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Evolutionary games on isothermal graphs
Benjamin Allen 1,6*, Gabor Lippner2,6 & Martin A. Nowak3,4,5

Population structure affects the outcome of natural selection. These effects can be modeled

using evolutionary games on graphs. Recently, conditions were derived for a trait to be

favored under weak selection, on any weighted graph, in terms of coalescence times of

random walks. Here we consider isothermal graphs, which have the same total edge weight

at each node. The conditions for success on isothermal graphs take a simple form, in which

the effects of graph structure are captured in the ‘effective degree’—a measure of the

effective number of neighbors per individual. For two update rules (death-Birth and birth-

Death), cooperative behavior is favored on a large isothermal graph if the benefit-to-cost

ratio exceeds the effective degree. For two other update rules (Birth-death and Death-birth),

cooperation is never favored. We relate the effective degree of a graph to its spectral gap,

thereby linking evolutionary dynamics to the theory of expander graphs. Surprisingly, we find

graphs of infinite average degree that nonetheless provide strong support for cooperation.
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The structure of a population has important consequences
for its evolution1–10. In particular, spatial or social network
structure can promote the evolution of cooperative beha-

vior, by allowing cooperators to cluster together and share ben-
efits11–13.

Spatial structure can be represented mathematically as a graph
or network, in which nodes represent individuals and edges
indicate spatial or social connections6,14–20. Edges can be
weighted to indicate the strength of the connection. To study
cooperation or other forms of social behavior, interactions can be
modeled as matrix games. Individuals play games with their
neighbors, and the payoffs from these games determine repro-
ductive success.

Mathematical studies of evolutionary games on graphs16–18,20–29

have typically assumed that the graph is regular, meaning that each
individual has the same number of neighbors. Recently, a condition
was derived that determines which strategy is favored in any two-
player, two-strategy game, on any weighted graph, under weak
selection30–32. Weak selection means that the game has only a small
effect on reproductive success. For nonweak selection, determining
the outcome of evolutionary games on graphs is PSPACE-
complete33.

A weighted graph is called isothermal if the sum of edge
weights is the same at each vertex (Fig. 1). This property has a
natural interpretation: suppose that the edge weights represent
the amount of time that two individuals interact with each other.
Then the graph is isothermal as long as each individual devotes
the same total time to interaction. Importantly, some individuals
may divide their time thinly among many contacts, while others
focus primarily on one or two contacts.

Isothermal graphs have special relevance for evolutionary
dynamics. All vertices of an isothermal graph have the same
reproductive value—meaning that each vertex contributes equally
to the future population under neutral drift10,34. The Isothermal
Theorem6,35 states that isothermal graphs neither amplify nor
suppress the effects of selection for mutations of constant fitness
effect.

Here, we analyze evolutionary games on isothermal graphs,
and obtain more powerful results than are available for arbitrary
weighted graphs30–32. The condition for a strategy to be favored,
under weak selection, takes a particularly simple form, in which
the graph structure is summarized in a single statistic, which we
term the ‘effective degree’, ~κ. An isothermal graph of effective
degree ~κ behaves like an unweighted ~κ-regular graph in its effect
on strategy selection. In particular, cooperation is favored on a
large graph (for particular update rules; see below) if and only if
the benefit to others exceeds ~κ times the cost. We derive bounds
on ~κ in terms of the graph’s spectral gap (the difference between
the two largest eigenvalues), establishing a link to the theory of
expander graphs36–38. Applying our results to power-law net-
works and to heterogeneous subdivided populations, we exhibit
graphs of arbitrarily large average degree that provide arbitrarily
strong support to cooperation.

Results
Model. We represent spatial structure by a weighted, connected,
isothermal graph G of size N . The edge weight between vertices
i; j 2 G is denoted wij. Without loss of generality, we scale edge
weights so that

P
j2Gwij ¼ 1 for each vertex i. In this way, edge

weights may be interpreted as probabilities or frequencies of
interaction. Edges are undirected, meaning wij ¼ wji, and there
are no self-loops: wii ¼ 0 for each i. Two vertices are neighbors if
they are joined by an edge of positive weight; the number of
neighbors of vertex i is called its topological degree, ki.

Vertices in an isothermal graph may differ widely in the
distribution of edge weights among their neighbors (Fig. 1). We
quantify these differences using the ‘Simpson degree’20 (Fig. 2),
defined for each vertex i as

κi ¼
X
j2G

w2
ij

 !�1

: ð1Þ

In words, if individual i randomly selects two neighbors, with
probability proportional to edge weight, then κi is the inverse
probability that the same neighbor is selected twice. The Simpson
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Fig. 1 Isothermal graphs and their effective degrees. A graph is isothermal if
the sum of edge weights is the same for each vertex. The effective degree ~κ
of the graph, defined in Eq. (3), determines the outcome of evolutionary
game dynamics. a An asymmetric isothermal graph; weights are shown for
each edge. b A wheel graph, with one hub and n wheel vertices. All
connections with the hub have weight 1=n. All connections in the periphery
have weight ðn� 1Þ=2n. As n ! 1, the effective degree approaches 2. A
formula for arbitrary n is derived in Supplementary Note 3. c A 30-vertex
graph generated with preferential attachment62 and linking number m ¼ 3.
Isothermal edge weights are obtained by quadratic programming (see
Methods). The effective degree, ~κ � 2:47, is less than the average
topological degree, �k ¼ 5:6. d An island model, with edges of weight α � 1
between each inter-island pair of vertices. Shown here are two islands: a
k1-regular graph of size N1, and a k2-regular graph of size N2
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Fig. 2 Simpson degree and remeeting time. The Simpson degree κi ¼P
jw

2
ij

� ��1
quantifies the effective number (or diversity) of neighbors of a

vertex i, taking their edge weights into account. a If the edge weights to
neighbors are nonuniform, the Simpson degree κi is less than the
topological degree ki. Here, κi ¼ 4, which is less than the topological
degree, ki ¼ 5. b If each neighbor has equal edge weight 1=k, the Simpson
degree is equal to the topological degree, k. c The remeeting time τ i is the
expected time for two independent random walks from i to meet each
other. The effective degree ~κ of a graph is the weighted harmonic average
of the Simpson degrees, with weights given by the remeeting times
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degree κi quantifies the effective number of contacts of individual
i, accounting for the time spent with each contact, analogously to
how the Simpson index of biodiversity39 quantifies the effective
number of species in a population40. If all edges from vertex i
have equal weight, then the Simpson degree equals the actual
number of neighbors: κi ¼ ki. Otherwise, κi is less than ki, and
decreases as the distribution of edge weights from i becomes more
uneven.

Individuals can be one of two types, A or B, corresponding to
strategies in the game

A B
A

B

a b

c d

� �
:

ð2Þ

Each time-step, each individual plays the game with all neighbors.
Payoffs from the game are translated into fecundity (reproductive
rate) by Fi ¼ 1þ δf i, where f i is the edge-weighted average
payoff that i receives from neighbors, and δ is a parameter
quantifying the strength of selection. We study weak selection
(0 < δ � 1) as a perturbation of neutral drift (δ ¼ 0).

Evolution proceeds according to a given update rule. We first
consider death-Birth (dB) updating16: A vertex i 2 G is chosen,
with uniform probability, to be replaced. A neighbor j of i is then
chosen to reproduce, with probability proportional to wijFj. The
offspring of j replaces the occupant of i and inherits the type of its
parent. The capitalization in dB indicates that death is uniform,
whereas birth is dependent on payoff. Other update rules are
considered later.

Over time, one of the competing types will die out and the
other will become fixed. Consider an initial state with a single
vertex of type A chosen uniformly at random, and all other
vertices of type B. We define the fixation probability ρA as the
(expected) probability that type A becomes fixed from this initial
state. Similarly, ρB is the probability that type B becomes fixed
from an initial state with one random (uniformly chosen) vertex
of type B and all other vertices of type A. We say A is favored if
ρA > ρB.

Condition for success. We find that the key quantity char-
acterizing an isothermal graph is its effective degree ~κ, which we
define as a weighted harmonic average of the graph’s Simpson
degrees:

~κ ¼
P

iτiP
iτiκ

�1
i

¼ N2P
iτiκ

�1
i

: ð3Þ

The weighting τi of vertex i is the expected remeeting time of two
random walks that are initialized at i (see Fig. 2c and Methods).
Remeeting times arise from tracing ancestries backward in time as
coalescing random walks36,41–43. If all vertices have k neighbors
of equal weight, the effective degree is equal to the topological
degree: ~κ ¼ k.

We prove in Supplementary Note 1 that strategy A is favored,
for death-Birth updating on an isothermal graph under weak
selection, if and only if

σaþ b > cþ σd; with σ ¼ ~κþ 1� 4~κ=N
~κ� 1

: ð4Þ

As an interpretation of Condition (4), consider strategy A to
represent cooperation and B to represent defection (noncoopera-
tion). For the purposes of this interpretation, we define the cost of
cooperation as C ¼ �1

2 ðaþ b� c� dÞ and the benefit to the
partner as B ¼ 1

2 ða� bþ c� dÞ. Then Condition (4) can be
algebraically rewritten as

ðN=~κ� 2ÞB > ðN � 2ÞC: ð5Þ

The above definitions of benefit B and cost C are motivated by
imagining a hypothetical situation in which one’s partner is
equally likely to be of either type; in this case, playing A rather
than B decreases the actor’s payoff by C and increases the
partner’s payoff by B. If B;C > 0 (cooperation is costly to the
actor and beneficial to the recipient) and ~κ � N , then
cooperation is favored as long as B=C > ~κ. Well-known results
for unweighted k-regular graphs16,17,20,23 are recovered by
substituting k for ~κ. In contrast, if ~κ � N=2, then cooperation is
never favored, but spiteful behaviors (B < 0;C > 0) can be
favored.

According to Conditions (4) and (5), evaluating the conditions
for success on a given isothermal graph amounts to computing
the effective degree, ~κ. This can be done in polynomial time by
solving a system of linear equations for coalescence times (see
Methods).

Random isothermal graphs. How does the effective degree relate
to other degree statistics? Since ~κ is a weighted average, it lies
between the minimum and maximum Simpson degrees:
κmin � ~κ � κmax. However, these bounds are not very informative
for strongly heterogeneous graphs.

To gain further insight, we investigated two models for random
isothermal graphs. The first, a 2D spatial model (Fig. 3a), is
applicable to populations in which each individual occupies a
fixed location. An even number of vertices are randomly placed in
the unit square. These vertices are repeatedly divided into pairs
according to the following scheme: (1) pick an unpaired vertex i
uniformly at random; (2) pair i with another unpaired vertex j,
chosen with probability proportional to e�βdði;jÞ; (3) repeat until
all vertices are paired. Here dði; jÞ is the Euclidean distance
between i and j, and β > 0 tunes the decay of pairing probability
with distance. After a specified number of pairing rounds, the
edge weight between any two vertices is defined to be the fraction
of rounds they were paired. Since each vertex is paired once per
round, the resulting weighted graph is undirected and isothermal.

The second model (Fig. 3b) begins with a random graph
topology generated by shifted-linear preferential attachment44,45,
and obtains isothermal weightings on the edges via quadratic
programming. While the first model is inspired by spatial
biological populations, the second is more applicable to social
networks.

For both random graph models, we compared ~κ to the
(unweighted) arithmetic and harmonic average Simpson degrees
(denoted κA and κH, respectively) as well as to the arithmetic
average topological degree �k. We find (Fig. 3c, d) that the
harmonic average Simpson degree κH provides the best estimate
in most cases. Therefore, B=C > κH closely approximates the
condition for cooperation to be favored for weak selection on a
large isothermal graph. This is significant for the evolution of
cooperation, because the harmonic mean of a set of numbers is
dominated by its smallest elements. Consequently, the presence of
large-degree hubs need not preclude support for cooperation,
even if they lead to a large arithmetic average degree (either
topological or Simpson).

Spectral gap bounds for expander graphs. To formalize the
relationship between the effective degree ~κ and the harmonic
average Simpson degree κH, we derive bounds on ~κ in terms of
the spectral gap—the difference between the two largest eigen-
values of the adjacency matrix. Large graphs with non-negligible
spectral gap are called expander graphs, and have important
applications in mathematics38 and computer science37. For our
purposes, we define a ‘family of isothermal expander graphs’ as a
sequence of isothermal graphs with sizes tending to infinity and
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spectral gap tending to a positive value g, which necessarily lies in
the range 0 < g � 1 (see Methods).

We prove in Supplementary Note 2 that the remeeting times
for such a family are asymptotically bounded by τi � N=g for
each vertex i. We apply this result to bound the effective degree ~κ.
Let κ½a;b� denote the harmonic mean of the Simpson degrees lying
between the ath and bth quantiles, for 0 � a < b � 1. For
example, κ½0;1=4� denotes the harmonic mean over the smallest
fourth (first quartile) of Simpson degrees. For a family of
isothermal expander graphs, we prove the following asymptotic
bounds:

κ½0;g� � ~κ � κ½1�g;1�: ð6Þ
As g increases, both bounds become closer to κ½0;1� ¼ κH.
Combining (6) with classical inequalities, we obtain the looser
but simpler bounds

gκH � ~κ � κA
g
: ð7Þ

Promoters of cooperation with infinite average degree. Our
results allow us to construct families of isothermal graphs that
favor the evolution of cooperation even as the average degree
(either topological or Simpson) diverges to infinity.

Let us first consider island-structured populations (Figs. 1d and
4). The islands are represented by isothermal, vertex-transitive
graphs, G1; ¼ ;Gn, which may differ in their size and network

structure. An overall isothermal graph G is formed by joining
each inter-island pair of vertices by an edge of weight α � 1, and
rescaling intra-island edge weights correspondingly (see Meth-
ods). We prove that, if the island sizes are equal, the effective
degree ~κ of G is the (unweighted) harmonic mean of the Simpson
degrees κ1; ¼ ; κn of the separate islands. If the islands have
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Fig. 3 Effective degrees of random graphs. a A 2D spatial model in which individuals are randomly placed in the unit square and then randomly paired
according to their distance from each other. b A shifted-linear preferential attachment network44,45, with isothermal edge weights obtained by minimizingP

i;jw
2
ij subject to

P
jwij ¼ 1 for all i. c, d For each graph generated by these two models, the effective degree, ~κ (black line) is plotted against the arithmetic

mean topological degree, �k (green dots); the arithmetic mean Simpson degree, κA (blue dots); and the harmonic mean Simpson degree, κH (magenta dots).
Vertical gray bars show the quantile bounds (6) for each graph. In almost all cases, κH provides the best estimate for ~κ; κH performs better only when ~κ is
very small. Note that the arithmetic mean topological degree, �k, is significantly larger than the other degree measures in almost all cases. See Methods for
further details and parameter values
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Fig. 4 Island-structured “super-promoters" of cooperation. We use the
island model (Fig. 1c) to construct families of graphs whose effective degree
~κ remains finite while the arithmetic average degree (both Simpson and
topological) diverges to infinity. a Two islands of equal size: a cycle and a
complete graph. As N ! 1, the effective degree ~κ converges to 4, which is
the harmonic mean of 2 and infinity. b A small complete graph and a large
cycle with alternating edge weights, ε � 1 and 1� ε. Under the appropriate
combination of limits, ~κ converges to 1—meaning that all cooperative
behaviors with B > C > 0 are favored—while κA diverges. Calculations are
provided in the Methods

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13006-7

4 NATURE COMMUNICATIONS |         (2019) 10:5107 | https://doi.org/10.1038/s41467-019-13006-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


different sizes, ~κ is a weighted harmonic mean of κ1; ¼ ; κn, with
weights depending only on the islands’ sizes.

Suppose that one island is a cycle and the other a complete
graph of equal size (Fig. 4a). Then as population size increases,
the arithmetic mean Simpson degree κA diverges to infinity, while
the effective degree converges to 4. Support for cooperation can
be further increased by varying the island sizes and the edge
weights of the cycle (Fig. 4b). In the most extreme limit, we have
κA ! 1 but ~κ ! 1, meaning that any cooperative behavior with
B > C > 0 is favored.

Second, we consider a hypothetical family of isothermal
expander graphs whose limiting Simpson degree distribution is
described by the power-law density f ðκÞ / κ�γ, on the range
κ0 � κ < 1, for arbitrary γ � 2 and κ0 � 1. Evaluating (6) for
the corresponding quantile function, κðxÞ ¼ κ0ð1� xÞ�1=ðγ�1Þ,
yields (Supplementary Note 3)

γ

γ� 1

� �
κ0g

1� ð1� gÞγ=ðγ�1Þ � ~κ � γ

γ� 1

� �
κ0g

�1=ðγ�1Þ: ð8Þ

These bounds are illustrated in Fig. 5. For γ ¼ 2, the arithmetic
average Simpson degree κA diverges to infinity, but the upper
bound on ~κ is 2κ0=g. Thus B=C > 2κ0=g is sufficient for
cooperation to be favored.

Other update rules. So far, we have considered only death-Birth
updating. One may also consider Birth-death (Bd) updating16: An
individual i is chosen, proportionally to its fecundity Fi, to
reproduce; the offspring of i replaces neighbor j with probability
wij. Alternatively, one may let selection act on mortality, leading
to two further update rules20–22. For Death-birth (Db) updating,
an individual i is chosen to die, proportionally to F�1

i ; a neighbor
j is then chosen to reproduce into the vacancy, proportionally to
wij. For birth-Death (bD) updating, an individual is chosen to
reproduce, with uniform probability; the offspring displaces a
neighbor j with probability proportional to wijF

�1
j .

We find (Supplementary Note 1) that bD updating leads to the
same condition for success as for dB, Eq. (4). In contrast, for Bd
or Db, type A is favored for weak selection if and only if

σaþ b > cþ σd; with σ ¼ ðN� 2Þ=N: ð9Þ
This same condition for success was previously derived for well-
mixed populations, under a variety of update rules, with arbitrary
selection strength and mutation rate46–48. Thus isothermal graph
structure has no effect on the conditions for evolutionary game
success under weak selection. Rewriting Condition (9) as

�ðN � 1ÞC � B > 0; ð10Þ
we find that cooperation is never favored for positive B and C.

This generalizes, to all isothermal graphs, the previous finding
that Bd and Db updating do not support cooperation on regular
graphs16,17,20,22,23,26.

The equivalence of success conditions between dB and bD, and
between Bd and Db, was previously observed for vertex-transitive
graphs20–22, but does not hold for arbitrary graphs49. Here we
have demonstrated these equivalences for all isothermal graphs.
These equivalences are related to the scales of spatial competition
induced by the various update rules. For Bd and Db, a type is
favored if it has higher payoff, on average, than its immediate
(one-step) neighbors. Having neighbors of high payoff increases
the likelihood of being replaced by their offspring (for Bd), or
decreases the likelihood of them providing a vacancy to
reproduce into (for Db). In contrast, for dB and bD, a type is
favored if it higher payoff, on average, than its two-step
neighbors. This is because one competes with one’s two-step
neighbor to fill a vacancy (for dB) or to avoid being replaced (for
bD). These observations are made precise in Eq. (14) of the
Methods.

Diffusible public goods. So far we have assumed that game
interactions occur only between immediate neighbors. However,
many microbial populations exhibit a form of cooperation in
which some cells produce useful chemicals that diffuse through
the environment and are utilized by other cells50,51. These che-
micals may be termed “diffusible public goods”—examples
include iron chelators52,53, hydrolyzed sugars54, antibiotic resis-
tance agents55, and growth factors in tumor cells56. Public goods
production can be exploited by “cheaters”, who utilize the good
without producing it, leading to a social dilemma57,58.

We model the diffusion of public goods as a random walk on
G, starting at the vertex where the good is produced. A benefit
bn � 0 goes to the vertex at the nth step of this walk. That is,
benefit b0 goes immediately to the producer, benefit b1 to a
random neighbor, benefit b2 to a random neighbor-of-neighbor
(which may again be the producer itself), and so on. For the sake
of generality, we do not assume any particular form for the bn,
only that the total benefit B ¼P1

n¼0bn is finite. Of the total
benefit from public goods produced at vertex i, the fraction

received by vertex j is ϕij ¼ 1
B

P1
n¼0p

ðnÞ
ij bn, where pðnÞij is the

probability that a random walk from i visits j at the nth step. The
cost to produce the good is C > 0.

Whether production of diffusible goods is favored depends on
the costs to produce, the amount of benefit, the pattern of
diffusion, and the spatial structure57,58. For Bd or Db updating on
an isothermal graph, we show in Supplementary Note 4 that
production is favored under weak selection if

�CðN � 1Þ þ BðNϕð0Þ � 1Þ > 0: ð11Þ
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Fig. 5 Bounds on effective degree for power-law expander graphs. We consider a large isothermal graph for which the Simpson degree distribution is
described by the density fðκÞ / κ�γ on the range ½κ0;1Þ. The upper and lower bounds (8) are shown for a γ ¼ 2 and b γ ¼ 3, both with κ0 ¼ 1. As g
approaches 1, the upper and lower bounds both converge to the (unweighted) harmonic mean Simpson degree κH
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Here ϕð0Þ ¼Pi2G
τi
N2 ϕii is the average amount that a producer

benefits from its own good, with the producing vertex weighted
by remeeting time. According to this condition, production is
favored only if it provides a net benefit to the producers
themselves (Bϕð0Þ > C, in a large population).

In contrast, for dB or bD updating, production is favored if

�CðN � 2Þ þ B½Nðϕð0Þ þ ϕð1ÞÞ � 2� > 0: ð12Þ

Above, ϕð1Þ ¼Pi2G
τi
N2 wijϕij is the expected benefit received by a

random neighbor of a producer, with the producing vertex again
weighted by remeeting time. In this case, production is favored if
the average benefit to a neighbor exceeds the net cost to self
(Bϕð1Þ > C � Bϕð0Þ, in a large population).

In short, production is favored for Bd or Db if there is a net
benefit to the producer, and for dB or bD if there is a net benefit
to the producer plus a randomly chosen neighbor. These results
generalize previous findings for vertex-transitive graphs57. If we
suppose that benefits go only to immediate neighbors (b1 ¼ B
and all other bn ¼ 0), then ϕð0Þ ¼ 0 and ϕð1Þ ¼ 1=~κ, whereupon
Conditions (11) and (12) reduce to our conditions for two-player
games, (10) and (5) respectively.

The distinct outcomes for the different update rules can be
traced to their scales of spatial competition (one for Bd or Db,
two for bD or dB). We show in Supplementary Note 4 that if
spatial competition occurs at scale m, then benefits accruing at
distances <m from the producer contribute to selection for
production, while those accruing at distances � m are canceled by
spatial competition—see Eq. (39) of the Methods.

Discussion
Analytical results for evolutionary games on graphs have recently
been extended from regular graphs to arbitrary weighted
graphs30–32. Isothermal graphs represent an important class of
intermediate generality: flexible enough to represent a wide range
of population configurations, yet simple enough to yield powerful
results. They represent scenarios in which individuals may differ
in their number of connections, but are equal in their repro-
ductive value. Isothermal graphs arise naturally from supposing
that all individuals devote equal time to interaction, and can be
generated via pairing schemes such as we consider in Fig. 3a.

For dB and bD updating, the condition for success under weak
selection takes a simple form, Condition (4), in which the con-
sequences of graph structure are summarized in the effective
degree ~κ. For large graphs, cooperation is favored if it provides
more than a ~κ-fold benefit relative to the cost.

Our result allows us to identify graphs (e.g. Figs. 4 and 5a) for
which the effective degree remains bounded while the arithmetic
average degree (both topological and Simpson) diverges to infi-
nity. This is possible because ~κ is a weighted harmonic average,
and harmonic averages (unlike arithmetic averages) are domi-
nated by the smallest elements of a set.

The weights in ~κ are given by the time, τi, for two independent
random walks from vertex i to rejoin each other. Using spectral
graph theory, we derived bounds on these remeeting times, and in
turn on the effective degree ~κ, in terms of the graph’s degree
distribution and spectral gap. The appearance of the spectral gap
suggests an intriguing link between evolutionary game theory and
the theory of expander graphs. Currently, expansion properties
are much better understood for regular graphs than for non-
regular graphs36–38. Isothermal graphs may serve as a useful
intermediate class for generalizing expander graph theory.

For Bd or Db updating, the conditions for ρA > ρB under weak
selection are independent of the graph structure. In particular, for
these update rules, isothermal graph structure does not promote

the evolution of cooperation, relative to the baseline case of a
well-mixed population. These results underscore the principle—
previously observed in homogeneous population
structures16,17,21,22,59—that, for spatial structure to support
cooperation, the benefits of cooperation must be distributed at
distances less than the scale of competition. Here we have
extended this principle to isothermal graphs, with diffusible
public goods providing the clearest illustration. Our findings for
Bd or Db and are reminiscent of the Isothermal Theorem6,35,
which states that the fixation probability of a mutation of con-
stant fitness, for Bd or Db on any isothermal graph, is the same as
in a well-mixed population. The common thread is that, for Bd or
Db on isothermal graphs, key aspects of the evolutionary process
are invariant with respect to spatial structure. Importantly, for
non-isothermal graphs, Condition (9) is not generally valid, and
the conditions for success under Birth-death updating vary from
graph to graph60. It therefore appears that the cancellation
principle observed here and in previous work16,17,21,22 is specific
to isothermal graphs. The question of whether Bd or Db updating
can promote cooperation on any (non-isothermal) weighted
graph remains open.

Our work adds an important nuance to our understanding
of the evolution of cooperation. Previous work on regular
graphs16–18,20,22–29 showed that cooperation thrives (for dB or
bD updating) when each individual has few neighbors, relative to
the overall population size. Condition (4) shows that it is not the
raw number of neighbors that matters, but their effective number,
as quantified by ~κ. Even in highly interconnected societies,
cooperation can flourish if most individuals interact primarily
with a few close contacts, rather than many loose acquaintances.

Methods
Model. We denote the state of the process by a vector x, with entries xi indicating
the type of each vertex i 2 G: xi ¼ 1 if i has type A and xi ¼ 0 if i has type B. The
payoff to vertex i in state x is denoted f iðxÞ, and the fecundity is given by
FiðxÞ ¼ 1þ δf iðxÞ.

The four update rules we consider are defined by the probability eijðxÞ that the
offspring of vertex i replaces the occupant of vertex j in state x:

eijðxÞ ¼

1
N

wijFiðxÞP
k2GwkjFkðxÞ

� �
death� Birth ðdBÞ

FjðxÞð Þ�1P
k2G FkðxÞð Þ�1

� �
wij Death � birth ðDbÞ

FiðxÞP
k2GFkðxÞ

� �
wij Birth� deathðBdÞ

1
N

wij FjðxÞð Þ�1P
k2Gwik FkðxÞð Þ�1

� �
birth� Death ðbDÞ:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð13Þ

Analysis of weak selection. Here we summarize the derivation of our main result;
Supplementary Note 1 for a full derivation. The key quantity in analyzing selection
is the expected change ΔðxÞ in the number of A individuals from state x. Based on
Eq. (13), we calculate this for weak selection:

ΔðxÞ ¼
δ
N

P
i2Gxi f iðxÞ � f ð2Þi ðxÞ

� �
þOðδ2Þ dB or bD

δ
N

P
i2Gxi f iðxÞ � f ð1Þi ðxÞ

� �
þOðδ2Þ Bd or Db:

8><
>: ð14Þ

Above, we have introduced the notation f ðnÞi ðxÞ ¼Pjp
ðnÞ
ij f jðxÞ for the expected

payoff of an individual at the terminus of an n-step random walk from i, where pðnÞij

denotes the probability that such a random walk terminates at j.
Theorem 4 of Allen and McAvoy61 implies that ρA > ρB if and only if hΔi > 0,

where h i denotes an expectation over a particular probability distribution over
states, called the “rare-mutation conditional (RMC) distribution”. Combining with
Eq. (14), type A is favored under weak selection if and only if

X
i2G

xi f iðxÞ � f ðmÞ
i ðxÞ

� �D E
> 0; ð15Þ

where m ¼ 1 for Bd or Db, and m ¼ 2 for dB or bD.
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Coalescence and remeeting times. We compute the expectation in Eq. (15) using
coalescence times, defined by the recurrence relations

τij ¼ 0i ¼ j1þ 1
2

X
k2G wikτjk þ wjkτik

� �
i≠ j:

�
ð16Þ

Coalescence times are related to expectations over the RMC distribution by

τij / 1
2
� hxixji; ð17Þ

for all pairs i; j 2 G.
The remeeting time τ i is the expected time for two independent random walks

from i to rejoin each other. It is obtained by the relation

τi ¼ 1þ
X
j2G

wijτij: ð18Þ

Remeeting times on isothermal graphs satisfy30X
i2G

τi ¼ N2: ð19Þ

We denote the expected coalescence time from the two ends of an n-step random

walk as τðnÞ ¼ 1
N

P
i;j2Gp

ðnÞ
ij τij. The τðnÞ satisfy the recurrence relation

τðnþ1Þ ¼ τðnÞ þ 1
N

X
i2G

pðnÞii τi � 1: ð20Þ

We observe that pð0Þii ¼ 1, pð1Þii ¼ 0 (no self-loops), and pð1Þii ¼ 1=κi for each i. Using
Eqs. (3), (19), and (20), we obtain

τð1Þ ¼ N � 1 ð21Þ

τð2Þ ¼ N � 2 ð22Þ

τð3Þ ¼ N þ N=~κ� 3: ð23Þ

Conditions for success. We temporarily assume that the game satisfies
aþ d ¼ bþ c; we will later show this assumption to be unnecessary. With this
assumption, the payoff differences in Eq. (14) can be written as

f iðxÞ � f ðnÞi ðxÞ ¼ �C xi � xðnÞi

� �
þ B xð1Þi � xðnþ1Þ

i

� �
; ð24Þ

where xðnÞi ¼Pjpijxj is the expected type at the end of an n-step random walk

from i, and B ¼ 1
2 ða� bþ c� dÞ and C ¼ � 1

2 ðaþ b� c� dÞ as in the main text.
Eq. (17) implies X

i2G
xi xðnÞi � xðmÞ

i

� �D E
/ τðmÞ � τðnÞ: ð25Þ

Applying Eqs. (15), (24), and (25), type A is favored under weak selection if and
only if

�Cτð2Þ þ B τð3Þ � τð1Þ
� �

> 0; ð26Þ

for dB or bD updating. Substituting from Eqs. (21)–(23) yield Conditions (5) of the
main text. For Bd or Db, we obtain

�Cτð1Þ þ B τð2Þ � τð1Þ
� �

> 0; ð27Þ

and substituting from Eqs. (21)–(22) yields the condition �ðN � 1ÞC � B > 0.
Finally, the Structure Coefficient Theorem60 shows that the assumption aþ d ¼
bþ c can be dropped, and Conditions (4) and (9) follow.

Spectral gap and expander graphs. The spectral gap of an isothermal graph is
g ¼ 1� λ2, where λ2 is the second-largest eigenvalue of the adjacency matrix. In
Supplementary Note 2 we prove the following result:

Theorem 1. On an isothermal graph G of size N and spectral gap g, the
remeeting time τi for each vertex i 2 G is bounded by

τi �
N � 1
g

þ 2N � 1
N

: ð28Þ

We formally define a ‘family of isothermal expander graphs’ as a sequence of
isothermal graphs fGjg1j¼1

, with corresponding sizes Nj and spectral gaps gj , such

that Nj ! 1 and limj!1 gj ¼ g, with 0 < g � 1. Then the upper bound (28) is
asymptotically N=g þOð1=NÞ.

Suppose that, as j ! 1, the Simpson degree distribution converges, pointwise
in its quantile function, to some continuous function κðxÞ. This means that, in the
limiting distribution, a fraction x of Simpson degrees are less than or equal to κðxÞ,
for all 0 � x � 1. Then the harmonic average Simpson degree over the quantile

range ½a; b� is defined as

κ½a;b� ¼ ðb� aÞ
Z b

a
ðκðxÞÞ�1dx

� ��1

: ð29Þ

Bounds on the effective degree are obtained by considering all the ways the
weights τi can be apportioned among vertices, subject to the constraints of (19) and
Bound (28). Placing the maximum weight on the vertices of largest Simpson degree
yields ~κ � κ½1�g;1� , while placing the maximum weight on the vertices of smallest
Simpson degree yields ~κ � κ½0;g� . Bounds (7) follow from

κ½0;g� ¼ g
Z g

0
ðκðxÞÞ�1dx

� ��1

� g
Z 1

0
ðκðxÞÞ�1dx

� ��1

¼ gκH; ð30Þ

and, using the harmonic-arithmetic means inequality,

κ½1�g;1� �
1
g

Z 1

1�g
κðxÞ dx � 1

g

Z 1

0
κðxÞ dx ¼ κA

g
: ð31Þ

Random graph experiments. For the spatial model (Fig. 3a, c), the population size
is N ¼ 200, the decay parameter is β ¼ 2‘=2 for ‘ ¼ 6; 7; ¼ ; 14, and the number of
pairing rounds is 100; 200; ¼ ; 800. Ten random isothermal graphs were generated
for each parameter combination. The clusters of points in Fig. 3c correspond to
different values of β.

The shifted-linear preferential attachment model44,45 (Fig. 3b, d) is defined as
follows: Starting from a complete graph of size mþ 1, new vertices were added one
at a time, each linking to m existing vertices, chosen with probability proportional
to k� am, where k is vertex degree and a is a shift parameter. The process was
iterated until the graph reached size N ¼ 400. We used linking numbers
m ¼ 4; 5; ¼ ; 20, and shift parameter a varying from 0 to 0.9 in increments of 0.05.
For each combination of a and m, we generated ten graph topologies. For each
topology generated this way, an isothermal weighting was obtained by minimizingP

i;jw
2
ij under the constraint

P
jwij ¼ 1 for all i, using a numerical quadratic

programming algorithm. This sum-of-squares minimization was chosen in order
produce a unique set of edge weights that are relatively even—and therefore have
relatively large Simpson degrees—given the constraints imposed by the topology
and isothermality. Graph topologies that could not be made isothermal were
removed from the ensemble; such graphs arose for small m and a close to 1 (see
Supplementary Note 5 for further discussion). The horizontal bands for �k in
Fig. 3D correspond to particular values of m.

Island model. The island model is obtained by joining seperate isothermal graphs
G1; ¼ ;Gn of respective sizes N1; ¼ ;Nn . Each inter-island pair of vertices is
joined by an edge of weight α � 1. Edge weights within each island Gx are then
rescaled by 1� αðN � NxÞ so that the sum of edge weights at each vertex remains
1. We show in Supplementary Note 3 that, in the limit α ! 0, coalescence times
within each island Gx are determined by

τij ¼
0 i ¼ j

1þPn
y¼1NyTxy þ 1

2

P
k2Gx

ðwikτjk þ wjkτikÞ i≠ j:

(
ð32Þ

Above, the Txy , for x; y 2 f1; ¼ ; ng, are themselves the solution to the system

Txy ¼
0 x ¼ y
1
N þ 1

2N

Pn
z¼1NzðTxz þ TyzÞ x ≠ y:

(
ð33Þ

Solving Eqs. (32)–(33) yields the coalescence times, from which the remeeting
times can be obtained from (18), and the effective degree can be obtained from (3)
of the main text. We have obtained a closed-form expression for ~κ in two cases.
First, if all islands have equal size, the effective degree is the unweighted harmonic

mean of the Simpson degrees on the separate islands: ~κ ¼ n
Pn

x¼1κ
�1
x

� ��1
. Second,

if there are n ¼ 2 islands, the effective degree is

~κ ¼ N3 N2
1ðN1 þ 3N2Þκ�1

1 þ N2
2ð3N1 þ N2Þκ�1

2

� ��1
: ð34Þ

For the case of Fig. 4A, we have N1 ¼ N2 ¼ N=2, κ1 ¼ 2, and κ2 ¼ N=2� 1,
giving ~κ ¼ 4ðN � 2Þ=ðN þ 2Þ. For Fig. 5B, we have κ1 ¼ N1 � 1 and
κ2 ¼ 2ð1� 2εþ 2ε2Þ. We set N1 ¼ aN2, substitute in (34), and take the following
sequence of limits: first ε ! 0, then N2 ! 1, then a ! 0. Under this limit
sequence, ~κ ! 1 while κA ! 1.

Diffusible public goods. For diffusible public goods, Condition (15) still applies,
but with the modified payoffs

f iðxÞ ¼ �Cxi þ
X1
n¼0

bnx
ðnÞ
i : ð35Þ

The expected payoff to an individual m random walk steps from vertex i is

f ðmÞ
i ðxÞ ¼ �CxðmÞ

i þ
X1
n¼0

bnx
ðnþmÞ
i : ð36Þ

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13006-7 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:5107 | https://doi.org/10.1038/s41467-019-13006-7 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Condition (15) therefore becomes

�C
X
i2G

xi xi � xðmÞ
i

� �D E
þ
X1
n¼0

bn xi xðnÞi � xðnþmÞ
i

� �D E
> 0; ð37Þ

where, as above, m ¼ 1 for Bd or Db, and m ¼ 2 for dB or bD. Upon applying Eq.
(25), the condition becomes

�CτðmÞ þ
X1
n¼0

bn τðnþmÞ � τðnÞ
� �

> 0: ð38Þ

Applying (20) and the properties of random walks, we show in Supplementary
Note 5 that this condition reduces to

�C N
Xm�1

k¼0

pðkÞ �m

 !
þ B N

Xm�1

k¼0

ϕðkÞ �m

 !
> 0: ð39Þ

Above, we have defined pðkÞ ¼Pi2G
τi
N2 p

ðkÞ
ii and ϕðkÞ ¼Pi;j2G

τi
N2 p

ðkÞ
ij ϕij . Both of

these quantities refer to a k-step random walk with initial vertex i chosen pro-
portionally to remeeting time; pðkÞ is the probability that such a walk terminates at
its origin, and ϕðkÞ is the expected fraction of public good produced at the intial
vertex that would be received at the terminus. We observe that the benefit term of
Eq. (39) includes only benefits accruing at distances less than m from the producer.
Substituting the appropriate values of m, and noting that pð0Þ ¼ 1 and pð1Þ ¼ 0, we
obtain Conditions (11) and (12) of the main text.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data generated or analysed during this study are included in this article and its
supplementary information files.
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