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Abstract
Low-dose computed tomography (CT) lung cancer screening is recommended by the US Preventive Services Task Force for high
lung cancer–risk populations. In this study, we investigated an important factor affecting the CT dose—the scan length, for this
CTexam. A neural network model based on the BUNET^ framework was established to segment the lung region in the CTscout
images. It was trained initially with 247 chest X-ray images and then with 40 CTscout images. Themean Intersection over Union
(IOU) and Dice coefficient were reported to be 0.954 and 0.976, respectively. Lung scan boundaries were determined from this
segmentation and compared with the boundaries marked by an expert for 150 validation images, resulting an average 4.7%
difference. Seven hundred seventy CT low-dose lung screening exams were retrospectively analyzed with the validated model.
The average Bdesired^ scan length was 252 mm with a standard deviation of 28 mm. The average Bover-range^ was 58.5 mm or
24%. The upper boundary (superior) on average had an Bover-range^ of 17mm, and the lower boundary (inferior) on average had
an Bover-range^ of 41 mm. Further analysis of this data showed that the extent of Bover-range^ was independent of acquisition
date, acquisition time, acquisition station, and patient age, but dependent on technologist and patient weight. We concluded that
this machine learning method could effectively support quality control on the scan length for CT low-dose screening scans,
enabling the eliminations of unnecessary patient dose.
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Introduction

Lung cancer is the leading cause of cancer death worldwide
[1]. The large-scale National Lung Screening Trial (NLST) of
more than 50,000 high-risk current and former smokers re-
ported that low-dose computed tomography (LDCT) screen-
ing could lead to a statistically significant 20% lung cancer
mortality reduction [2] compared with the traditional chest
radiography screening. As a result, in the USA, the United
States Preventive Services Task Force (USPSTF), National
Comprehensive Cancer Network (NCCN), and American
Cancer Society all recommend annual LDCT screening for
this high-risk population [3–5].

Radiation dose associated with CT imaging has been stud-
ied intensively. More than 50% of the radiation exposure to
the population of the USA comes from medical imaging,
while half of that comes fromCT [6]. Themeasured dose from
a CT scan is directly related to the imaging technique factors
(kVp, mAs, filter, etc.), the patient size, and the scan length.
Technique factors are carefully set and routinely monitored to
optimize dose and image quality as required by accrediting
agencies such as the American College of Radiology (ACR)
and The Joint Commission (TJC). The patient size is a factor
that cannot be modified. The final factor, scan coverage, has
not been studied as much, mainly because it is not readily
measured and compared with the lung length by existing soft-
ware packages.

In a typical low-dose CT lung cancer screening exam, the
patient will be first scanned with a Blocalizer^ or Bscout^
acquisition, which is a 2D planner image in the anterior/
posterior (AP) direction (Fig. 1), lateral direction, or both.
The technologist will then mark the desired slice coverage
from this localizer image. For CT low-dose lung cancer scan-
ning exams, the desired coverage is from thoracic inlet to lung
bases (between the red lines in Fig. 1), i.e., only the lung
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length as seen on the scout image(s). However, in real-life
situations, the technologist usually will add a Bsafe margin^
to the scan length to assure complete coverage. The size of this
over scanning will impact the actual dose the patient receives.
No previous studies have looked at the effect of over scanning
on dose for this LDCT exam.

Machine learning has been successfully applied in bioin-
formatics, medical imaging analysis, and natural language
processing [7–9], and tremendous improvements have been
observed. The fast development of machine learning tech-
niques provided an opportunity for us to study a set of
LDCTexams and analyze this important scan coverage factor.
In this paper, we use a limited number of pre-segmented im-
ages to train a popular machine learning model to accurately
identify the lung area and length from the localizer image. The
model prediction of lung length was then compared with the
actual scan coverage for all LDCT lung cancer screening
exams performed between January 2015 and June 2018 in
our facility. Data are further analyzed to find the key factors
which may contribute to variation in scan coverage accuracy.

Materials and Methods

Clinical Images and Information

IRB approval was obtained for this HIPAA-compliant study.
Seven hundred seventy LDCT lung screening exams were
included in the study. All CT exams were performed at the
University of Colorado Hospital between January 2015 and

June 2018. The corresponding images were extracted from
our Picture Archive and Communication System (PACS)
using an in-house, python-based application. Study informa-
tion was extracted from the hospital’s electronic medical re-
cord (EMR) system (Epic Systems Corporation, WI, USA).

For each of the CT exams, three images were extracted in
Digital Imaging and Communications in Medicine (DICOM)
format: the anterior-posterior (AP) localizer image and the
first and last images of the spiral acquisition. The localizer
images were first segmented to determine lung regions.
Lung length (or Bdesired^ scan coverage) was then calculated
from this segmentation. The location information of the first
and last images of the spiral acquisition was extracted from the
DICOM header and used to determine the actual scan
coverage.

Database queries of the EMR system were performed to
retrieve clinical information, including patient age, patient
weight, patient height, acquisition date and time, acquisition
station, and technologist who performed the exam.

Segmentation Model and Model Training

Models were trained with a computer running Ubuntu 16.04
loaded with Keras deep learning library, with CUDA 9.1 for
GPU acceleration. The computer has an Intel Xeon® proces-
sor E5-2660 processor, 16 TB hard disk space, 128 GB RAM,
and 4 NVIDIA GeForce GTX 1080Ti graphics processing
units (Nvidia Corporation, Santa Clara, CA).

The U-Net [10] was chosen to segment the images. The
network was initially trained with the publicly available chest
X-ray image dataset compiled by the Japanese Society of
Radiological Technology (JSRT) [11]. This dataset contains
247 chest X-ray images and the corresponding lung-
segmentation masks [12]. Initial training was performed with
100 epochs, with a learning rate of 0.001. Binary cross-
entropy was selected for the loss function.

After the initial training, the model was further trained
(transfer learning) with 40 randomly selected CT exams from
our facility, including localizer images with the corresponding
lung-segmentation masks. The masks were created by one of
the authors (M.K., a certified CT technologist with 18 years of
experience) through an in-house developed, python-based,
software application. Transfer learning was performed with
50 epochs and a learning rate of 0.001.

All images were resized to 256 by 256 pixels for use in the
training process. For both initial training and transfer learning,
the images were randomly split into training sets (80%) and
validation sets (20%). Real-time data augmentation was per-
formed by applying the following random image transforma-
tions: image rotation (− 10 degree to 10 degree), image trans-
lation (25 pixels each direction), and image zooming (0–10%)
for each epoch.

Fig. 1 CT scout image for a 63-year-old patient. The lung segmentation
from the trained model (marked with red lines), corresponding model-
predicted CT scan coverage (marked with blue lines), and the actual CT
scan coverage (marked with green lines). For this particular case, the
desired scan coverage is 248 mm, and we observed 19.5 mm or 7.86%
over-range in the upper boundary, and 47.5 mm or 19.15% over-range in
the lower boundary. In total, 67 mm or 27.02% over-range is applied in
this CT exam
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The output of the segmentation model is the lung mask,
which has the same resolution as the input image (256 by 256
pixels). The location of the superior and inferior boundaries of
the lung mask was recorded as the model predicted scan
length boundaries.

Model Validation

Segmentation Accuracy

The following two metrics are used to evaluate the segmenta-
tion accuracy:

1. Intersection over Union (IOU): a measure of agreement
between the ground truth and the estimated segmentation
mask, where

IOU ¼ TP
TP þ FP þ FN

2. Dice coefficient: a measure of similarity between the
ground truth and the segmentation mask, where

Dice ¼ 2TP
2TP þ FP þ FN

In both equations, TP, FP, and FN denote the set of pixels that
are true positive, false positive, and false negative, respectively.

Scan Length Accuracy

Another validation was performed to directly test the scan
length determined from the lung masks. One hundred fifty
CT localizer images were randomly selected from the clinical
image datasets and were shown to one of the authors (M.K.).
The subject was asked to mark the upper and lower bound-
aries of the lung based on the best practice without safe mar-
gin. This boundary was then compared with the model pre-
dictions. The performance of the model is calculated by per-
centage of total error:

Error UpperBoundary% ¼ 100% � Marked Upper Boundary–Model Predicted Upper Boundary

jModel Predicted Upper Boundary−Model Predicted Lower Boundaryj
Error LowerBoundary% ¼ 100%

� Marked Lower Boundary–Model Predicted Lower Boundary

jModel Predicted Upper Boundary−Model Predicted Lower Boundaryj
Error ALL% ¼ 100% � jMarked Upper Boundary–Model Predicted Upper Boundaryj þ jMarked Lower Boundary–Model Predicted Lower Boundaryjð Þ

jModel Predicted Upper Boundary−Model Predicted Lower Boundaryj

Statistical Analysis

The average over-range in both absolute length (mm) and in
percentage of the scan length is reported. Separate results are
reported for upper boundary, lower boundary, and total over-
range. Standard deviation and histogram distribution for the
over-range are also reported.

To analyze the factors that could possibly lead to this over-
range issue, Pearson’s correlation coefficients are calculated
between the percentage of over-range and factors including
acquisition date, acquisition time, patient height, patient age,
patient weight, and patient BMI individually. p value is report-
ed with a two-tailed test for each correlation coefficient.
Exams were performed on 3 scanners, employing 27 technol-
ogists. The ANOVA (analysis of variance) test is used to
check if there is a significant difference between means by
scanner or technologist. The average and standard deviation

of the over-range from each are reported. To reduce the statis-
tical error, we only included technologists who have per-
formed more than 10 exams. Avalue of p < 0.05 is considered
significant.

Results

Model Validation

Segmentation Accuracy

The IOU and Dice coefficients for the two models (initial
training model and transfer learning model) are listed in
Table 1. Significant improvement of segmentation accuracy
was observed after transfer learning.
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Scan Length Accuracy

The accuracy of scan length prediction for the 150 randomly
selected CT localizer images is listed in Table 2. On average,
the model predicted boundary is within 2% error for the upper
boundary (superior), and 3% error for the lower boundary
(inferior). In total, we see the model could correctly predict
the boundary of lung within 5% error.

CT Coverage

A typical CTAP localizer image is shown in Fig. 1. The lung
segmentation from the trained model (marked with red lines),
corresponding model predicted CT scan coverage (marked
with blue lines), and the actual CT scan coverage (marked
with green lines) is also shown in Fig. 1. For this particular
case, the model-predicted scan coverage is 248 mm, and we
observed 19.5 mm or 7.86% over-range in the upper bound-
ary, and 47.5 mm or 19.15% over-range in the lower bound-
ary. In total, 67 mm or 27.02% over-range was applied in the
actual CT exam for this case.

The histogram of the over-range distribution for all 770 CT
exams is shown in Fig. 2, for the upper boundary, lower
boundary, and total coverage, respectively. For all exams,
the model-predicted lung area coverage is 252.1 mm on aver-
age with a standard deviation of 27.7 mm. The actual scan
coverage is averaged at 310.6 mmwith a standard deviation of
28.9 mm. We saw an average of 7% over-range scan in the
upper boundary with a standard deviation of 3.1%, and an
average of 16.7% over-range scan in the lower boundary with
a standard deviation of 8.1%. In total, we saw an average of
23.8% over coverage with a standard deviation of 9.3%. There
were no cases where a portion of the lung was excluded.

The relationship between the percentage of over-range and
the date and time of the acquisition is shown in Fig. 3 a and b.
Pearson’s correlation coefficient between over-range

percentage and date is − 0.0347 (p = 0.97), and the coefficient
between the over-range percentage and time is − 0.00415 (p =
0.997). As one could also observe from the figures, the per-
centage of over-range is independent of the date, indicating
the extent of over-range is consistent over the time frame of
our study and is also independent of the time of the acquisi-
tion, indicating the consistency over different work shifts.

Figure 4 shows the relationship between the over-range
percentage and the patient height (a), age (b), weight (c), and
BMI (d). Pearson’s correlation coefficients are − 0.0179 (p =
0.73), − 0.0203 (p = 0.57), 0.3027 (p < 0.001), and 0.3415
(p < 0.001), respectively, indicating that the over-range issue
does not correlate with the patient height and age, but is weak-
ly correlated with patient weight and BMI.

The average and standard deviation of over-range for each
technologist are reported in Table 3. ANOVA test indicated
that there is a statistically significant difference between dif-
ferent technologists’ performance (F = 4.4374, p < 0.001).

The average and standard deviation of over-range for each
scanner are reported in Table 4. ANOVA test indicated that
there is no statistically significant difference between different
scanners (F = 2.4746, p = 0.085).

Discussion

Quality control is a very important aspect of medical imaging.
By definition [13], it is performed and documented during
equipment selection, installation, and acceptance testing, and
by periodic evaluations performed by technologists or medical
physicists. This Bperiodic evaluation^ is usually composed of
daily execution of a few quick phantom tests, and yearly, more
comprehensive tests are performed by the medical physicists.
As of now, quality control on every medical imaging exam is
not practical. Technologists will do a basic image quality as-
sessment before the exams are sent to the PACS system, but
the judgment is usually very subjective. Machine learning
techniques provide an opportunity to consider the possibility
of doing Bper exam^ quality control. Machine learning could
help us to evaluate patient positioning and movement, image
appearance, and other factors of image quality.

In this paper, we are using machine learning to help with
the quality control of CT scan length. Segmentation models
based on U-Net were trained initially with chest X-ray images
from a published dataset, and then transfer learning training
was performed with a limited number of CT scout images
from our local dataset to improve the model performance.
After the model performance was validated by an experienced
technologist, the model was applied to all 770 CT low-dose
chest exams performed in our facility. On average, about 24%
over-range was seen on LDCT exams, of which 16.7% came
from the inferior border. It was further shown that the extent of
over-range is weakly correlated with the patient weight and

Table 2 Scan length accuracy

Average error
(% of scan length)

Standard deviation
(% of scan length)

Upper boundary − 1.68 1.69

Lower boundary 2.54 2.31

All coverage 4.72 2.46

Table 1 The IOU and Dice coefficients for models before and after
transfer learning

Before transfer learning After transfer learning

Mean IOU 0.43 0.954

Mean DICE 0.522 0.976
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patient BMI, and is strongly dependent on the individual
technologist.

CT scan length is defined in clinical CT protocols which
are usually set by the radiologists. For different symptoms and
indications, CT scan length could vary even for the same scan
area. As an example, the BChest Low Dose^ exam, which we
studied in this paper, requires the scan length to be Bfrom
thoracic inlet through lung bases,^ while BChest with
Contrast^ exam requires the scan length to be Bfrom thoracic
inlet through adrenals.^ This may explain the performance of
different technologists, since some technologists may get used
to extend the scan length to adrenals even for the BChest Low
Dose^ CT exams. Additional training of CT technologists
should improve the performance and consistency in terms of
CT scan length.

It is understandable that a CT technologist would like
to leave some Bsafe margin^ in order to make sure the
coverage is complete. This Bsafe margin^ is likely to be
bigger for a large-size patient, since the localizer image
may not reveal the location of the lungs as clearly as

with a small-size patients. This may explain the results
that the percentage of over-range is weakly correlated
with the patient weight and patient BMI. However, an
unnecessarily large safe margin does not provide addi-
tional information, since the low technique factors that
are used in LDCT imaging make the images in the ab-
domen too noisy for meaningful diagnosis. The addition-
al Bsafe margin^ therefore increases patient dose, wastes
radiologist’s interpretation time, and has no clinical
benefits.

The quantitative relationship of the scan over-range
with the patient dose is complicated and could be affected
by many factors. In LDCT lung scans, the CTDIvol (re-
ported based on 32-cm diameter CTDI phantom) must be
smaller than 3.0 mGy for an average patient. Based on
AAPM protocol recommendations [14], for an idealized
standard sized patient and a 25-cm scan length, and using
the k factor of 0.014 mSv/mGy*cm, it should result in an
effective dose below 1 mSv. Based on this simplified cal-
culation, for standard patients, effective dose was 24% (or

Fig. 2 The histogram distribution for over-range of the upper boundary (a), lower boundary (b), and all coverage (c) in all 770 exams

Fig. 3 The distribution of percentage over-range over date (a) and time (b) of the acquisition. Pearson’s correlation coefficient is − 0.0347 (p = 0.97) and
− 0.00415 (p = 0.997), respectively, indicating that the over-range issue does not depend on the date or time of the acquisition
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close to 0.72 mGy) higher than necessary because of over-
range issue. The actual dose delivered to the patient will
depend on many factors, including the X-ray technique,
scan length, patient size, chosen automatic exposure con-
trol (AEC) technique, over scan profile, patient position in
the CT bore, or even the patient motion during the scan.
Scan length is the factor that is independent of other dose
factors and could be easily controlled by the operator. The
efforts of reducing patient dose or improving image qual-
ity from optimizing other factors (as the community has
done for the past years) will not be affected by the efforts
of pursuing tighter control of the scan length. In addition,
low-dose lung CT study is performed as a screening exam,
and even small amount of dose reduction is meaningful
when a large population is affected. The connection be-
tween the radiation dose and population health risks is
reviewed in the Beir VII report [15].

Machine learning is a powerful tool and one could find
other ways to apply it to the scan length measure. For this
particular problem, we chose to first use a machine learn-
ing algorithm to segment the lung area, and then use
trained model to calculate the scan length based on this
segmentation. An alternate method could employ machine
learning algorithms to directly define the scan length (or

the upper and lower boundaries) from the CT localizer
image. We chose the segmentation approach for two rea-
sons: Machine learning–based segmentation has been suc-
cessfully applied in the medical imaging field with great
successes. Secondly, the segmentation map provided a
valuable midway result to verify the accuracy of the mod-
el, and to understand the final model predictions in a
meaningful way.

The accuracy of the model predictions of the scan
length could be further improved. The lateral localizer
view, acquired together with the AP view, could be used
to define a more accurate lung extent. The 3D extent of
the lung could be evaluated from the acquired axial
slices to better understand the impact of patient motion
(bulk motion and respiratory motion) on lung location.
The segmentation model performance can also be further
improved by introducing more training data. However,
we believe our current results indicate that scan over-
range is an important issue, and could be addressed by
further technologist education.

Although we believe that the over-range is an important
issue that needs to be addressed in the LDCT lung screening
exams, the appropriate level of Bsafe margin^ or over-range
should really depend on the technologists’ comfort level. A

Fig. 4 The distribution of percentage over-range over patient height (a),
age (b), weight (c), and BMI (d). Pearson’s correlation coefficients are −
0.0179 (p = 0.73), − 0.0203 (p = 0.57), 0.3027 (p < 0.001), and 0.3415

(p < 0.001), respectively, indicating that the over-range issue is not corre-
lated with the patient height and age, but correlated with patient weight
and BMI
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follow-up study is planned to further educate technologists,
and machine learning models will be used to monitor the
performance improvement. Similar concepts and methods
could also be applied to other CT exams including neuro
and abdominal scans. Ideally, once the issues of a Bsafe
margin^ and improvements from the incorporation of the ad-
ditional image data sources are reviewed, this technique could
be implemented prior to scan initiation to auto-select the ap-
propriate scan range.

Conclusions

Machine learning methods were applied to analyze the
CT scan length for low-dose CT lung cancer screening
exams. The model-predicted lung scan length on aver-
age is 252.1 mm with a standard deviation of 27.7 mm.
In total, we see a 23.8% more scan coverage with a
standard deviation of 9.3%, indicating a similar percent-
age (~ 20%) of potential dose savings for the patient.
The percentage of over-range is weakly related with
patient weight and BMI and is dependent on the indi-
vidual technologist. However, it is independent of pa-
tient age, patient height, date and time of the acquisi-
tion, and the acquisition station.
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