
Deep Learning Method for Automated Classification
of Anteroposterior and Posteroanterior Chest Radiographs

Tae Kyung Kim1,2
& Paul H. Yi1,2 & Jinchi Wei2 & Ji Won Shin2

& Gregory Hager2 & Ferdinand K. Hui1,2 & Haris I. Sair1,2 &

Cheng Ting Lin1,2

# Society for Imaging Informatics in Medicine 2019

Abstract
Ensuring correct radiograph view labeling is important for machine learning algorithm development and quality control of
studies obtained from multiple facilities. The purpose of this study was to develop and test the performance of a deep
convolutional neural network (DCNN) for the automated classification of frontal chest radiographs (CXRs) into anteroposterior
(AP) or posteroanterior (PA) views.We obtained 112,120 CXRs from the NIH ChestX-ray14 database, a publicly available CXR
database performed in adult (106,179 (95%)) and pediatric (5941 (5%)) patients consisting of 44,810 (40%) AP and 67,310
(60%) PA views. CXRs were used to train, validate, and test the ResNet-18 DCNN for classification of radiographs into
anteroposterior and posteroanterior views. A second DCNN was developed in the same manner using only the pediatric
CXRs (2885 (49%) AP and 3056 (51%) PA). Receiver operating characteristic (ROC) curves with area under the curve
(AUC) and standard diagnostic measures were used to evaluate the DCNN’s performance on the test dataset. The DCNNs
trained on the entire CXR dataset and pediatric CXR dataset had AUCs of 1.0 and 0.997, respectively, and accuracy of 99.6%
and 98%, respectively, for distinguishing between AP and PA CXR. Sensitivity and specificity were 99.6% and 99.5%, respec-
tively, for the DCNN trained on the entire dataset and 98% for both sensitivity and specificity for the DCNN trained on the
pediatric dataset. The observed difference in performance between the two algorithms was not statistically significant (p = 0.17).
Our DCNNs have high accuracy for classifying AP/PA orientation of frontal CXRs, with only slight reduction in performance
when the training dataset was reduced by 95%. Rapid classification of CXRs by the DCNN can facilitate annotation of large
image datasets for machine learning and quality assurance purposes.
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Introduction

The application of artificial intelligence (AI) in medicine is
gaining much momentum across several medical specialties,
particularly for automated classification of clinical images
[1–5]. Within radiology, AI has been met with much enthusi-
asm and optimism, especially with the recent development of
deep learning (DL), which has proven to be useful in automat-
ed image classification across multiple image modalities and
disease states [4, 6, 7].

One potential application for DL in radiology is automated
annotation of radiographic view for the purposes of machine
learning database curation. The accuracy of DL algorithms
depends on the number of training images and validity of
Bgroundtruth^ labels, which may be limited by occasionally
mislabeled metadata in medical imaging [8]. In clinical prac-
tice, such study descriptions, such as radiographic view, are
stored in the digital imaging and communications in medicine
(DICOM)metadata and displayed as overlaid annotations on a
standard picture archiving and communication system
(PACS) viewer. Aakre et al. previously found general errors
in plain radiograph labels to be as high as 2.4%, demonstrating
the need for quality assurance tools [9]. An automated method
for radiographic view semantic labeling could facilitate the
curation of large databases for medical image machine learn-
ing, as well as facilitate radiologists’workflow in the interpre-
tation of studies from outside facilities, the labels of which are
heterogeneous, occasionally inaccurate, and, therefore, not al-
ways reliable.
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Although radiologists traditionally utilize anatomical
markers such as position of the scapulae and relative size of
the cardiac silhouette to determine the projection of a CXR
[10], deep learning could facilitate the automated classifica-
tion of CXRs by radiographic view. Prior work by Rajkomar
et al. demonstrated 99% accuracy of a DL system in automat-
ically classifying CXRs into frontal (anteroposterior (AP) and
posteroanterior (PA)) vs. lateral views [8], which suggests a
similar approach could be applied towards classifying AP vs.
PA CXRs.

The purpose of this study was to develop and test the per-
formance of a deep convolutional neural network (DCNN) for
the rapid automated classification of frontal CXRs into AP or
PA views.

Methods

Datasets

All patient data were de-identified and compliant with the
Health Insurance Portability and Accountability Act
(HIPAA). This retrospective study was approved by the
Institutional Review Board. We obtained CXRs from the pub-
licly available NIH ChestX-ray14 database [4, 6], comprised
of 112,120 frontal CXRs (44,810 (40%) AP, 67,310 (60%)
PA) from 30,805 patients. We created a second database only
comprised of CXRs from pediatric patients < 18 years old
(2885 (49%) AP and 3056 (51%) PA) (Table 1). We also
obtained an external test dataset comprised of CXRs from
Shenzhen, China, and Montgomery County, USA, which
were composed of 800 PA CXRs [11]. In order to test our
algorithm’s generalizability to radiographs obtained from a
different hospital system, 200 de-identified CXRs (100
(50%) AP and 100 (50%) PA) were obtained from
Institution Name and were used for further testing
(Institution city and state). All images were saved using loss-
less Portable Network Graphics (PNG) format and then
resized to a 256 × 256 matrix from a native resolution of
1024 × 1024.

Computer Hardware and Software Specifications

All DCNN development and testing was performed using
PyTorch framework (https://pytorch.org) on a 2.5 GHz Intel
Haswell dual socket (12-core processors) (Intel, Santa Clara,
CA) with 128 GB of RAM and 2 NVIDIA K80 GPUs
(NVIDIA Corporation, Santa Clara, CA).

DLS Development

Following typical DL methodology [12], we randomly
assigned 70% of the data into the Btraining^ dataset, 10% of
the data into the Bvalidation^ dataset, and 20% into the
Btesting^ dataset, ensuring no overlap in images between these
datasets (Table 1). Briefly, the training phase utilizes the ma-
jority of the available data to train DCNNs to classify images
into predefined categories by identifying image features spe-
cific to each category. The validation phase utilizes a smaller
proportion of available data to test the DCNNs trained in the
training phase and select the highest-performing algorithms.
The final testing phase consists of assessing the diagnostic
performance of the best-performing algorithm(s) on a dataset
that was not utilized in either the training or validation phase.

We utilized the ResNet-18 [13] DCNN pretrained on 1.2
million color images of everyday objects from ImageNet
(http://www.image-net.org/) prior to training on the CXRs.
This technique is known as transfer learning and allows for
modification of pretrained neural network architectures to be
used for classification of different datasets not used in training
of the original network [3, 4, 14]. Transfer learning has
previously demonstrated superior performance in medical
image classification compared with the use of untrained
networks [3, 4, 14]. The solver parameters used for our
DCNN training were as follows: 50 training epochs;
stochastic gradient descent (SGD) with a learning rate of 0.
001, momentum of 0.9, and weight decay of 1 × 105. During
each training epoch, each image was augmented by a random
rotation between − 5 and 5°, random cropping, and horizontal
flipping.

Experimental Setup

Two separate DCNNs were trained, one using the entire
dataset and another using only pediatric CXRs. Each DCNN
was tested on a unique testing dataset not used for training or
validation.

The DCNN trained on the entire dataset was further exter-
nally tested on 800 PA radiographs from Shenzhen, China,
and Montgomery County, USA, performed previously for tu-
berculosis screening [11]. Two hundred de-identified radio-
graphs from randomly selected patients from the Johns
Hopkins Hospital (Baltimore, MD) were used to test the algo-
rithm for further validation in a hospital system.

Table 1 Datasets used for deep convolutional neural network training,
validation, and testing

DCNN Radiograph type Train Validate Test

All patients AP 31,367 4481 8962

PA 47,117 6731 13,462

Total 78,784 11,212 22,424

Pediatric AP 2020 288 577

PA 2139 306 611

Total 2020 594 1188

AP anteroposterior, PA posteroanterior
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Testing time was divided by the number of testing cases to
determine the rate of classification in number of images per
second. To identify the distinguishing image features used by
the DCNN for classification, we created heatmaps via class
activation mapping (CAM) [15].

Statistical Analysis

For each testing dataset, receiver operating characteristic
(ROC) curves with area under the curve (AUC) were gener-
ated and statistically compared between DCNNs using the
DeLong parametric method, along with standard measures
of diagnostic performance (sensitivity, specificity, accuracy,
positive predictive value, negative predictive value) at optimal
diagnostic thresholds chosen using Youden’s J statistic [16,
17]. AP images were considered to be positive and PA nega-
tive for statistical purposes.

Results

DCNNs trained using the entire CXR dataset and pediatric
CXR dataset achieved AUCs of 1.0 and 0.997, respectively
(p = 0.17), and accuracy of 99.6% and 98%, respectively, for
distinguishing between AP and PA CXR in the testing dataset.
A representative ROC curve is depicted in Fig. 1. Sensitivity
and specificity were 99.6% and 99.5%, respectively, for the
DCNN trained on the entire dataset and 98% for both sensi-
tivity and specificity for the DCNN trained on the pediatric
dataset. Positive predictive values were 1 and 0.98 for general
and pediatric algorithms respectively, and negative predictive
values were 0.99 for both algorithms (Table 2).

The DCNN trained using all images was tested using 800
PA radiographs from Montgomery County, USA, and
Shenzhen, China, for external generalizability, and achieved
an AUC of 0.999 and accuracy of 99.3%. When deployed for
radiographs retrieved from Institution Abbreviation, our algo-
rithm reached an AUC of 0.985, accuracy of 96% with sensi-
tivity of 98% and specificity of 97%. Overall, classification of
the CXRs occurred at a rate of 33 radiographs per second.

Representative heatmaps showing distinguishing features
weighted most heavily by the DCNNs are demonstrated in
Fig. 2 for both pediatric and general DCNNs. The DCNNs
most frequently highlighted the scapulae, heart, stomach, and
diaphragm. Although some radiographs contained radiopaque
labels indicating BAP^ or BPA,^ none of the CAMs highlight-
ed the region containing the labels.

Discussion

One application of deep learning is in the semantic labeling of
radiographs, which could aid radiologist workflow in ensuring
accuracy of metadata obtained from outside facilities and fa-
cilitate the creation of large datasets for medical machine
learning projects. In our study, we developed a deep learning
system to accurately distinguish the PA/AP orientation of
chest radiographs. Our deep learning system achieved a high
classification performance for both pediatric and adult popu-
lations, which also generalized well to an external dataset.
Furthermore, we identified distinguishing features the algo-
rithm used to come to its diagnosis.

Our deep learning systems achieved AUC of 1 and 0.997
for adult and pediatric populations respectively with no

Fig. 1 Receiver operator curves for general and pediatric classifier. Receiver operator curves were obtained for our general and pediatric DCNNs, using
pediatric NIH CXR14 test set. There was no significant difference in the performance observed in two algorithms when AUCs were compared (p = 0.17)
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statistically significant difference observed in performance
(p = 0.17), demonstrating strong diagnostic performance for
diverse demographics. These findings are consistent with
those reported by Rajkomar et al., who reported 100% accu-
racy for distinguishing between frontal and lateral chest radio-
graphs, a similar yet slightly simpler task [8]. Similarly, a prior
study by Cheng et al. demonstrated an accuracy of 77.9% in
classifying abdominal ultrasound images into 11 different an-
atomical categories [18], which is also consistent with our
findings demonstrating the feasibil i ty of DCNN-
classification of medical image semantic labeling.
Altogether, these findings confirm the efficacy of applying
deep learning using neural networks trained on everyday ob-
jects (i.e., ImageNet) towards medical imaging (i.e., transfer
learning).

Unlike the prior two studies by Rajkomar et al. and Cheng
et al. [8, 18], we did not artificially increase our training and
validation dataset size through augmentation techniques (al-
though we applied standard image augmentation during

training and validation). Because of the multiple-fold differ-
ence in number of images available in our study (112,120),
compared with 1885 images in Rajkomar et al. and 9298 im-
ages in Cheng et al., we hypothesized that it would be unnec-
essary to physically augment the images to increase our
dataset. Our near-perfect accuracy supports general machine
learning theory that increased size of dataset results in higher
performance. Furthermore, the DCNN trained using a smaller
subset of 5941 pediatric CXRs also achieved near-perfect di-
agnostic performance, which suggests that, for simple tasks,
such as labeling of radiographic view, a large number of train-
ing images are not necessary for deep learning.

Current limitations of deep learning include the concern
that neural networks act as Bblack boxes,^ given the inability
of a network to explain its diagnostic or decision-making rea-
soning. Class activation mapping is a visualization tool that
visually represents the features of an image that are weighted
the most heavily in DCNN’s decision. In the CAM analysis of
our DCNNs, we demonstrated that our algorithm tended to

Fig. 2 Class activation mappings extracted from general and pediatric
DCNNs. Class activation mappings were obtained using radiographs
from Johns Hopkins Hospital (JHH). Red areas denote anatomical
regions bearing significant weight in determining radiograph projection,

while blue regions signify areas of less significance. CAMs are not
highlighting the radiographic orientation marker located at the top-right
quadrant, ensuring the use of anatomically appropriate markers used for
classification

Table 2 Performance of deep convolutional networks (DCNNs) for radiograph orientation

DCNN Testing set AUC Sensitivity Specificity PPV NPV Accuracy
(%)

General NIH CXR14 1 1 0.99 1 0.99 99.6

Shenzhen, China and Montgomery County, USA 0.999 N/A 0.99 N/A N/A 99.3

Peds NIH CXR14 0.999 0.99 0.99 1 0.99 99.4

Johns Hopkins Hospital (Baltimore, MD) 0.985 0.98 0.96 0.96 0.98 96.0

Pediatrics Peds NIH CXR14 0.997 0.98 0.98 0.98 0.98 98.0

AUC area under the receiver operating characteristic (ROC) curve, PPV positive predictive value, NPV negative predictive value. Positive refers to AP
radiographs while negative refers to PA radiographs
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emphasize the mediastinum, heart, diaphragm, and osseous
structures to classify images into AP or PA views. Such ana-
tomic landmarks are, interestingly, similar to those used by
radiologists, such as position of diaphragm to signify adequa-
cy of breath in a PA radiograph; however, we stress that these
heatmaps merely show the areas most emphasized by the
DCNNs for decision-making and do not explain exactly what
it is about these areas that influences its decision-making.

We have demonstrated the rapid speed of our DCNN, clas-
sifying 33 CXRs per second. These findings are consistent
with those shown by Rajkomar et al., who showed a classifi-
cation of CXRs into frontal or lateral view at a rate of 38
images per second [8]. Assuming that a health system utilizes
100,000 CXRs a year, an entire decade of imaging data gen-
erated can be annotated in 8.4 h using our algorithm.
Therefore, our DCNN is well-suited to tackle large databases
and potentially can reach faster classification rate using CPUs
with higher processing power.

Although we trained our DCNN with the aim of retrospec-
tive image database curation, integration of our DCNN into
the workflow of radiology technicians could also automate the
labeling process and decrease the human error that may occur
with manual entry. A separate related challenge in building an
accurate database for both PACS workflows and for machine
learning is integrating image metadata from different equip-
ment manufacturers. Even within standardized PACS, signif-
icant variations in metadata conventions exist among equip-
ment manufacturers. Therefore, automated semantic labeling
of medical images would be an efficient solution to this prob-
lem; our algorithm is well-suited for such rapid automated
classification of large image databases.

Our study should be viewed in light of a number of limita-
tions. We caution that our findings are specific for the task of
classifying chest radiographs into AP vs. PA and as such, may
not be generalizable towards other more difficult tasks.
However, our results do demonstrate the potential power of
machine learning to perform tasks with accuracy and speed for
image preprocessing and radiograph quality assurance pur-
poses. Additionally, we utilized a single DCNN, as opposed
to multiple DCNNs, as done in prior studies [4, 14].
Combining multiple pretrained models may result in higher
performance, although the utility of using additional DCNNs
is questionable for our aims, given the very high AUCs
achieved by the ResNet-18 DCNN used in our study.
Finally, DCNNs are limited by the inability to know precisely
what our network is utilizing to make its decision.
Nevertheless, visualization techniques, such as CAM, are able
to give some insight into the areas that are most important for
decision-making.

In conclusion, we were able to train a neural network with
high accuracy for automated classification of frontal CXRs
into AP or PA view. Although further clinical validation in a
prospective manner is warranted for routine clinical use, our

findings suggest that transfer learning can be successfully ap-
plied towards semantic labeling of medical imaging. If applied
on a large scale and utilized towards other imaging modalities
and views, our networks could facilitate curation of largemed-
ical imaging databases for machine learning purposes and
ensure metadata quality for radiographs obtained from differ-
ent sources.

Compliance with Ethical Standards

All patient data were de-identified and compliant with the Health
Insurance Portability andAccountability Act (HIPAA). This retrospective
study was approved by the Institutional Review Board.
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