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Abstract
To understand potential orbital biomarkers generated from computed tomography (CT) imaging in patients with thyroid eye
disease. This is a retrospective cohort study. From a database of an ongoing thyroid eye disease research study at our institution,
we identified 85 subjects who had both clinical examination and laboratory records supporting the diagnosis of thyroid eye
disease and concurrent imaging prior to any medical or surgical intervention. Patients were excluded if imaging quality or type
was not amenable to segmentation. The images of 170 orbits were analyzed with the developed automated segmentation tool.
The main outcome measure was to cross 25 CT structural metrics for each eye with nine clinical markers using a Kendall rank
correlation test to identify significant relationships. The Kendall rank correlation test between automatically calculated CT
metrics and clinical data demonstrated numerous correlations. Extraocular rectus muscle metrics, such as the average diameter
of the superior, medial, and lateral rectus muscles, showed a strong correlation (p < 0.05) with loss of visual acuity and presence
of ocular motility defects. Hertel measurements demonstrated a strong correlation (p < 0.05) with volumetric measurements of
the optic nerve and other orbital metrics such as the crowding index and proptosis. Optic neuropathy was strongly correlated
(p < 0.05) with an increase in the maximum diameter of the superior muscle. This novel method of automated imaging metrics
may provide objective, rapid clinical information. This data may be useful for appreciation of severity of thyroid eye disease and
recognition of risk factors of visual impairment from dysthyroid optic neuropathy from CT imaging.
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Introduction

Early diagnosis and recognition of orbital involvement in thy-
roid eye disease are important for appropriate treatment and
management. However, due to the variable clinical

presentation and reliance upon subjective tests such as visual
acuity testing, both the presence and severity of disease can
elude diagnosis. An objective metric that correlates strongly
with functional limitations, impending optic nerve dysfunc-
tion, or other causes of significant visual impairment could
be valuable in supporting a decision to intervene and poten-
tially prevent orbital complications and visual loss.

Presently, computed tomography (CT) imaging is the most
readily available imaging modality to evaluate the orbit for
evidence of thyroid eye disease [1]. Previous authors have
investigated CT metrics as an objective finding to be used as
a tool in aiding early diagnosis. The extraocular muscle, bone,
fat, and orbital volume indices are among the CT characteris-
tics that have been studied in the past [2–16]. However, the
methods used in these studies have included manual freehand
drawing of orbital structures on multiple image planes. The
data acquisition and volume calculations are often sufficiently
cumbersome to preclude their routine clinical use. The com-
mercially available segmentation programs such as MIMICS
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and MAXILLO involve laborious calculations and lack con-
sistency between users [17, 18]. As of yet, no study has used
an automated method of orbital volumetric analysis in orbital
disease. We have developed an automated method for analyz-
ing orbital anatomic structures. The purposes of the present
study are to apply the method of automatically generating
orbital metrics from CT imaging to a cohort of thyroid eye
disease patients and investigate their relationships with record-
ed clinical characteristics such as the ocular motility defects,
Hertel measurements, visual function measures, and presence
of optic neuropathy.

Methods

A retrospective review at an academic center from January 1,
2000, to January 1, 2012, identified 381 patients; 102 of these
patients met the clinical criteria for thyroid eye disease and
had available CT imaging of the orbits. Of these, 85 clinical
patients were selected for the study after excluding 10 patients
due to imaging issues, such as severe artifact and low resolu-
tion, and 7 due to the fact that the available scans in the elec-
tronic database were after decompression surgery.
Institutional Review Board approval was obtained at
Vanderbilt University prospectively to evaluate both the clin-
ical and imaging data of the 381 patients and store them in
RedCAP andXNAT databases. Clinical characteristics includ-
ing the date of diagnosis, sex, age, ocular motility, Hertel
exophthalmometer measurements, smoking history, visual
acuity, and color vision testing were recorded.

CT Data

Patients underwent CT imaging of the orbits as part of the
regular clinical care. For each of the 85 selected patients, the
highest resolution scan pre-decompression surgery was man-
ually selected. Although variable imaging protocols (CT head,
orbital, maxillofacial, etc.) were acquired, for all imaging
scans, the field of view included the globes and full optic
nerves from the globes to the chiasm.

Image Processing

For each patient, the selected CT image was loaded into
eXtensible Neuroimaging Archive Toolkit [19, 20] and auto-
matically processed with segmentation software to identify the
extents of the optic nerves (including surrounding CSF
sheathes), extraocular rectus muscles, globes, and orbital fat
and calculate clinically relevant measurements from these
structures. This process consists of three main steps: multi-
atlas segmentation, Kalman tracking of extraocular muscles,
and metric computation.

The first step involves segmentation of the globe, the optic
nerve, the extraocular muscles, and the orbital fat using the
multi-atlas paradigm. This step automatically identifies struc-
tures of interest in a new scan based on example scans with
expert labels known as atlases. The process includes a manual
element, i.e., preparation of the example atlases that requires an
expert to demarcate orbital structures in about 20 CT scans
taking about ~ 2 h per scan. However, this is a one-time process
only, and once a set of labeled atlases are prepared, they can be
used for all future analyses at no additional manual cost. The
remainder of the image processing pipeline is fully automated.

Since the images analyzed in this paper are clinically ac-
quired, there is a lot of variability in imaging protocols which
include the CT head, orbital, and maxillofacial. Therefore, the
first step of the automated process is localization of the orbit in
the target scan. Each of the atlases is rigidly registered to the
target space using Deeds registration [21]. The average of all
the rigidly labeled atlases is computed at each voxel. A region
of interest is cropped around voxels that have at least a probabil-
ity of 0.5 to ascertain the approximate location of the eye orbit in
the target scan. Next, each of the atlases is non-rigidly registered
to the cropped target image using ANTs SyN registration with a
cross-correlation metric [22], with the aim of achieving a voxel-
wise correspondence between the target scan and the example
atlases. Finally, non-local statistical label fusion [23] is used to
combine the label estimates at each voxel to obtain the final
labels in the target scan. The globe, the optic nerve, and the
extraocular muscles are identified through this process.

However, identifying individual extraocular muscles
through this process is challenging, especially in the case of
thyroid eye disease, since there is orbital crowding due to
inflammation of the muscles. We use Kalman filters to seg-
ment each of the orbital muscles. Kalman filters are used to
track the muscles from the front of the orbit, where they are
well separated, to the orbital apex. The centroids of the four
extraocular muscles and the globe are computed at the coronal
slice at the center of the globe, where the muscles are well
separated. Kalman filters are used to track the centroids across
coronal slices. A watershed algorithm is used at each coronal
slice to get the muscle labels, based on the Kalman centroid
estimates as seed points. A detailed explanation of this method
is provided by Chaganti et al. [24]. The Dice similarity coef-
ficient for segmented structures was 0.77, which was compa-
rable to human reproducibility of 0.73.

Finally, descriptive features of the orbital anatomy were
computed for each patient from the segmentations to assess
correlations with clinical characteristics. These features were
based on previous work in manual CT measurements for thy-
roid eye disease. Some of the metrics that were previously
calculated for two-dimensional slices were expanded for
three-dimensional volumes, for example, the volumetric
crowding index. The complete list of 25 features or orbital
structural metrics included the (1–13) volume, maximum
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diameter, and average diameter for the superior, inferior, me-
dial, and lateral rectus muscles and total recti muscle volume
[5, 6, 11, 25, 26]; (14) Barrett muscle index [8]; (15–16) vol-
ume and diameter of the globe [10, 26–28]; (17) orbital vol-
ume; (18) volume crowding index; (19) orbital angle; (20)
degree of proptosis [29]; (21) length along the optic
nerve;(22–25) traditional length, volume, average area, and
maximum diameter of the optic nerve [30, 31].

All structural metrics were performed bilaterally, which
resulted in 25 measures for each eye. Figure 1 illustrates the
image processing workflow from a CT scan to segmentation
to derived metrics.

Clinical Data

For each patient, clinical characteristics associated with sever-
ity of the disease such as Hertel exophthalmometer measure-
ments [32, 33], ocular motility defects [6], and presence of
optic neuropathy [4, 34] were recorded along with age, sex,
and smoking history [35, 36]. The threshold for ocular motil-
ity defects was greater than 25% limitation in any meridian of
eye movement. Although the literature regarding optic nerve
compromise in thyroid eye disease has included vague and
loosely defined criteria for optic neuropathy, a clear and un-
equivocal definition of optic neuropathy was chosen to most
robustly associate clinical and imaging features. Subjects were
classified as having optic neuropathy if they had documented
decreased visual acuity, decreased visual field, decreased col-
or vision (30% or more), nerve fiber layer edema, and/or im-
aging studies that demonstrate signs of orbital nerve

compression. A visual field defect was defined as present if
a cluster of at least 3 points on one side of the horizontal
meridian, each depressed by at least 5 dB from the normal
values for age. The defect was considered to be mild if the
pattern mean defect was − 2 to − 7 dB, moderate if − 7 to
14 dB, and severe if 14 to 30 dB. In addition, measures of
visual function that were shown to be associated with thyroid
eye disease and dysthyroid optic neuropathy [33, 37], such as
the best corrected visual acuity, logMAR visual acuity, AMA-
defined visual acuity, and field scores, were calculated as de-
scribed by Rondinelli et al. [38], and measures of color vision
were recorded. In total, nine clinical measures were recorded.
For 82 patients, the clinical data was obtained at the time of the
CTscan. Three of the patients had no visual field testing avail-
able at the time of the scan, so the closest available formal
testing within 6 months was obtained and confirmed the con-
frontation field at the time of the scan.

Statistical Analysis

A Kendall rank correlation test [39] was used to identify
significant relationships between the nine clinical character-
istics and the 25 structural metrics for each eye, which were
automatically calculated from the CT images. Outlier points
are removed for each metric and clinical measure pair, by
retaining those values that fall within two standard devia-
tions of the mean. Next, z-score normalization was per-
formed and correlation between the metric and clinical mea-
sures was computed. This correlation is known as the
Kendall tau coefficient.

J Digit Imaging (2019) 32:987–994 989

Fig. 1 Pipeline for automatic CT image analysis. Top left indicates the
original clinically acquired CT scan. Top right shows 3-D rendering of
orbital structures automatically identified using the multi-atlas method.
We segment the globe, optic nerve, extraocular rectus muscles, and orbital
fat. Bottom left shows Barrett’s index metric, calculated as max(A + B/

C,(D + E)/F) for each eye. Bottom center shows the degree of proptosis
metric, calculated as the anterior displacement of the eye globe from the
interzygomatic line, i.e., AB. Bottom right shows the volumetric
crowding index metric, calculated as the ratio between the volumes of
soft tissue and fat in the orbit
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A rank correlation test is used in this work as it is a non-
parametric test that measures the significance of the rankings
of the measures instead of the absolute values. Therefore, it
identifies monotonic relationships even when they are non-
linear, which makes it an ideal test for clinical data [40].
Kendall tau coefficients that had a p value of less than 0.05
were considered to be strongly significant, and those with a p
value of less than 0.1 were considered to be moderately
significant.

Results

Eighty-five patients between the ages of 18 and 83 (48.9 ±
13.56) meeting the clinical criteria for thyroid eye disease who
also had CT imaging related to their condition were retrospec-
tively selected in our data set. Of these patients, 63 were fe-
male (74%). Seventy-five (88%) of these were hyperthyroid,
six (7%) were euthyroid, and four (5%) hypothyroid. The
cohort has 32 current smokers, 10 former smokers, and 43
non-smokers. Nine of the 85 patients had optic neuropathy
(2 patients had decreased color and acuity; 1 had decreased
color and field; 5 had decreased acuity, color, and field; and 1
had nerve fiber layer edema and decreased acuity and field).

The automatic segmentation rendered labels of the struc-
tures defined in the atlas including the globe, the optic nerve,
the inferior, medial, superior, and lateral rectus muscles, and

the orbital fat as seen in the top right of Fig. 1. The structural
metrics examined included the volume, length, and diameter
measurements for all the segmented structures shown in the
top right of Fig. 1, as well as Barrett’s muscle index as seen in
the bottom left of Fig. 1, degree of proptosis as seen in the
bottom middle of Fig. 1, and volumetric crowding index as
seen in the bottom right of Fig. 1. A univariate Kendall rank
correlation test demonstrated a variety of correlations between
CT metrics and clinical data.

Table 1 shows the rank correlations between the clini-
cal characteristics and structural measurements of the
extraocular muscles (EOM). A strong correlation was
seen between loss of visual function and EOM metrics.
Medial muscle volume and diameter were negatively cor-
related with the visual acuity score (p < 0.05) and func-
tional acuity score (p < 0.05). Superior muscle volume
was negatively correlated with the functional acuity score
(p = 0.048). Color vision measurements demonstrated a
negative correlation, i.e., the larger the muscle, the worse
the color vision, with a superior rectus maximum diameter
(p < 0.05). Ocular motility deficit also demonstrated a
strong positive correlation with EOM metrics including
inferior rectus volume (p = 0.02), superior (p = 0.03), infe-
rior (p = 0.01), and lateral (p = 0.05) rectus muscle aver-
age diameter, inferior rectus muscle maximum diameter
(p < 0.05), total muscle volume (p = 0.03), and Barrett’s
muscle index (p < 0.05).

Table 2 Univariate Kendall rank correlations between orbital and optic nerve metrics and clinical covariates

Rho values Barrett
index

Globe
volume

Globe
diameter

On
length

On
traditional
length

On
volume

On
average
area

On
maximum
diameter

Orbital
volume

Volumetric
crowding
index

Proptosis Angle

LogMAR visual
acuity

0.03 0.06 0.05 − 0.01 − 0.08 0.03 0.08 0.00 − 0.04 0.14** − 0.06 0.09

Color vision (rato) 0.09 − 0.06 − 0.06 0.05 0.03 0.10 0.02 − 0.01 − 0.04 0.03 0.16** − 0.08
Smoking (0 no,

2 current,
1 former)

0.07 0.00 − 0.01 0.03 0.07 − 0.03 − 0.11* − 0.09 0.09 − 0.16** 0.22** 0.02

Motility defect
(1 no, 2 yes)

0.21** 0.13** 0.12* − 0.01 − 0.02 0.02 0.01 0.04 0.16** − 0.02 0.00 0.00

Hertel
ophthalmometer
measurement

− 0.10 − 0.03 − 0.03 0.15** 0.26** − 0.11* − 0.17** − 0.19** 0.24** − 0.24** 0.24** 0.15**

Optic neuropathy
(1 no, 2 yes)

0.04 − 0.05 − 0.05 − 0.10 − 0.08 − 0.09 − 0.07 − 0.10 − 0.01 − 0.10 − 0.03 0.00

Best corrected
visual acuity
(denominator)

0.03 0.10 0.10 − 0.11 −0.15* 0.21** 0.25** 0.16** 0.01 0.17** − 0.08 0.09

Visual acuity score − 0.07 − 0.08 − 0.08 0.09 0.11 − 0.24** − 0.27** − 0.15* 0.01 − 0.14* 0.11 − 0.07
Functional acuity

score
− 0.16** − 0.04 − 0.04 0.11 0.12 − 0.16** − 0.19** − 0.12 − 0.04 − 0.14* 0.07 − 0.09

Visual field score − 0.06 − 0.03 − 0.03 0.14* 0.09 − 0.12 − 0.13* − 0.05 0.14* − 0.07 − 0.03 − 0.15*
Functional field

score
0.04 − 0.06 − 0.06 0.18** 0.16** 0.03 0.02 0.05 0.01 0.08 − 0.04 − 0.14*

Functional vision
score

− 0.09 − 0.05 − 0.05 0.14* 0.14* − 0.09 − 0.11 − 0.09 − 0.05 − 0.11 0.02 − 0.13*

**p < 0.05; *p < 0.1
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Table 2 shows the correlations between clinical character-
istics and other orbital metrics, including volumetric measure-
ments of the optic nerve. Hertel measurements demonstrated a
strong positive correlation with traditional optic nerve length
(p ≪ 0.05), full optic nerve length (p < 0.05), orbital volume
(p ≪ 0.05), and proptosis (p ≪ 0.05) and demonstrated a nega-
tive correlation with optic nerve average area (p < 0.05), optic
nerve maximum diameter (p < 0.05), and volumetric
crowding index (p ≪ 0.05).

Smoking history demonstrated a positive correlation with
degree of proptosis measured on CT (p ≪ 0.05), inferior mus-
cle volume (p = 0.09), lateral rectus muscle volume (p = 0.03),
inferior muscle average diameter (p = 0.09), inferior muscle
maximum diameter (p = 0.01), lateral rectusmusclemaximum
diameter (p = 0.04) and demonstrated a negative correlation
with the volumetric crowding index (p = 0.01).

Discussion

Dysthyroid optic neuropathy is the most feared and devastat-
ing consequence of thyroid eye disease. Unfortunately, several
of the clinical markers that are indicative of optic nerve dam-
age may have confounding variables or be subjective in nature
such that their utility in identifying dysthyroid optic neuropa-
thy may be particularly limited in certain situations. Delay in
diagnosis may lead to permanent vision loss. An objective
marker of impending orbital compromise including extent of
muscle involvement or, even more importantly, a dysthyroid
optic neuropathy risk metric that may be obtained rapidly
could have tremendous clinical implications. The current
study investigates the relationship between CT imaging and
dysthyroid optic neuropathy and factors closely associated
with it such as loss of visual acuity, visual field defects, and
color vision [41]. It also investigates the relationship between
CT imaging and other characteristics shown to be associated
with thyroid eye disease in the previous literature such as
ocular motility defects, proptosis (Hertel measurements), and
smoking history.

The significance of this study is that we have devel-
oped an automated method to segment structures of in-
terest and extract volumetric and structural metrics relat-
ed to visual function from clinically acquired imaging.
This contrasts with previously published methods of
segmentation that are often cumbersome, require signif-
icant manual effort, and due to these factors are not
applicable in a fast-paced clinical setting. Analysis of
data obtained by this method within a population of
individuals with thyroid eye disease reveals several cor-
relations with potential for clinical significance. Imaging
reports of high risk of optic neuropathy would be espe-
cially helpful. This is most clinically relevant for those
patients with quiet, tightly packed orbits—our data have

shown us that it is not the highly proptotic patients
(stretched optic nerve) but rather the large-packed mus-
cle patients who are at greatest risk of vision loss from
thyroid eye disease. Ideally, a seasoned clinician would
correctly identify that a patient’s decreased visual acuity
and color vision is related to thyroid eye disease; how-
ever, some of the patients including our large cohort of
thyroid patients had their human lens removed and were
not sent for tertiary care until after the cataract surgery.
This work will be used to help develop a positive and
negative predictive probability.

The present data set reinforces the importance of Hertel
measurements in patients with thyroid eye disease as it corre-
lates strongly with radiographic evidence of pathologic optic
nerve changes as well as more complex indices of orbital
crowding such as the negative association seen to the volu-
metric crowding index. Clinically, Hertel measurements cor-
related strongly with radiographic proptosis.

Optic neuropathy was associated with increased superior
and lateral muscle diameters, possibly indicative of optic
nerve compression. The small sample size of patients with
clinical evidence of optic neuropathy is a likely contributor
to the absence of other statistically significant correlations in
the present study. Nevertheless, the strong correlation demon-
strated by several clinical visual function metrics such as vi-
sual acuity, visual field defects, and color vision with automat-
ically obtained orbital metrics serves as evidence that this new
method of obtaining objective radiographic data may provide
clinically relevant early evidence of risk that could prevent
permanent vision loss from dysthyroid optic neuropathy and
potentially from other causes of optic neuropathy.
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