
https://doi.org/10.1007/s10278-019-00235-x

ORIGINAL PAPER

Artery/Vein Vessel Tree Identification in Near-Infrared Reflectance
Retinographies
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Abstract
An accurate identification of the retinal arteries and veins is a relevant issue in the development of automatic computer-
aided diagnosis systems that facilitate the analysis of different relevant diseases that affect the vascular system as diabetes
or hypertension, among others. The proposed method offers a complete analysis of the retinal vascular tree structure by its
identification and posterior classification into arteries and veins using optical coherence tomography (OCT) scans. These
scans include the near-infrared reflectance retinography images, the ones we used in this work, in combination with the
corresponding histological sections. The method, firstly, segments the vessel tree and identifies its characteristic points.
Then, Global Intensity-Based Features (GIBS) are used to measure the differences in the intensity profiles between arteries
and veins. A k-means clustering classifier employs these features to evaluate the potential of artery/vein identification of
the proposed method. Finally, a post-processing stage is applied to correct misclassifications using context information
and maximize the performance of the classification process. The methodology was validated using an OCT image dataset
retrieved from 46 different patients, where 2,392 vessel segments and 97,294 vessel points were manually labeled by an
expert clinician. The method achieved satisfactory results, reaching a best accuracy of 93.35% in the identification of arteries
and veins, being the first proposal that faces this issue in this image modality.

Keywords Computer-aided diagnosis · Retinal image analysis · Vasculature · Artery/vein classification ·
Optical coherence tomography

Introduction

The human eye is an anatomical part of the body that is consid-
ered as one of the most complex organs. It is composed
of different types of structures whose main function is the
production of visual images that are transmitted instanta-
neously through the optical nerve to the brain [15]. The
analysis of these structures offers a set of biomarkers that
allow the identification of several pathologies that may
be present in the eye fundus, as glaucoma [8], diabetic
retinopathy [42, 48], sclerosis [1], or cardiovascular compli-
cations [24]. Several works studied the definition of metrics
that measure the vascular morphology of the retina, par-
ticularly between arteries and veins. Among them, we can
find the arterio-venular ratio (AVR). AVR measures the ratio
between the arteriolar and venular diameters, and it is one
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of the most referenced metrics for the quantification of the
changes in the retinal vascular structure [23]. An accurate
and robust identification of both types of vessels is a key
issue in the implementation of automatic computer-aided
diagnosis (CAD) systems. These ophthalmological systems
facilitate the early identification and diagnosis of different
relevant pathologies and help, therefore, the doctors to make
a more accurate diagnosis and treatments, reducing the con-
sequences of incorrect or imperfect treatments as the usual
side effects of unneeded medication.

In modern medicine, medical imaging involves different
capture technologies that are used for the visualization of
the inner body parts, tissues, or organs in order to facilitate
the medical diagnosis, treatments, and the corresponding
clinical monitoring [13]. In particular, in the field of
ophthalmology, optical coherence tomography (OCT) plays
an important role as a source of information about the retinal
layers that is increasing its popularity [43]. OCT is a non-
invasive imaging technique that generates, in vivo, a cross-
sectional visualization of the retinal tissues in the posterior
part of the eye [16]. This technique uses low-coherence
interferometry to produce a two-dimensional image by
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sequentially collecting reflections from the lateral and
longitudinal scans of the retina [36, 47]. The provided cross-
sectional images are extremely useful in the identification
of the different structures that are present in the human eye
anatomy, such as the optic disc [33], the retinal vasculature
[31], or the retinal layers [19]. The information that is
provided by this image modality can help, specially, in the
analysis of diseases that affect the retinal layers, as can
be the epiretinal membrane, macular edema, or age-related
macular degeneration [2, 32, 40].

Common procedures such as screening require a deep
analysis of a large amount of visual information, implying
an exhaustive and repetitive process for the clinical expert.
These activities are particularly tedious in terms of time and
resources that could be used, instead, to increase the qual-
ity of clinical diagnosis and patient care routines. Given the
importance of this issue, many efforts were done in the devel-
opment of automatic CAD tools that help and facilitate,
significantly, the work of the specialists. Nowadays, many
CAD systems were implemented to achieve these goals
along the large variability of clinical specialities. Regard-
ing ophthalmology, Yu et al. [51] presented a multi-screen
real-time telemedicine system, allowing the collaboration
between ophthalmologists from different medical centers to
perform a more accurate diagnosis of a patient. Others also
proposed telemedicine tools that allow the cooperation of
specialists in different geographic locations, as in the works
of Gómez et al. [18] or Bellazzi et al. [4]. Ortega et al.
[34] implemented the SIRIUS platform, a web-based system
for the analysis of classic retinographies. This framework is
composed of a set of image processing algorithms that are
structured as independent modules. Although most of the
proposed CAD systems were developed in specific contexts,
none of them considered the automatic classification of
the retinal vasculature between arteries and veins using the
near-infrared reflectance retinographies that are included in
the OCT scans.

In the literature, we can find approaches that use different
strategies to solve this problem in classical retinographies.
As reference, Joshi et al. [26] designed a methodology
based on graph search to identify the vessel segmentation
map. Then, the arterio-venular classification is performed
by means of a fuzzy C-means clustering. Rothaus et
al. [39] proposed a semi-automatic method to propagate
the vessel classification using anatomic characteristics
of the retinal vascular structure. Additionally, they used
information from hand-marked vessels to separate arteries
and veins. In the work of Relan et al. [37], the authors
proposed an unsupervised method using color features
of the retinographies to classify arteries and veins. The
vascular structure classification is performed by the use
of a Gaussian mixture model-expectation maximization
(GMM-EM) classifier. In another proposal, Relan et al.

[38] used a least square-support vector machine (LS-
SVM) classifier to automatically label the retinal vessels.
Dashtbozorg et al. [12] proposed an automatic method for
the artery/vein classification based on the analysis of a
graph that represents the structure of the retinal vasculature.
In Vázquez et al. [46], the authors proposed a framework
for the automatic classification of arteries and veins using
a k-means clustering. The classification results of all the
connected vessels are combined by a voting system. Yang
et al. [50] made use of a SVM classifier in the separation
process between arteries and veins. Kondermann et al.
[28] employed features that were extracted from the retinal
vessel profiles with respect to their centerlines. Then, they
used a classification approach based on SVM and artificial
neural networks (ANN). Grisan et al. [20] suggested a new
strategy for classifying vessels through the division of the
eye fundus into four concentric regions of interest that
are taken around the optic disc. Additionally, this method
exploits features that are extracted from HSL and RGB
color spaces. In the work of Xu et al. [49], the authors
proposed a regularization and normalization stage to reduce
the differences in the feature space of the image. These
features are employed for the discrimination of arteries
and veins by means of a k-nearest neighbors algorithm (k-
NN). In Simó et al. [44], the authors proposed a Bayesian
statistical methodology to distinguish arteries, veins, fovea,
and the retinal background using image information.

In this work, we propose a complete methodology for the
automatic retinal vasculature extraction and classification into
arteries and veins using the near-infrared reflectance retinogra-
phy images that are provided in combination with the his-
tological sections in the OCT scans. For that purpose, we
use the k-means clustering technique with feature vectors
obtained from extracted vessel profiles. A post-processing
stage is performed to correct the misclassified points belong-
ing to the same vascular segment through a voting process.
At the moment, no other work was proposed for this prob-
lem facing this imaging modality. This new methodology
allows a more reliable analysis of the retinal microcircula-
tion that is needed in many processes of clinical diagnosis.

The paper is organized as follows: Section “Methodology”
presents the proposed methodology and the characteristics
of all its stages. Section “Results and Discussion” presents
some practical results and the validation of key steps of the
method compared to the manual annotations of a specialist.
Finally, Section “Conclusions” includes the conclusions as
well as possible future lines of work.

Methodology

OCT images can provide detailed information about
relevant anatomical structures of the retina as the one that
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Fig. 1 Example of OCT image.
a Near-infrared reflectance
retinography. b Histological
section visualizing the
information of a band in the
near-infrared reflectance
retinography indicated by the
green arrow

is faced in this work, the retinal vessel tree. The OCT
capture device provides a set of two different types of
images: the near-infrared reflectance retinography and the
consecutive histological sections, as presented in Fig. 1.
In this work, the methodology receives, as input, the near-
infrared reflectance retinography image to identify the
vascular tree.

The proposed methodology, illustrated in the diagram of
Fig. 2, is divided into five main stages: firstly, the retinal
vascular tree is extracted from the input image; secondly, the
vessel centerlines are identified as well as the intersection
points of the vascular segments; a third stage, where all
these intersections are analyzed and corrected; a fourth
stage, where the region of the optic disc is identified and
removed for the posterior analysis, given the particular
characteristics of these regions that can confuse the system;
and finally, the identified vessels are analyzed and classified
into arteries and veins. These classifications are posteriorly
propagated to correct individual misclassifications and
retrieve a more coherent identification. Further details about
all these stages are going to be discussed next.

Vessel Segmentation

The first step of our methodology is the automatic extraction
of the retinal vascular structure. We segment the vascular tree
region that is posteriorly used as reference for the analysis
and differentiation of arteries and veins. To achieve that, this
stage is inspired in the method proposed by Calvo et al. [10] as
a well-established a robust technique that demonstrated its
suitability in classical retinographies. This strategy applies
a combination of different image processing techniques to
separate the retinal vascular structure from the background.
The process is done in two main steps: vascular structure
enhancement and extraction of the retinal vessel tree.

Vascular Structure Enhancement

Firstly, a pre-processing using a top-hat filter [14] is
performed to enhance the retinal vessel tree. In addition, a

median filter [22] is applied to reduce the levels of noise
that these images normally present, facilitating the posterior
extraction of the retinal vessels.

The vascular structure enhancement is done using a
multi-scale approach [17]. In particular, geometrical tubular
structures of a range of sizes are detected using the
eigenvalues, λ1 and λ2, of the Hessian matrix. Thus, a
function B(p) to measure a pixel p belonging to a vascular
structure, is formulated by the following:

B(p) =
{

0 λ2 < 0

exp(−2R2
b)(1 − exp(− S2

2c2 )) otherwise
(1)

where Rb = λ1/λ2, c is half of the maximum Hessian norm
and S measures the “second-order structures.” The pixels
belonging to the vessel structures are usually characterized
by small λ1 values and large positive λ2 values.

Vessel Extraction

Next, we proceed with the vasculature extraction using
the enhanced and filtered OCT image. Firstly, an initial
segmentation is performed using a method based on
hysteresis thresholding. A hard threshold (Th) obtains pixels
with a high probability of being blood vessel pixels while
a weak threshold (Tw) keeps all the pixels of the vascular
tree in the surrounding region. The vascular segmentation
is composed by all the pixels included by Tw that are
connected to at least one pixel obtained by Th. Both
thresholds, Th and Tw, are calculated from two image
properties: the percentage that represents the background
of the OCT image and the percentage that represents
the vascular tree. These thresholds are calculated using
percentile values, according to the following equation:

Pj = Lj + j × (n/100) − Fj

fj

× c, j = 1, 2, ..., 99 (2)

where Lj is percentile lower limit j , n illustrates the size
of the data set, Fj is the accumulated frequency for j − 1
values, fj represents the frequency of percentile j , and c

is the measure of the size of the percentile interval. In our
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Fig. 2 Main stages of the
proposed methodology

case, c is equal to 1. Finally, a post-processing stage is
applied to eliminate small detected elements that do not
belong to the retinal vessel tree. To do that, all isolated
structures that are smaller than a predetermined number of
pixels are deleted. A couple of representative examples of
the results of this stage are presented in Fig. 3 for a better
visualization where we can observe the input image, the
vessel tree segmentation, and the overlap between the result
of the segmentation and the input image, respectively.

Vessel Centerline Identification

Next, we proceed to identify the centerline of each vessel
using the previous segmentation of the vessel tree.

To achieve this, we based our method in the strategy
proposed by Caderno et al. [9], originally proposed in
a vessel tracking context. Multilocal level set extrinsic
curvature based on the structure tensor (MLSEC-ST) is used
to identify creases, a type of ridge/valley structures over
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Fig. 3 Segmentation process of the vessel tree. a Input image. b Final result after pre-processing, enhancement, hysteresis thresholding, and small
structure removal stages. c Overlap between the result of the segmentation and the input image

the intensity profiles [29], which in our case represent the
skeletons of the retinal vessels by a set continuous points.
Given a function L : Rd → R, the level set for a constant
l consists of the set of points {x|L(x) = l}. For 2D images
(d = 2), L can be considered as a topographic relief or
landscape and the level sets as its level curves. The positive
maxima of the level curvature k forms ridge curves and the
negative minima forms valley curves. The level curvature k

is defined, according to the following:

k = −div( �w) = −
d∑

i=1

(
∂ �wi

∂xi
), d = 2; (3)

where �wi is the ith component of �w, the gradient vector field
orthogonal to the level curves of L : Rd → R. The gradient
vector, �w, is defined by the following:

�w =
{ w

‖w‖ , if ‖w‖ > 0
Od, if ‖w‖ = 0

(4)

where w is the gradient vector field and Od the d-
dimensional zero vector. The identification of the centerline
produces the results of the skeletonization process, defining
each existing vessel by two endpoints and a list of consecutive
pixels. Figure 4 presents a couple of examples with results of

the centerline identification and, therefore, the skeletoniza-
tion process.

Intersection Points Correction

The crease identification using the MLSEC-TS method
presents an important limitation since it is not able to
correctly identify the points of intersection of the vascular
structures. These characteristic points are crucial as they
serve as a source of information for posterior stages of
the methodology identifying adequately the continuation of
each vessel. We analyze the previous skeletonization and
correct all the erroneous intersections.

The aimed intersections are mainly crossovers (points where
two different vessels overlap) or bifurcations (points where
a vessel is divided in two). To achieve this, we based our
proposal in the work of Sanchez et al. [41] where all the end-
points of the identified vessel centerline segments are analyzed
to detect any existing intersection. We have the following:

– Crossovers: We consider the existence of crossovers where
two endpoints are significantly close to a crossing segment.

– Bifurcations: When one endpoint of a segment is
significantly close to any point of other segments, we
consider the existence of a bifurcation.
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Fig. 4 Vessel centerline identification. a Input image. b Skeletonized segments. c Overlap between the result of the vessel centerline and the input
image

Finally, these identified intersections are corrected using an
interpolation B-splines S(u) strategy [5], defined according
to as follows:

S(u) =
n∑

i=0

Bi,m(u)Pi 2 ≤ m ≤ n + 1, (5)

where u is the knot vectors and Pi is the ith control point of
the (n + 1)th control point of the curve and Bi,m are the B-
spline blending functions, which are basically polynomials
of degree m − 1. The basis function Bi,m(u) is defined,
in this work, by the recursion relation of Cox-de Boor [7]
using an order value m = 2. Using this interpolation, we
correct the intersections of the vasculature identification.
Figure 5 presents representative examples of bifurcations
and crossovers that were identified and corrected in this
phase of the methodology.

Optic Disc Location

The optic disc, also knows as the optic nerve head, is a
round-like area in the back of the eye, bright and composed
mainly of the optic nerve fibers [25]. This anatomical
structure is commonly identified by the location of the
area with the highest variation of intensities of adjacent
pixels in the retinal images. Such variation is a consequence

of the appearance of structures that are present in the
fundus of the human eye, bright in the optic nerve fibers
and dark in the retinal vessels [45]. This scenario can
alter the characteristics of the visualization of the vessel
structures and cause misclassifications in the posterior
phase of identification of the retinal vessels as arteries or
veins. Based on that, we locate the region of the optic disc
with the aim of the elimination of its containing vessel
detections and avoid possible misclassifications. To identify
the optic disc, we implemented an algorithm based on the
work proposed by Blanco et al. [6], given its simplicity and
adequate results for this issue. The process is divided into
two steps: delimitation of the region of interest and optic
disc extraction.

Delimitation of the Region of Interest

We based our strategy on the concept that the optic disc
has higher intensity values than the retinal background or
other retinal structures. Basically, the main idea of the
method is to find the largest cluster of pixels with the
highest gray levels. To do that, the method selects the 5%
of the pixels in the image that have the highest intensity
values. Initially, each pixel represents a centroid and if
the Euclidean distance between two centroids is less than
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Fig. 5 Correction of the intersection points: (1st row, bifurcation) and (2nd row, crossing). a Input image. b Identified characteristic points: red
points represent the ends of the segments and green points are points of intersection. c Corrected vascular segments

a certain value these centroids, and their corresponding
clusters, are combined into a single one. The new centroid
Croi is calculated as follows:

Croi =
(

n∑
i=0

xi

n
,

n∑
i=0

yi

n

)
(6)

where (xi, yi) is the spatial coordinates of each cluster point
and n is the number of points of the cluster. The region of
interest of the optic disc is delimited by a rectangle whose
center is defined by the centroid of the cluster.

Extraction of the Optic Disc

Once the region of interest that contains the optic disc is
calculated, we proceed to identify its exact position in the
image. The method searches for circular edges within the
region of interest that represents the structural morphology
of the optic disc, as indicated, given its approximately
circular shape. In this work, these edges are calculated using
the Canny edge detector [11]. Then, we search for circular
borders using the fuzzy circular Hough transform [35]. The
purpose of this technique is to group the points belonging
to edges into candidates for circular shapes by performing a

voting procedure on a set of parameters of the equation of
the circle C, defined by the following:

C = (xi − a)2 + (yi − b)2 = r2 (7)

where (a, b) are the coordinates of the center of the circle,
(xi, yi) identify the coordinates of each point in the region
of interest, and r represents the radius of the circle. A
Hough accumulator array δ(a, b, r) is introduced to store
all the entries corresponding to the parameter space. A
voting process is done where each pixel (xi, yi) votes for
the set of centers (a, b) and the corresponding radio r that
are contained in the region of interest. The position of the
local maxima in the Hough accumulator array, δ(a, b, r),
represents the center (a, b) and radius r of the aimed optic
disc. Figure 6 a shows an example of the extraction of the
optic disc.

In many cases, the OCT images may include significant
bright intensities in the contiguous region to the optic disc
that can interfere directly in the process of classification of
the vascular structure. To avoid this situation, we used the
optic disc identification to remove a larger region and avoid
this complex situation. In particular, we remove a circular
zone centered on the optic disc with a radius of 1.5 × r ,
where r is the identified radius of the optic disc, as shown
in the example of Fig. 6b.
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Fig. 6 Example of the optic disc location. a Optic disc detection, where r represents the radius of the optic disc. b Circular region around of the
optic disc with radius of 1.5 × r , to remove the brightness contiguous zone in the image

Artery/Vein Vessel Classification

Finally, we perform the automatic classification of the
identified retinal vessels separating arteries and veins. To
achieve this goal, we divided this phase of the methodology

into three steps: Firstly, we obtain the vessel profiles and
calculate the features of the identified vascular segments
that are used in the classification process. Then, we perform
the differentiation of the vessels between arteries and veins
by the use of machine learning techniques. And finally, the

Fig. 7 Example of the vessel
profile extraction. a Vessel
centerline and vessel
segmentation, red and black
lines, respectively. b Vessel
edges represented by white lines.
c Yellow lines perpendicular to
the vessel centerline identify the
vessel profile information in
each point. d Seven vessel
profiles are used to extract the
features of each vessel point
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anatomical information provided by the vessels is used to
propagate and correct any existing misclassification.

Vessel Profile Extraction

For this purpose, we use the vascular information of the
vessel centerlines and the segmentation, both obtained in
previous stages, represented by Fig. 7a and b. To achieved
that, we based our method in the work of Barreira et al. [3].
Initially, we obtain the vascular edges to restrict the search
space. The method employs an approach based snakes, an
active contour model, to obtain a polygonal surface that
evolves within the vessel region [27], as shown in Fig. 7c. A
snake v(s) is a contour defined within an image, as shown
in the following:

v(s) = [x(s), y(s)] s ∈ [0, 1] (8)

where x(s), y(s), are the (x, y) coordinates of the image
and s is a parameter of the domain. Its values are stabilized
when it minimizes its energy function:

∫ 1

0
Esnake(v(s))ds =

∫ 1

0
Eint(v(s))ds+

∫ 1

0
Eext(v(s))ds (9)

where Eint represents the internal elastic energy term, which
controls the flexibility and elasticity of the snake, and Eext is
the external edge-based energy term which moves the snake
towards the edges of the vessels. In particular, Eint is defined
according to as follows:

Eint(v(s)) = α(s)

∣∣∣∣∂vs(s)

∂s

∣∣∣∣ + β(s)

∣∣∣∣∂2vs(s)

∂s2

∣∣∣∣ (10)

where vs(s) = [x(s), y(s)] defines each point of the snake
in the node coordinates (x(s), y(s)). The parameter α(s)

penalizes changes in the distances between points of the con-
tour, while the parameter β(s) penalizes oscillations in the
contour. Both control the snake shape in the vascular structure.

On the other hand, Eext is defined according to as follows:

Eext(v(s)) = γEedge+δEcres+υEdir+σEmark+ωEdif (11)

where Eedge corresponds to the energy calculated by
assigning to each point its Euclidean distance to the nearest
edge, Ecres represents the creases distance energy that
is obtained from the crease image, Edir is the strongest
expansion force of the snake model, Emark corresponds
to the energy that ensures that a self overlapping never
happens, and Edif is the energy of control over the snake
expansion. The parameters γ , δ, υ, σ , and ω are the weights
of the corresponding indicated energies [27]. The final result
of this method is directly affected by the initialization of
the snake nodes in the image. In our case, we used the

information of the coordinates of the centerline to perform
an initial distribution of the seeds within the vascular
segment. Two parallel chains of seeds are placed on both
sides of the centerline and they are guided toward the edges
by the energy terms of the model.

This way, we calculate the vascular profile for all the
points belonging to the centerline. Vessel profiles are
obtained using the information of a set of perpendicular
lines that are limited by both vessel edges. These profiles
are posteriorly used in the extraction of features in the
posterior vascular classification between arteries and veins.
Figure 7c illustrates an example of this approach, where
the yellow lines that are perpendicular to the vessel
centerline identify the vessel profile information calculated
for each vascular node. The feature vector is created for
all the points, Pi , that belong to the centerline. We use
seven vessel profiles, as shown in Fig. 7d, where the red
line describes the vessel profile of the point Pi and the
yellow lines indicate the set of consecutive vessel profiles
(Pi−3, Pi−2, Pi−1, Pi+1, Pi+2, Pi+3), that are employed in
the process of vessel feature extraction.

A/V Classification

Arteries and veins are two different types of vessels whose
main objective is the transportation of blood from the heart
to the organs and vice versa [21]. To identify them, in this
work, we used a machine learning approach to discriminate
the retinal vessels between these two types. Typically, veins
present darker profiles than arteries in the OCT images.
These differences in the intensity characteristics can be
easily observed in the near-infrared reflectance retinography
images. For that reason, we extract six Global Intensity-
Based Features (GIBS) from the previously extracted vessel
profiles. These features are used to measure the variations
of the intensities between these two types of vessels. In
particular, we handle the following features: mean, median,
standard deviation, variance, maximum, and minimum.

These feature sets are used by a classifier to discriminate
arteries from veins. In this approach, we choose the k-
means clustering algorithm [30] given its simplicity and
computational performance. The main idea of this classifier
is to define centroids, for each one of the two analyzed
clusters, in our case, arteries and veins. These centroids
are initialized to the minimum and maximum values of the
feature vector. This is necessary to place the centers of
the clusters as far as possible from each other in the first
iteration of the algorithm. As a result, all the points of the
vessel centerlines will be assigned to an unique cluster based
on its characteristics. In Fig. 8, we can see a representative
example of classification of the retinal vessels into arteries
and veins where the red points represent arteries and blue
points are veins.
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Fig. 8 Example of the automatic
classification of the retinal
vessels into arteries and veins. a
Vessel centerline image. b
Results of the classification
process for each individual
vessel point, where the red
points represent arteries and
blue points are veins. c Results
of the classification process with
propagation applied to all the
vascular segments. d Results of
the classification process with
propagation on the points of
intersection (bifurcations and
crossovers) applied to all the
vascular segments

Propagation

In the previous process, we classified each single point of the
vessels individually as artery or vein. This individual classi-
fication may carry the classification of points of the same
vessel to different classes (Fig. 8b). These inconsistencies
can be caused by possible changes in brightness, speckle
noise, or the presence of small capillaries in the retina. To
reduce the impact of these errors, we designed a final correc-
tion stage that is based on a voting process in each segment
in which the winning class has the highest number of votes
and, therefore, it is assigned to all the points of the vascular
segment (Fig. 8c).

Additionally, thanks to the correction of intersections points
(bifurcations and crossovers), we can coherently propagate
the correct class over the entire identified retinal vascu-
lature (Fig. 8d), improving once again the classification
performance of the proposed method.

Results and Discussion

The proposed method was tested using 46 OCT scans
of different patients including their corresponding near-
infrared reflectance retinography images. These images

were acquired with a confocal scanning laser ophthalmo-
scope, a Spectralis OCT from Heidelberg Engineering. OCT
images are all centered on the macula, with a resolution of
496 × 496 pixels and were taken from both left and right
eyes. The local ethics committee approved the study and the
tenets of the Declaration of Helsinki were followed.

The initial dataset was manually labeled by an expert
clinician, identifying the retinal blood vessels in the near-
infrared reflectance retinography images. The methodology
was validated by means of a testing dataset composed by
97,294 vessel points of 2,392 vascular segments, all catego-
rized between arteries and veins. We randomly divided the
initial dataset into a training and a testing dataset, both with the
same size, for the training and testing stages, respectively.

Regarding the parameters, they were empirically estab-
lished with a preliminary test, using those values that
offered satisfactory results. Table 1 presents the set of
parameters that were used with the proposed method in this
study.

Regarding the vascular tree detection, we analyzed the
performance of the used approach using the true positive
rates and the false positive rates. In particular, the true
positive rates measure the percentage of real vessel points
that are detected (ideally 100%) while the false positive
rates measure the percentage of detected points that do not
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Table 1 Parameter setting that was empirically established in this
study

Parameter Value

Wtop-hat × Wtop-hat 15 × 15 pixels

Wmedian × Wmedian 5 × 5 pixels

λ1 1.0

λ2 3.0

α 0.25

β 0.01

γ 0.025

δ 0.003

υ 0.062

σ 0.010

ω 0.900

correspond to real vessel points (ideally 0%). As show in
Table 2, the proposed strategy provided satisfactory results,
reaching a true positive rate of 83.85% as well as a false
positive rate of 3.51%, using all the images of the analyzed
dataset. Generally, the proposed system is able to identify
the retinal vascular tree with reasonable detection rates.

Regarding the A/V classification, the performance of
the proposed system was validated using the following
metrics: sensitivity, specificity, and accuracy, considering
true positives as correctly identified arteries, whereas true
negatives as correctly identified veins. Mathematically,
these metrics are formulated as indicated in Eqs. 12, 13, and
14, where (TP), (TN), (FP), and (FN) indicate true positive,
true negative, false positive, and false negative, respectively.

Sensitivity = TP

TP + FN
(12)

Specificity = TN

TN + FP
(13)

Accuracy = TP + TN

TP + FP + FN + TN
(14)

Firstly, the methodology was evaluated at all the points
of the retinal vessel tree. This initial evaluation was made
before the phase of propagation of the winning class in the
vascular classification stage.

Table 3(a) presents the results obtained in terms of
sensitivity, specificity and accuracy for all the vessel
coordinates. Generally, the initial evaluation of the method,
before the propagation stages, provided an accuracy of

Table 2 Results for the vascular tree detection stage

True positive rate False positive rate

83.85% 3.51%

Table 3 Sensitivity, specificity and accuracy of the A/V classification
process

(a) (b) (c)

Sensitivity 88.79% 91.44% 93.94%

Specificity 84.99% 89.47% 92.79%

Accuracy 86.84% 90.42% 93.35%

(a) Initial A/V classification process. (b) A/V classification process
with propagation. (c) A/V classification process with propagation
using the intersection points

86.84% in the A/V classification process, which we
consider satisfactory.

Next, as indicated, we proceed with the propagation
stage of the classification to assign a common class (artery
or vein) to all the points belonging to the same vascular
segment. Table 3(b) shows the results obtained including
this improvement. As we can see, the propagation produces
a more coherent artery/vein identification of the entire
vessel segments. Despite some misclassifications that can
be introduced, the vast majority of the pixels of most of the
vessels are correctly classified. This way, we correct some
of these introduced errors and, consequently, the accuracy
was improved.

Finally, we evaluate the entire proposed method includ-
ing the propagation stage using the intersection points
(bifurcations and crossovers). Following the same reasoning
of the previous propagation, the method was able to cor-
rect different misclassified vessel segments, mainly small
retinal vessels that were corrected by others through inter-
sections. The obtained results are presented in Table 3c.
Once again, thanks to those corrections, the accuracy was
improved, reaching a value of 93.35%.

Complementary, Fig. 9 presents three different and
representative frequency histograms using all the 46 near-
infrared reflectance retinography images. These histograms
present a graphical representation of the distribution in
terms of sensitivity, specificity, and accuracy for each
image, allowing a more complete and detailed analysis of
the obtained performance results. To do that, we analyze
the performance of the A/V classification process with
propagation using the intersection points. In general, all the
frequency histograms showed a satisfactory performance
with the considered dataset for all the analyzed metrics. In
particular, as we can see in Fig. 9c, satisfactory results were
also achieved for each image, reaching a mode of 94.23%
as well as values of 85.45% and 98.03% as minimum and
maximum, respectively.

Despite the non-existence of a public dataset to evaluate the
stages of our methodology and the non-existence of any
other proposal for the same image modality, we compared
the results of our approach with the performance of some
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Fig. 9 Frequency histograms of
the obtained results in the A/V
classification process with
propagation using the
intersection points. a Frequency
histogram of sensitivity. b
Frequency histogram of
specificity. c Frequency
histogram of accuracy
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Fig. 10 Vessel classification
performance comparative
between techniques of the state
of the art and the proposed
methodology

representative works of the literature for classical retinogra-
phies, given their proximity, to obtain an approximate idea
about the suitability of our proposal. These methods where
previously introduced and described in “Introduction.”
Figure 10 represents the best accuracy results of the methods
of the state-of-the-art and our proposal. As we can observe,

our method offers a competitive performance, outperform-
ing the rest of the approaches.

Figure 11 exposes some representative examples illus-
trating the final results of the proposed method. As we can
observe, the method offers accurate results, providing valu-
able information that can be easily analyzed by the expert

Fig. 11 Examples of final results of the proposed methodology. The red points describe arteries and blue points are veins
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clinicians. Despite this, the method presents some intrinsic
limitations due to the complex characteristics that may be
present in the near-infrared reflectance retinography images.
Some cases of misclassified vessel segments are originated
by a poor contrast, specially in cases of tiny vessels. Other
times, the characteristics of the vessels are similar in both
classes, once again specially in the cases of small retinal
vessels or the poor contrast that can be present in other eye
structures of some pathological scenarios.

Conclusions

This work presents a new methodology for the automatic
identification of the retinal vessel tree and its classification
into arteries and veins using the near-infrared reflectance
retinographies of the OCT scans. A robust and precise
identification and classification of the retinal vasculature
is fundamental for the development of CAD systems that
help the specialists to prevent, diagnose, and treat relevant
pathologies that affect the retinal microcirculation.

The proposed system achieved satisfactory results,
reaching a best accuracy of 93.35% of classification of
arteries and veins using all the stages of the proposed
method. Although, to date, no other work has been proposed
using this imaging modality, we compared the performance
of the proposed system with representative approaches of
the state of the art, despite that, they were proposed in the
analysis of classical retinographies given their proximity,
concluding that the proposal offers a correct behavior,
outperforming the results of the rest of the approaches.

Despite that, the method offered a robust and coherent
behavior, some aspects could also be improved. Future work
would involve the analysis of the different stages of the
methodology to obtain a better performance. Additionally,
the method could combine the output of this proposal with
the analysis of the vascular depth information provided
by the histological sections of the OCT scans. This
information, in combination with the 2D artery and vein
identification, could be used to perform a 3D reconstruction
of the vascular tree.

In addition, clinical studies could be designed to evaluate
the robustness of this method in a large variety of
retinal vascular disorders or possible systemic vascular
complications, providing a further complementary analysis
about the performance of the proposed system.
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19. González-López A, Ortega M, Penedo M, Charlón P (2014)
Automatic robust segmentation of retinal layers in OCT images
with refinement stages. In: International conference image
analysis and recognition, pp 337–345

20. Grisan E, Ruggeri A (2003) A divide et impera strategy
for automatic classification of retinal vessels into arteries and
veins. In: Engineering in Medicine and Biology Society, 2003.
Proceedings of the 25th annual international conference of the
IEEE, vol 1, pp 890–893

21. Ho A: Retina: Color Atlas & Synopsis of Clinical Ophthalmology
(Wills Eye Hospital Series) New York: McGraw-Hill Professional,
2003

22. Huang T, Yang G, Tang G: A fast two-dimensional median
filtering algorithm. IEEE Trans Acoust Speech Signal Process
27(1):13–18, 1979

23. Hubbard LD, Brothers RJ, King WN, Clegg LX, Klein R,
Cooper LS, Sharrett AR, Davis MD, Cai J: Methods for
evaluation of retinal microvascular abnormalities associated with
hypertension/sclerosis in the atherosclerosis risk in communities
study. Ophthalmology 106(12):2269–2280, 1999

24. Ikram M, De Jong F, Bos M, Vingerling J, Hofman A, Koudstaal
PJ, De Jong P, Breteler M: Retinal vessel diameters and risk of
stroke the rotterdam study. Neurology 66(9):1339–1343, 2006

25. Jonas JB, Schmidt AM, Müller-Bergh J, Schlötzer-Schrehardt U,
Naumann G: Human optic nerve fiber count and optic disc size.
Invest Ophthalmol Vis Sci 33(6):2012–2018, 1992

26. Joshi VS, Reinhardt JM, Garvin MK, Abramoff MD: Automated
method for identification and artery-venous classification of
vessel trees in retinal vessel networks. PloS One 9(2):e88,061,
2014

27. Kass M, Witkin A, Terzopoulos D (1987) Snakes: Active contour
models. In: 1St international conference on computer vision, vol
259, pp 268

28. Kondermann C, Kondermann D, Yan M et al (2007) Blood
vessel classification into arteries and veins in retinal images. In:
Proceedings of SPIE Medical Imaging, pp 651,247–6512,479
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