 
and the highly efficient BTR molecule developed by us (47), these 
10 donor materials can be divided into three groups with variations 
in the A (end group),  (link), D (core), and side-chain groups. 
Donors D1, D2, D6, and D9 have the same -D- structure but 
different A moieties, while donors D3, D4, and D5 have chlorination 
or alkyl chain modification on the D part. In donors D7, D8, and 
D10, the  links were modified.

As shown in Fig. 4B, the OPV devices are based on a typical 
normal cell architecture. D3 and D7 used IDIC or Y3 as acceptors, 
respectively, while the other eight donors used PC71BM as ac-
ceptors. The donor:acceptor blend film is sandwiched in between a 
poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) 
(PEDOT:PSS)–coated indium tin oxide (ITO) transparent anode 

and a [2-(1,10-phenanthrolin-3-yl)naphth-6-yl]diphenylphosphine 
oxide (DPO) electron transport layer. Ag was used as a back cathode. 
After fabrication, these devices were tested under AM1.5G illumi-
nation in ambient to investigate their photovoltaic performance. 
The current density−voltage (J-V) curves of the OPV devices are 
displayed in Fig. 4C, and the photovoltaic performance parameters 
are summarized in table S4.

Before the experiment, we used our RF models with 3% as threshold 
to evaluate these 10 materials. Three representative fingerprints, i.e., 
FP2, Hybridization, and Daylight, were selected to express the chem-
ical structure of the 10 new molecules. The results are displayed in 
table S5. The comparison between the prediction results by the RF 
model and the experimental PCE values is shown in Fig. 4D. Eight 
of 10 molecules are classified into the correct category, while two 
materials (D8 and D10) that exhibited low PCE (less than 3%) are 
classified into the category with the PCE range of above 3%. It is 
noted that the prediction result signifies the potential of a material 
for OPV application. So, these two materials may be further improved 
by optimizing the experimental conditions.

In addition, these 10 new materials have also been evaluated by 
the model using 10% as threshold. The prediction results are dis-
played in table S6 and fig. S3. The model with 10% as threshold can 
classify eight molecules into the correct category. In general, the 
predicted PCE classes are in good agreement with the experimental 

Fig. 4. Verification of ML models with experiment. (A) Comparison of the results from four different models. (B) Schematic diagram of the cell architecture used in this 
study. (C) J-V curve of the solar cell with the active layer using the predicted donor material. (D) Prediction results versus experimental data for the predicted donor 
materials with the RF algorithm and Daylight fingerprints.
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results. Experiment outcomes indicate that a minor change in struc-
ture can bring about a large difference in PCE values. Encouragingly, 
these minor modifications can be identified by an optimized ML 
model, thus leading to favorable prediction results. Although the ML 
model produces a prediction through comparing similarities, we be-
lieve the features of similarities learned by the models are complex. It 
is not merely the structural similarity, but perhaps it contains abstract 
features such as the location and connection of various substructures.

DISCUSSION
In summary, on the basis of a database containing realistic donor 
materials collected from the literature, various programming lan-
guage expressions of donor molecules including images, ASCII 
strings, descriptors, and molecular fingerprints are used to build 
ML models to predict the corresponding OPV PCE class. The mo-
lecular fingerprints with lengths above 1000 bits provide the best 
programming language expressions of donor molecules due to their 
distinctness and ease of accessibility. The RF algorithm is found to 
be able to handle complex and long inputs, even in the presence of 
noise. This is because an RF chooses multiple features rather than 
the complete content of the input to establish the relationship. Last, 
an experiment was designed to prove the reliability of our ML ap-
proaches. We compared the prediction from the ML models and 
the results of the experiment for 10 new design small molecules. 
The ML predictions are consistent with experimental values with 
minor differences. We have developed a scheme to help OPV donor 
material design by combing ML approaches and experimental anal-
ysis. That is, a large number of donor materials could be screened 
through a preevaluation and classification by our ML model, and 
then the identified leading candidates will be synthesized and further 
tested by experiment. Our study on the relationship between the 
chemical structure of molecule and PCE of the molecule-based OPV 
could speed up new donor material design and hence accelerate the 
development of high PCE OPVs.

The greatest value of ML here and in other fields is the savings in 
time and resources. We envisage ML as an aid to guide experiments, 
e.g., rapidly evaluating very high numbers of new materials, which 
is not feasible with traditional experiments or ab initio models, to 
propose candidates for further laboratory analysis. ML is a tool that 
should be used in conjunction with the experiment, continually 
refined to incorporate new data. The use of the two together com-
plimentarily is what can progress the material discovery.
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