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Abstract
Aortic dissections and ruptures are life-threatening injuries that must be immediately treated. Our national radiology practice
receives dozens of these cases eachmonth, but no automated process is currently available to check for critical pathologies before
the images are opened by a radiologist. In this project, we developed a convolutional neural network model trained on aortic
dissection and rupture data to assess the likelihood of these pathologies being present in prospective patients. This aortic injury
model was used for study prioritization over the course of 4 weeks and model results were compared with clinicians’ reports to
determine accuracy metrics. The model obtained a sensitivity and specificity of 87.8% and 96.0% for aortic dissection and 100%
and 96.0% for aortic rupture.We observed amedian reduction of 395 s in the time between study intake and radiologist review for
studies that were prioritized by this model. False-positive and false-negative data were also collected for retraining to provide
further improvements in subsequent versions of the model. The methodology described here can be applied to a number of
modalities and pathologies moving forward.
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Introduction

An aortic dissection occurswhen the inner layer of the aorta tears,
causing blood to surge through the tear as the inner and middle
layers of the aorta dissect. Although the incidence of aortic dis-
section is only approximately 30 cases per million people per
year [1], this is an extremely serious medical condition, with
approximately 33% mortality after 24 h if left untreated [2].
Aortic dissection subtypes can be described by either the
DeBakey [3] or Stanford [4] classification systems and are clas-
sified based on the location of the dissection within either the
ascending aorta, descending aorta, or aortic arch. An aortic dis-
section often propagates through the aorta as the high-velocity
blood flow applies pressure to the boundaries of the dissection,
which can cause dissections to extend throughout much of the
aorta in some cases. As such, rapid detection of aortic dissection
in the hospital setting is critical for patient management.

Aortic rupture is a rarer but even more serious condition
than aortic dissection. Rupture of the aorta can occur either
through the rupture of an aortic aneurysm or through sudden
traumatic injury such as a vehicular crash. Over half of the
patients with an aortic rupture do not survive long enough to
enter the hospital and the overall mortality rate is 90% [5]. For
the same reasons as dissection, immediate detection of aortic
rupture or impending aortic rupture once the patient has en-
tered the hospital can make the difference between survival
and death.

Our teleradiology practice receives approximately 100 aor-
tic dissection cases and 10 aortic rupture cases per month.
Standard imaging for aortic dissection involves acquiring
computed tomography (CT) images of the chest, ideally after
injection of gadolinium contrast agent to obtain CT angiogra-
phy (CTA) data (Fig. 1). This image data is passed to radiol-
ogists with maximum turnaround time of approximately
30 min for urgent cases and 24 h for non-urgent cases. This
turnaround time includes the delay time between a study ar-
riving and it being opened by the radiologist as well as the
time taken to complete the read and can be influenced by a
sometimes significant time in queue based on the clinical ur-
gency of the case and availability of a radiologist that is not
otherwise reading other studies. We hypothesized that by
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using machine learning architecture and training on retrospec-
tive aortic injury data, we could create a model to be used for
classification and prioritization of aortic dissection and rupture
for all post-contrast chest CT data passing through our system,
decreasing the delay time for patients with these injuries.

Materials and Methods

Natural Language Processing

Our institution receives approximately 250,000 post-contrast
chest CT studies per year. Of these, approximately 0.3% is
positive for aortic dissection or rupture. To collect dissection-
or rupture-positive data, we created natural language processing
(NLP) models that could examine the radiologist’s clinical re-
port associated with each study and classify the study by

pathology. First, a list of keywords was selected to identify
possibly relevant reports. For the aortic dissection NLP model,
this keyword list was “perforation”, “flap”, “leak”, “dissection”,
“intramural hemorrhage”, and “intramural hematoma”. For the
aortic rupture NLP model, the only keyword used was “rup-
ture”. All reports from between January 2015 and August 2018
were screened for these keywords and any report containing
them was automatically extracted. Standard radiology report
format contains “Findings” and “Impressions” sections
(Fig. 2a); these sections were extracted from the reports and
split into sentences. Sentences were then selected only if they
had both “aort” and any keyword within the same sentence,
with “aort” used to catch the terms aorta and aortic. Non-
alphanumeric characters were removed and all selected
sentences were placed in an SQL database for easy labeling
of positive or negative for pathology. These sentences were
labeled in bulk using keywords so that several sentences could
be labeled at once (Fig. 2b).

Once a set of sentences were labeled (735 positive and
4133 negative), they were split into 3–5 words n-grams and
input into a stochastic gradient descent (SGD) classifier model
(alpha = 0.0001, max_iter = 1500, tol = 0, penalty = “I1”). A
validation split of 20% was used to create a validation dataset.
The model was trained until validation loss did not improve
for 10 iterations or 1500 iterations had passed, whichever
came first. This was performed for both aortic dissection and
rupture.

These NLP models, along with the same keyword list fil-
ters, were then applied to all incoming post-contrast CT chest
data between September 2018 and April 2019.

Image Collection and Organization

The NLP models were used to identify studies in which the
radiologist had identified an aortic dissection or rupture. All
studies were de-identified by anonymizing DICOM tags
known to contain protected health information (PHI) and by
passing the image data through an optical character recogni-
tion (OCR) module to remove images that contained burnt-in
text. A random subset of this data was chosen for training and
validation. In total, 279 negative studies, 471 aortic dissection
studies, and 28 aortic rupture studies were used for training.
For each study, a single axial post-contrast chest CTseries was
automatically extracted from using information from the se-
ries name and DICOM header. If a CTA series was available,
that series was chosen first; if no CTA series was available,
any post-contrast CT series was chosen, excluding maximum
intensity projection (MIP) images. If no CTA or post-contrast
CTseries was explicitly labeled by the series name or DICOM
header, then any axial series from the study was chosen; as the
studies used were all post-contrast studies, these remaining
axial series were often post-contrast.

Fig. 1 Axial post-contrast chest CTslices showing the aorta of 3 different
patients. a A healthy aorta. b An aortic dissection (blue arrow). c A
ruptured aorta (red arrow). Dark fluid is seen at the bottom of this image
as blood from the rupture leaks into the surrounding tissues
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The chosen post-contrast CT series were then manually
reviewed to ensure that the data were in fact post-contrast CT
images; any pre-contrast images were removed from the
dataset. Each DICOM file from every series was then win-
dowed to a minimum of − 300 Hounsfield units (HU) and a
maximum of 500 HU and converted into JPEG image format.
This HU range was chosen empirically by varying the thresh-
olds and observingwhich values led themodel to perform at the
highest validation accuracy. Among the positive cases, thumb-
nails of each JPEG were manually reviewed and any slice not
showing the dissection or rupture itself was removed from the
dataset. After this review, there were 51,895 negative images,
34,196 aortic dissection images, and 1388 aortic rupture images
available. Of these, 3215 negative images from 19 patients,
3074 aortic dissection images from 22 patients, and 143 aortic
rupture images from 2 patients were split into a validation
dataset, with the remainder used for training. No patients that
were used in the validation dataset had their images used in the
training dataset.

Model Training

The model structure used was a convolutional neural network
(CNN). Model training was performed using tensorflow and
keras in a Python 3.6 environment with two Quadro P5000
GPUs available (Nvidia, Santa Clara, CA). The model
consisted of 5 layers, each containing convolution (5 × 5 ker-
nels), activation (reLU), max pooling (2 × 2), and dropout
(0.4), followed by a dense layer and a softmax output func-
tion. The model architecture is shown in Fig. 3.

The manually reviewed JPEG images were input into the
CNN as training data in a randomized order. Prior to use in
the first layer, images were resampled to a resolution of

512 × 512, although most CT images begin at this resolution
and do not require adjustment. Images were then cropped to
keep only the centermost 256 × 256 array of pixels, as the aorta
falls within this window for all images that were reviewed.
When training, an SGD optimizer was used with a learning rate
of 0.003, decay of 10−6, momentum of 0.9, batch size of 50, and
binary cross-entropy loss. Randomized image augmentation
was used during training, with parameter ranges of 20° rotation,
15% zoom, 20% height shift, 20%width shift, 15% shear, and a
horizontal flip. The model was set to loop through all training
data once per epoch. After each epoch, the model was run on
the validation dataset and validation accuracy was calculated. If
validation accuracy improved over a previous maximum, the
model weights were saved. The model was set to automatically
stop training after no improvement occurred in 20 epochs. The
maximum validation accuracy training value achieved during
training was 96.9%, which occurred after epoch 56.

A test dataset consisting of 118 post-contrast CT series (50
negative, 50 positive for aortic dissection, and 18 positive for
aortic rupture) was then used to determine the best threshold
for classifying an entire study as positive or negative. To do
so, we used the model to classify each slice within the series as
either positive or negative and then multiplied the number of
positive slices by the slice spacing to obtain a length of aortic
injury in mm. Slice spacing was calculated by taking the dif-
ference in slice position between the 2nd and 3rd slices of the
series. After running the trained model on these test series, we
obtained an AUC of 0.979, sensitivity of 90.0%, and specific-
ity of 94.0% for aortic dissections at a threshold of 40 mm.We
also obtained an AUC of 0.990, sensitivity of 88.9%, and
specificity of 94.0% for aortic ruptures at the same 40-mm
threshold. Therefore, 40 mmwas used as a threshold for aortic
injury during prospective study prioritization.

Fig. 2 a The findings and impressions sections of a clinical report for a patient with aortic dissection. b Sentences containing the phrase “acute aortic
dissection” that were labeled as positive in bulk for the NLP training dataset
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Inference Engine

The inference engine (Fig. 4) in our teleradiology plat-
form is responsible for ingesting studies and relaying
the results to our radiology information system (RIS).
The process begins when a study is transmitted from a
facility to our picture archiving and communication sys-
tem (PACS). Upon receiving a study, the PACS for-
wards the study meta-data to the inference engine, in-
cluding the study modality, a few keywords describing
the study (e.g., Chest, w/ contrast), and the patient’s age
and sex. The inference engine uses this meta-data to
determine which models are relevant for this study and
adds the study to a queue, waiting for system resources
to be available before running the appropriate model.
When a study reaches the front of the queue, the infer-
ence engine requests a copy of the study from PACS
via the Web Access to DICOM Objects Restful Service
(WADO-RS) system and then forwards the study to
each relevant model.

After a model finishes running on a study, the model sends
the results back to the inference engine. The inference engine
analyzes the results and determines if the study’s pathology is
positive or negative based on a threshold stored in the infer-
ence engine database. Finally, the result is sent from the infer-
ence engine to the RIS, which can then utilize these results to
adjust radiologist worklists with prioritizations for studies that
likely have the pathology.

Data Collection

The aortic injury model was plugged into our inference engine
to classify all post-contrast chest CT series passing through
our database. Model hosting was done on Microsoft Azure
and run using a Tesla K80 GPU (Nvidia, Santa Clara, CA).
This model was run for 4 weeks continuously and all classifi-
cation results were saved in an SQL database for querying and
comparisons with other meta-data. NLP was applied to the
clinician’s report for each study and used as the ground truth
for whether the patient truly had an aortic dissection or rup-
ture. The clinician reports for all true positives, false negatives,
and false positives and were manually reviewed to ensure the
NLP result was correct; if the manual review indicated the
NLP did not correctly classify a study, the result was manually
corrected. It was not possible to manually review all true-
negative reports because of the large volume (~ 33,000), so a
subset of 1000 was manually reviewed; there were no mis-
classifications found within this group. A comparison of these
manually reviewed NLP ground truth results to the inference
results was used to calculate values of sensitivity and speci-
ficity for the full-throughput pipeline.

Delay Time Analysis

The time between when our system receives a study from the
facility and when that study is opened by a radiologist for
reading is called the “delay time”; this information is available

Fig. 4 Diagram of the image
inference engine. This system
intakes a study and outputs
classification results to our
RIS system

Fig. 3 Architecture of the aortic
injury convolutional neural net.
Input images of size 256 × 256
undergo binary classification
as positive or negative for
aortic injury
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within our database for each study. Delay times for all studies
that passed through the aortic injury model were extracted
from this database. In theory, delay times of studies that return
a positive result from the aortic injurymodel should be smaller
than delay times of studies with a negative result, if study
prioritization is working properly. A Shapiro-Wilk test was
run to determine the normality of the delay time distribution
and a Mann-Whitney test was used to compare the medians of
the two groups. Additionally, histograms comparing the two
model result categories (positive vs. negative) were created for
visual comparison.

There are three main classifications of urgency for studies
that enter our system, in order of increasing urgency: non-emer-
gent, emergent, and trauma. Emergent studies are ordered when
a patient may have a potentially life-threatening condition, and
trauma studies are ordered when an emergent condition in-
volves multiple procedures or regions of the body. The non-
emergent classification is typically ordered when there is no
indication that the patient may have a critical injury. Emergent
and trauma studies must be read with 30 min of study intake
and non-emergent studies are typically read within 24 h. For the
purposes of this delay time analysis, non-emergent studies were
excluded because their delay times are much larger than those
of the other categories and because no non-emergent studies
were found to be positive for aortic injury.

Aortic Aneurysm Statistics

Aortic aneurysms occur when the wall of the aorta becomes
weakened and bulges outward. While not immediately criti-
cal, this condition can eventually lead to aortic rupture if un-
treated. In order to determine whether dissection false posi-
tives might be triggered by aortic abnormalities such as an
aneurysm, the aneurysm NLP result was extracted for both
the dissection false-positive group and the dissection true-
negative group. A two-proportion z-test was used to compare
the proportion of aneurysm NLP-positive patients out of the
total number of patients between the dissection false positive
and true negative groups.

Results

Results for the NLPmodel validation set are shown in Table 1:
During the 4-week period from 17 May 2019 to 13

June 2019, a total of 34,689 post-contrast chest CT studies
were routed to the aortic dissection model. All studies had a
usable axial CT series found. Studies passed through the mod-
el with a mean time of 23.5 s and standard deviation of 21.0 s,
including the time to select the optimal series from a study and
the time to return a classification of that series. Based on a
comparison to manually reviewed NLP performed on the cli-
nician’s report, we obtained the results shown in Table 2:

This suggests our system correctly caught 98 true aortic
dissections and 7 true aortic ruptures and adjusted the priority
of these studies. The incidence rate of aortic dissections was
112 out of 34,577 (0.33%), and the rate of aortic ruptures was
7 out of 34,577 (0.02%). The mean patient age of aortic dis-
section was 60.4 years for false-positive studies and 57.7 years
for true-negative studies (t-test, P < 0.0001). The false-
positive dataset also contained a higher proportion of males
than the true-negative dataset (57.0% vs 49.2%; two-
proportion z-test, P < 0.0001) (Fig. 5). Out of 1383 dissection
false-positive patients, 88 were positive for aortic aneurysm
(6.3%); for dissection true-negative patients, 591 out of
33,194 were positive for aortic aneurysm (1.8%). A two-
proportion z-test suggested that dissection false-positive cases
were significantly more likely to have an aortic aneurysm than
dissection true negatives (P < 0.0001).

There were 1615 out of 31,662 (5.1%) emergent studies
prioritized and 286 out of 3922 (7.3%) trauma studies priori-
tized, with trauma studies significantly more likely to be prior-
itized than emergent (two-proportion z-test, P < 0.0001).
Histograms suggested a large concentration of delay times be-
low 500 s for both model-positive (true positives + false posi-
tives) and model-negative (true negatives + false negatives)
studies (Fig. 6a). However, this peak was larger for the
model-positive studies, and the tail stretching above 1000 s
was larger for the model-negative studies, suggesting that delay
times above 1000 s are far less likely to occur for model-
positive studies. The delay time distributions were not normally
distributed for both model-positive and model-negative studies
(Shapiro-Wilk test, P < 0.0001 for both). The model-positive
group had significantly reduced delay time compared with the
model-negative group (265 s vs. 660 s; Mann-Whitney test,
P < 0.0001, Fig. 6b), a difference of 395 s (6.6 min).

Discussion

A high-volume inference system for identifying and prioritiz-
ing aortic dissection and rupture studies was implemented in
our teleradiology workflow. High specificity in our results
was prioritized in order to keep the number of escalated stud-
ies at a minimum, as opposed to maximizing the sensitivity.
This allows us to reduce the impact of this model on worklist,
leaving room for additional pathology models to be imple-
mented in the future. After training and testing this model on
retrospective data, the sensitivity and specificity for prospec-
tive data were in line with expectations from the test dataset.

One previous study has explored using convolutional neu-
ral networks for automated diagnosis of aortic dissections. Li
et al. developed a 3D segmentation tool for segmentation of
the aorta and lumens for type B aortic dissections [6].
However, our technique works in a simpler fashion and does
not require segmentation to perform classification, allowing
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for a more lightweight model that can perform faster during
high-throughput situations. To our knowledge, this study is
the first to use machine learning to screen for aortic rupture
in addition to dissection and the first to implement these aortic
classification models in a clinical prioritization scenario.

We observed a statistically significant difference in the age
of patients in our confusion matrix, with older patients being
more likely to register a false positive. This is an interesting
result and may be due to the typical aging process causing
degenerative changes in the aorta that do not rise to the level
of a dissection. We also observed a higher proportion of males
in the false-positive data compared with the true-negative da-
ta. Similar to aging effects, this may suggest that males are
more prone to general aortic degeneration that may resemble
an aortic injury. Finally, we observed a higher rate of aortic
aneurysm in the false-positive data compared with the true-
negative data. This suggests that false positives can sometimes
be triggered by other aortic conditions such as aneurysm that
may be of interest to the radiologist despite not being a critical
pathology. The most common type of false negative were
studies in which a dissection was present but measured less
than the 40-mm threshold. This was the case for a slight ma-
jority of our false negatives (8 out of 14). These types of false
negatives could be reduced by lowering the dissection length
threshold, ideally by retraining the model with more
dissection-negative images as described below.

A few improvements remain to be explored regarding this
study. First, it is possible that adding more data to our model
can improve its accuracy and improve sensitivity and speci-
ficity even further. One benefit of our inference workflow is
that since all false-positive and false-negative studies are re-
corded in our database, we can choose to retrieve only these
inaccurately classified images and feed them back into the
model for retraining. This allows the model to adjust for any
image characteristics that it may be systematically
misclassifying and correct for those in the next model version.
In theory, this technique provides more efficient model

retraining than simply adding new randomized data to the
model, although due to changes in the structure and training
parameters of this model throughout its development, it was
not possible to quantitatively verify this effect during this pro-
ject. An exploration of whether this theory is true would be an
interesting undertaking in the future.

Our inference engine may have missed some abdominal
aortic dissections in abdomen-pelvis studies that were inten-
tionally not routed through the aortic injury model. In the
future, it may be helpful to expand the qualifying study de-
scriptions to include abdomen-pelvis studies to catch addition-
al abdominal aortic dissections. However, this would come at
a tradeoff of higher volume and a larger number of false pos-
itives. Some dissections were also missed due to a study being
non-contrast, where the radiologist was able to diagnose a
dissection regardless. We may be able to incorporate non-
contrast data in further versions of this model to classify dis-
section in non-contrast studies, although this will likely be
difficult given the utility of contrast in differentiating
dissections.

It is possible that more advanced model structures may
yield a higher accuracy than our current 5-layer model. Due
to the infinite number of possible model structures, we ex-
plored only a relatively small model space within 6 sequential
layers. Other more complicated standardized networks such as
GoogleNet [7] and ResNet [8] could in theory produce better
results, although we were not able to get results that improved
upon our simple 5-layer model using these networks. Even if a
more advanced network did show improvement, the high-
throughput nature of this application renders a slight increase
in accuracy less valuable than a steep reduction in prediction
time, leaving us comfortable with our chosen model.

There were several limitations to this study. Although NLP
results were used as a ground truth when calculating sensitiv-
ity and specificity, the NLP itself is imperfect. These NLP
results were manually reviewed for the 4 weeks of data col-
lected during this study, with the exception of true negatives.

Table 1 Results for the aortic dissection and aortic rupture NLP models. The validation dataset was taken as a random 20% sample of the available
sentence data

True positives True negatives False positives False negatives Total Sensitivity Specificity

Aortic dissection 85 6 4 401 496 94.4% 99.0%

Aortic rupture 7 0 0 28 35 100% 100%

Table 2 Results for the aortic injury classification model. False positives, true negatives, and specificity are identical for dissection and rupture because
the same set of negative studies is used for both sets of statistics

True positives False negatives False positives True negatives Sensitivity Specificity

Aortic dissection 98 14 1383 33,194 87.8% 96.0%

Aortic rupture 7 0 1383 33,194 100% 96.0%
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However, due to the high volume of studies coming through
our system, it would be extremely difficult to manually review
all reports for all models moving forward, so this source of
error will have to be accepted in future model statistics.

Since the training and validation datasets contain many
images from each image series, these samples are not fully
independent from each other and this must be kept in mind
when considering the large size of these datasets. However,
the fact that no images from a series in the training dataset are
included in the validation dataset ensures that the validation
dataset will not be biased by this effect.

It was sometimes very difficult to determine where dissec-
tions near the aortic valve ended and where the valve itself
began, as both can look similar on post-contrast CT images.
Therefore, some training images from this specific region may
have been mislabeled, although the best effort was made to
label them correctly. The model also does not have access to
3D data when training, so it must take each slice independent-
ly without information from above or below. Other studies
have used 3D CNNs which include slices above and below
the slice of interest to classify pathology [9]; this type of net-
work may provide an advantage over our more simple 2D
CNN method.

Finally, the logic for choosing an optimal post-contrast CT
series from a study may have performed imperfectly at times.
In situations where both a contrast and a non-contrast series

without series names were present in a study, it may have
chosen the non-contrast series on occasion and likely resulted
in a negative finding for aortic dissection. Similarly, if
DICOM header data falsely stated that a study was non-
contrast when it did in fact have contrast, that study may have
registered as having no usable series and automatically
defaulted to a negative pathology finding. These issues could
potentially be improved upon by incorporating another CNN
for detection of contrast used for choosing series; however, the
computational and workflow cost of doing this was deter-
mined not to be necessary for the purposes of this experiment.

Conclusions

In conclusion, an aortic injury model capable of detect-
ing both dissections and ruptures was implemented in a
high-volume environment at our radiology practice and
used for study prioritization. The model performed as
expected compared with initial test data and correctly
identified most dissections along with all available rup-
tures and reduced the time between study intake and
radiologist read for these patients. This workflow can
be expanded to other modalities and pathologies that
are candidates for study prioritization.

Fig. 6 a Histograms of delay
times bymodel result. bBox-and-
whisker plot of delay times by
model result. The whisker ends
represent the 10% and 90% dis-
tributions of delay times; lines
within the box represent the me-
dian and both quartiles of delay
time

Fig. 5 a A false-negative study classified by the aortic injury classifica-
tion model. The dissection (blue arrow) is shorter than 40 mm and there-
fore was not picked up by our inference system. b A false-positive study

classified by the aortic injury classification model. The aorta is aneurys-
mal (red arrow) which can sometimes trigger a positive finding
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