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Abstract
Accurate gene prediction in metagenomics fragments is a computationally challenging task due to the short-read length, 
incomplete, and fragmented nature of the data. Most gene-prediction programs are based on extracting a large number of 
features and then applying statistical approaches or supervised classification approaches to predict genes. In our study, we 
introduce a convolutional neural network for metagenomics gene prediction (CNN-MGP) program that predicts genes in 
metagenomics fragments directly from raw DNA sequences, without the need for manual feature extraction and feature 
selection stages. CNN-MGP is able to learn the characteristics of coding and non-coding regions and distinguish coding and 
non-coding open reading frames (ORFs). We train 10 CNN models on 10 mutually exclusive datasets based on pre-defined 
GC content ranges. We extract ORFs from each fragment; then, the ORFs are encoded numerically and inputted into an appro-
priate CNN model based on the fragment-GC content. The output from the CNN is the probability that an ORF will encode 
a gene. Finally, a greedy algorithm is used to select the final gene list. Overall, CNN-MGP is effective and achieves a 91% 
accuracy on testing dataset. CNN-MGP shows the ability of deep learning to predict genes in metagenomics fragments, and 
it achieves an accuracy higher than or comparable to state-of-the-art gene-prediction programs that use pre-defined features.
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1  Introduction

Metagenomics is the analysis of genomes contained in envi-
ronmental samples, such as soil, seawater, and human gut 
samples [1–3]. Metagenomics analysis uses modern tech-
niques to study microbial organisms directly in their natural 
environments, without the need for the isolation and lab cul-
tivation of individual species [4]. Metagenomics has many 
useful applications in medicine, engineering, agriculture, 
and ecology [5, 6]. Gene prediction is an important step in 
the metagenomics pipeline. Gene prediction is the process of 
finding the location of coding regions in genomics sequences 
[7, 8]. Early studies identified genes through experiments 
on living cells and organisms [9], a reliable but expensive 

task, and current studies use computational approaches to 
predict genes due to the efficiency of such methods. Com-
putational approaches in gene prediction can be classified 
as similarity-based and content-based approaches [8, 10]. 
Similarity-based approaches search for similarities between 
candidate and existing known genes in public sequence 
databases. Thus, similarity-based approaches are compu-
tationally expensive and miss novel genes. Content-based 
approaches are a new generation of gene-prediction pro-
grams that overcome these limitations. These approaches 
use various features of sequences, such as codon usage, GC 
content, and sequence length. They then apply supervised 
learning or statistical approaches to determine whether a 
read contains any genes. Metagenomics gene prediction 
is a challenging task due to short read-length, incomplete, 
and fragmented nature of the data [7, 11]. Machine learn-
ing-based gene prediction programs for metagenomics 
fragments show promising results [12, 13]. For example, 
Orphelia [14, 15]and Metagenomics Gene Caller (MGC)
[16] use neural networks to predict genes in metagenomics 
reads, while MetaGUN [17] uses support vector machine 
(SVM). These gene prediction programs involve feature 
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extraction and feature selection steps. For example, Orphelia 
uses a two-stage machine learning approach. First, Orphelia 
extracts some features from each open reading frame (ORF): 
monocodon usage, dicodon usage, and translation initia-
tion sites (TISs). Then, linear discriminants are used as a 
dimensionality reduction technique to reduce feature space. 
Moreover, ORF length and GC content are combined with 
other features; then, neural networks are used to compute 
the probability that an ORF encodes a gene. MGC uses the 
same two-stage machine learning approach, but it creates 
several training models based on several GC-content ranges 
to improve the gene prediction task. MGC adds two addi-
tional features, monoamino-acid and diamino-acid usage, 
which improve gene prediction accuracy.

Classical machine learning workflow starts with data 
cleaning, feature extraction, model learning, and model 
evaluation. Moreover, classical machine learning algorithms 
cannot directly process raw data [18]. Representative fea-
tures are extracted from the raw data, then, feature vectors 
are supplied into a classifier to obtain an appropriate class. 
Selection of the significant features that represent the data 
requires domain knowledge; this step is critical, difficult, 
and time-consuming, and it can affect the performance of 
prediction [19, 20]. Computationally, DNA sequences do 
not have explicit features, and current representations are 
highly dimensional [21]. In addition, most feature selection 
methods do not scale well in the case of high dimensional-
ity [19, 22].

Recent approaches in machine learning use deep learning 
techniques to automatically extract significant features from 
raw data, such as image intensities or DNA sequences [19, 
20, 23, 24]. Deep learning is used widely and successfully 
in image recognition, speech recognition, natural language 
processing, computer vision, bioinformatics, and compu-
tational biology [18–20]. In the last few years, there has 
been a growing interest in deep learning approaches due to 
the availability of large data, computational resources and 
accurate prediction [21, 23]. In bioinformatics, deep learning 
approaches are used in functional genomics, image analysis, 
and medical diagnostics research [21, 23, 25]. Convolutional 
neural networks (CNNs) are one of the most popular deep 
neural networks architectures. CNNs automatically detect 
significant features and eliminate the need for manual fea-
ture extraction. Considerable attention has been paid to 
the application of CNN-based approaches to bioinformat-
ics problems. Collobert et al. [26] first used CNNs for a 
sequence analysis of generic text. However, few research 
studies have used CNN-based approaches for biological 
sequences [25]. These research studies use CNNs trained 
directly from raw DNA sequences without the use of a fea-
ture extraction step [19]. For example, DeepBind [27] uses 
CNNs to predict the specificities of DNA and RNA-binding 
sites by discovering new sequence motifs. Gangi et al. [20] 

use CNNs and recurrent neural networks (RNNs) to identify 
nucleosomes positioning in sequences. DeepSEA [28] uses 
CNNs to predict the chromatin effects of sequence altera-
tions with single nucleotide sensitivity. DanQ [29] uses the 
CNN and RNN frameworks to predict non-coding function 
directly from sequences. Basset [30] uses CNNs to identify 
the functional activities of DNA sequences, such as accessi-
bility and protein binding. Meanwhile, CNNProm [24] uses 
CNNs for prokaryotic and eukaryotic promoter prediction. 
CNNProm achieves higher accuracy than other promoter 
prediction programs.

In this paper, we explore the possibility of using a CNN-
based approach in gene prediction using metagenomics frag-
ments. The main advantages of using CNNs are simplicity 
and efficiency, CNNs achieve promising results in various 
applications.

2 � Material and Methods

2.1 � Dataset

We use two datasets, one for training, and the other for test-
ing CNN-MGP. The datasets were used by Orphelia [14] 
and MGC [16]. The training data included seven million 
ORFs extracted from 700 bp fragments. These fragments 
were excised from 131 fully-sequenced prokaryotic genomes 
(bacterial and archaeal) [14] and their gene annotations 
obtained from GenBank [31]. We divided the training data 
into 10 mutually exclusive parts based on pre-defined GC 
ranges. Previous research has shown that building multiple 
models based on GC content is better than building a single 
model [16], because fragments with similar GC content have 
closer features such as codon usage [16]. The testing data 
included fragments of 700 bp in length from three archaeal 
and eight bacterial genomes. Table 1 presents the genomes 
used in the testing, with their GenBank accession number 
and GC content. The 700 bp fragments were randomly 
excised to create a 1-fold genome coverage from each train-
ing genome and a 5-fold coverage for each genome in the 
testing dataset.

2.2 � The Proposed  Method

Our proposed method has three main phases including data 
pre-processing, training, classification and post-processing. 
First, we numerically encode the ORFs before inputting 
them into the CNN models. Then, 10 CNN models are built 
for the classification phase. Finally, the CNN classifiers are 
used to approximate the gene probability for the candidate 
ORFs, and a greedy algorithm is used to select the final 
gene set.
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2.2.1 � Data Pre‑processing

We use character-level one-hot encoding to represent the 
ORFs similar to previous research [21, 24, 32]. One-hot 
encoding is used to transform categorical data such as nucle-
otides into a numerical form. Each nucleotide is represented 
as a one-hot vector that has all zero entries except one in a 
specific position. For example, A is encoded as (1,0,0,0), T 
as (0,0,0,1), C as (0,1,0,0), and G as (0,0,1,0). Each ORF, 
with length L, is represented as L× 4 matrix (705 is the maxi-
mum ORF length in our problem). Figure 1 shows the one-
hot encoding for a DNA sequence.

2.2.2 � Training

A convolutional neural network (CNN) is a special type of 
neural networks that works with data having a grid topol-
ogy [33]. CNNs were developed by LeCun et al. [34] in 
1998 to recognize handwritten characters from bank checks. 
Recently, CNNs have been applied to several applications 
such as image recognition, video recognition, natural 

language processing, and computational biology. CNNs are 
composed of several layers of convolutional, non-linear, 
pooling, and fully connected layers. The convolutional layer 
is the most important building block of a CNN. It processes 
input data using a matrix of weights called a filter, which 
is a matrix of parameters that are changed by a learning 
algorithm [33]. Filters, of window size n, slide over the 
input data, and a dot product is calculated between the input 
data and filter parameters to produce a feature map. The 
first convolutional layer is able to capture sequence patterns, 
and deeper convolutional layers can capture patterns that 
are more complex [35, 36]. After the convolutional layer, 
a non-linear activation function, the rectified linear unit 
(ReLU), is applied to the output. Then, the pooling layer is 
used to reduce the computational cost, memory usage, and 
number of parameters and to control over-fitting. The max-
pooling layer is the most common type of pooling layers. It 
computes the maximum output from a small window [33], 
then, a fully connected layer is used to obtain the probability 
of prediction.

We use one-dimensional CNNs, because DNA sequences 
are one-dimensional arrays of nucleotides. We use holdout 
validation to partition data into training and validation sets. 
In total, 70% of the training dataset is used for training and 
30% for validation. The training dataset is used to train mod-
els with different hyper-parameters, and the validation set 
is used to test these models. Hyper-parameters are selected 
based on the performance of the validation dataset of GC 
range one. The selection of the number of layers, the number 
of filters, and filter window size is data- and application-
dependent [19, 32]. We follow the testing-based approach 
used by Zeng et al. [32] and train different models with dif-
ferent configurations to get the most suitable configurations 
for our problem. First, we use 16 as the number of filters, and 
we test different filter window sizes: 5, 10, 21, 24, and 30. 
We find the window size of 21 produce the highest accuracy 
of 97.71%. Then, we test different number of filters of 16, 
32, 64, 128, and 200. The 200 filters produce the highest 
accuracy of 97.92%. Then, we test two layers with number 
of filters 64 and 200, which produce the highest accuracy 
of 98%. Table 2 shows cross-validation of our model with 
different filter window sizes and number of filters. We select 
a batch size of 256, which is suitable for most applications. 
Finally, the model with the best performance, as shown in 
Fig. 2, is selected to build the final CNN models from the 
entire training dataset.

We compute the accuracy of CNN-MGP models for each 
GC range using cross-validation. We use hold-out valida-
tion, a type of cross-validation method. The training dataset 
is divided into two datasets: 70% for training and 30% for 
validation. Both the training and validation datasets have the 
same class proportion as the entire dataset. CNN-MGP is 
trained using a training dataset and is evaluated on validation 

Table 1   Testing data

The first three genomes are archaea and the remaining are bacterial 
genomes

Genomes GenBank 
accession no.

GC content (%)

Archaeoglobus fulgidus NC_000917 48.6
Methanocaldococcus jannaschii NC_000909 31.4
Natronomonas pharaonis NC_007426 63.4
Buchnera aphidicola NC_002528 26.3
Corynebacterium jeikeium NC_007164 61.4
Chlorobaculum tepidum NC_002932 56.5
Helicobacter pylori NC_000921 38.9
Prochlorococcus marinus NC_007577 31.2
Wolbachia endosymbiont NC_006833 34.2
Burkholderia pseudomallei NC_006350 67.7
Pseudomonas aeruginosa NC_002516 66.6

A T G T A C T G A

1 0 0 0
0 0 0 1
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

One-hot
encoding

Fig. 1   One-hot Encoding for DNA sequence. Each nucleotide is rep-
resented as a one-hot vector: A = 1000, T = 0001, C = 0100, and G 
= 0010
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dataset. Table 3 presents the accuracy of CNN-MGP models, 
which is between 98 and 99.1%. CNN models with a higher 
GC range achieve a higher accuracy than those with a lower 
GC range.

Each model consists of six layers. The first layer is a con-
volutional layer with 64 filters and a filter window size of 21. 
The second layer is a max-pooling layer with a pool size of 
2. The third layer is a convolutional layer with 200 filters and 
a filter window size of 21. The fourth layer is a max-pooling 
layer with a pool size of 2. Then, we use a dropout layer that 
drops out portions of its output to improve the performance 
of CNNs and to reduce over-fitting [37]. We set the dropout 
rate to 50%. Then, the output is flattened to a 1D vector 
before supplying to a fully connected layer. The fifth layer 
is a fully connected neural network with 128 neurons. Then, 
we use a dropout layer. Finally, we use a softmax output 
layer to estimate the gene probability.

The CNN models are implemented using the Keras pack-
age [38], a minimalist Python library for deep learning. It 
runs on top of TensorFlow [39] and executes on GPUs. We 
used the Amazon Elastic Compute Cloud (Amazon EC2) to 
perform our experiments [40].

2.2.3 � Classification and Post‑Processing

To predict genes for a given metagenomics fragment, we 
extract all complete and incomplete ORFs from each frag-
ment. A complete ORF is an ORF that starts with a start 
codon (ATG, CTG, GTG or TTG) followed by a number of 
codons and ends with a stop codon (TAG, TAA, or TGA). 
Incomplete ORF does not have start or stop codons or both. 
The ORFs are then numerically encoded using one-hot 
encoding approach. Then, we select an appropriate CNN 
model to score each ORF based on the GC content of the 

fragment. The output from the CNN is the probability that 
an ORF encodes a gene. ORFs with a probability greater 
than 0.5 are considered as candidate genes. Some of the 

1 0 0 0
0 0 0 1
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

One-hot
encoding

PoolingConvolutionConvolution Pooling

Output
layer

sreyaLgniloopdnanoitulovnoCFROtupnI Fully connected
layer

Gene
probability

A TG T A C T G A

Fig. 2   CNN-MGP Architecture. First, an ORF is encoded numeri-
cally using one-hot encoding; then, a matrix of numbers is inputted 
into an appropriate CNN-MGP model based on its fragment GC con-
tent. The CNN-MGP model consists of six layers. The first layer is a 
convolutional layer with 64 filters and a filter window size of 21. The 
second layer is a max-pooling layer with a pool size of 2. The third 

layer is a convolutional layer with 200 filters and a filter window size 
of 21, and the fourth layer is a max-pooling layer with a pool size of 
2. Then, the output is flattened to a 1D vector before being inputted 
into a fully connected layer with 128 neurons. Then, the output layer 
produces a final gene probability

Table 2   The accuracy of the first CNN model with different configu-
rations by varying the number of convolutional layers, the number of 
filters, and filter window size

No. of convolu-
tional layers

No. of filters Filter window 
size

Accuracy

1 16 5 97.57
1 16 10 97.68
1 16 21 97.71
1 16 24 97.70
1 16 30 97.65
1 32 21 97.81
1 64 21 97.87
1 128 21 97.89
1 200 21 97.92
2 (64,200) 21 98.00

Table 3   CNN cross-validation 
performance for different GC 
ranges

GC range CNN accuracy

0–36.57 98.0
36.57–41.57 98.4
41.57–46 98.5
46–50.14 98.3
50.14–54.28 98.3
54.28–58.14 98.0
58.14–61.85 98.3
61.85–65 98.8
65–68.28 99.0
68.28–100 99.1
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candidate genes may overlap and only one can be the candi-
date gene. Genes in prokaryotes can maximally overlap by 
45 bp [41]. Therefore, a greedy algorithm [14, 16] is used 
as a post-processing step to eliminate any overlapping genes 
and generate a final list of candidate genes. The candidate 
gene with the highest probability is more likely to be the 
correct gene, and we remove all candidate ORFs that overlap 
with it by more than 60 bp.

3 � Results and Discussion

3.1 � Performance Measures

To measure the gene prediction performance, a compari-
son is made between the algorithm’s predictions and the 
true gene annotation in the fragments derived from Gen-
Bank [31]. When the ORF overlaps with at least 60 bp of an 
annotated gene in the same reading frame it is considered a 
true positive (TP). On the other hand, if the predicted ORF 
is incorrectly identified as a gene, it is considered a false 
positive (FP). Moreover, a false negative (FN) is counted 
when an overlooked gene is incorrectly identified as a non-
coding ORF. We measure the prediction performance based 
on the sensitivity, specificity, and harmonic mean. Sensi-
tivity is used to measure the probability of detection, as it 
measures the percentage of genes that are correctly detected. 
Meanwhile, specificity is used to measure the reliability of 
the prediction, as it measures the percentage of predicted 
genes that are annotated. For comparison with the Orphelia 
and the MGC gene prediction programs, we use the positive 
likelihood score as a measure of specificity. The sensitivity, 
specificity, and harmonic mean are computed using the fol-
lowing equations:

3.2 � Results

We evaluate CNN-MGP models on an external dataset. 
The testing dataset contains fragments of 700 bp in length 
from three archaeal and eight bacterial genomes, as shown 
in Table 1. We compare CNN-MGP prediction with true 
gene annotation from GenBank [31]. Moreover, we repeat 

(1)Sensitivity =

TPgene

TPgene + FNgene

(2)Specificity =

TPgene

TPgene + FPgene

(3)Harmonic Mean =
2 × Sens × Spec

Sens + Spec
.

the testing 10 times per genome. We compute the mean and 
standard deviation for the sensitivity, specificity and har-
monic mean of 10 random replications per genome, as pre-
sented in Table 4. CNN-MGP achieves an average specificity 
of 94.87%, an average sensitivity of 88.27%, and an average 
harmonic mean of 91.36%. The average standard deviation 
of the harmonic mean is 0.14%.

We compare CNN-MGP with three state-of-the-art gene 
prediction programs—Orphelia [14], MGC [16], and Prodi-
gal [42]—using the same test dataset. The results from the 
comparison are presented in Table 4. CNN-MGP achieves 
specificity similar to Prodigal, but Prodigal outperforms 
CNN-MGP in terms of sensitivity and harmonic mean. 
Prodigal, CNN-MGP, and MGC all outperform Orphelia. 
CNN-MGP outperforms Orphelia by an average harmonic 
mean of 10%; its overall performance is similar to that of 
MGC, with both methods achieving an average harmonic 
mean of 91% for some genomes, CNN-MGP performs bet-
ter, while MGC performs better for others.

3.3 � Discussion

The aim of our study is to explore the feasibility of using 
deep learning in metagenomics gene prediction. The results 
provide important insights into using deep learning for 
gene prediction, particularly that it is accurate and sim-
ple to implement. Feature extraction and feature selection 
are important steps in most gene prediction programs, as 
extracting few or irrelevant features reduces the prediction 
performance [43]. However, extracting a large number of 
features is computationally expensive and may cause over-
fitting. For example, Orphelia and MGC extract thousands 
of features, such as codon usages, TIS scores, GC content, 
and ORF lengths. Then, linear discriminants are used to 
reduce feature space. Further, neural networks are used to 
predict genes in metagenomics fragments. CNN-MGP is a 
CNN-based metagenomics gene prediction program that 
starts with raw ORFs and then applies pre-processing of 
one-hot encoding to produce a matrix of numbers that will 
be inputted into CNNs, as presented in Fig. 2. CNN-MGP 
learns features from the raw data itself and produces the 
probability that an ORF encodes a gene. CNN-MGP requires 
fewer steps than MGC and Orphelia. The main advantage of 
CNNs is their ability to learn features automatically from the 
raw data itself without the need to define and compute fea-
tures that require expert knowledge [19, 44]. CNNs perform 
two main tasks: feature extraction and classification. The 
convolutional and pooling layers extract significant features 
automatically, and then a fully connected layer is used to 
generate the probability of prediction.

Use of CNNs has some limitations. First, training CNNs 
is computationally expensive, but using efficient computing 
environments, such as GPUs, can overcome this limitation; 
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most deep-learning frameworks, such as Caffe2, PyTorch, 
and TensorFlow, support GPU execution to accelerate train-
ing. Second, CNNs are prone to overfitting due to large num-
bers of hyper-parameters that must be tuned, like number of 
layers, number of filters, filter window size, and type of acti-
vation function. There are various solutions to overfitting, 
including early stopping and dropout; moreover, designing a 
CNN model architecture and selecting optimal hyper-param-
eters are crucial steps in improving prediction performance. 
We test various CNN configurations by changing the number 
of filters, the filter window size, and the number of layers to 
obtain the final model. We found that adding more filters and 
more layers increases the performance of our model, but it 
also increases the time complexity. Moreover, we found that 
in a convolutional layer, a large filter window is better than 
a small window to capture the characteristics of coding and 
non-coding regions. These results are consistent with previ-
ous CNN-based approach studies for biological sequences 
that suggested a large filter window to predict promoter and 
DNA binding sites. For example, CNNProm [24] uses a filter 
window size of 21 and DeepBind [27] uses a filter window 
size of 24.

Furthermore, a relationship between GC content and pre-
diction accuracy can be observed in Table 3. CNN models 
with a higher GC range achieve a higher accuracy than those 
with a low GC range. For example, CNN models built from 
sequences with GC content greater than 65% achieved higher 
accuracy than those built from other GC ranges. This finding 
further supports our hypothesis that fragments with similar 
GC content have closer features and thus different classifica-
tion models should be built for different GC contents.

4 � Conclusion

Recently, considerable attention has been paid to the appli-
cation of deep learning to various bioinformatics problems. 
The purpose of the current study is to use CNNs to predict 
genes in metagenomics fragments and to investigate the 
effect of CNNs on gene prediction. CNNs have been used 
successfully in various bioinformatics problems, such as 
DNA binding site and promoter predictions.

We introduce CNN-MGP, a metagenomics gene pre-
diction program based on a CNN approach. CNN-MGP 
does not require domain knowledge such as gene features, 
because CNNs are able to extract significant characteristics 
directly from raw data. ORFs are encoded numerically and 
supplied into an appropriate CNN-MGP model. The model 
produces the probability that an ORF will encode a gene. We 
test different CNN configurations by varying the number of 
filters, the filter window size, and the number of layers to 
produce an accurate model. The best hyper-parameters are 
selected for the final models. A comparison of CNN-MGP Ta
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with recent state-of-the-art gene prediction programs Orphe-
lia, MGC, and Prodigal shows that CNN-MGP produces 
promising results. Our approach supports the recent use of 
CNNs to biological sequence analysis. Traditional classifica-
tion approaches are not effective when trying to find genes in 
erroneous sequences. The reason behind this is the fact that 
models are built using features that rely on the correct read-
ing frame such as codon bias. Therefore, any frame-shift in 
the input read will result in a different distribution that does 
not match the trained models. The question is whether CNN-
based models will be able to overcome this issue and enable 
us to identify the correct features when sequence errors are 
introduced.
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