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Abstract
Statistics show that the risk of autism spectrum disorder (ASD) is increasing in the world. Early diagnosis is most important factor
in treatment of ASD. Thus far, the childhood diagnosis of ASD has been done based on clinical interviews and behavioral
observations. There is a significant need to reduce the use of traditional diagnostic techniques and to diagnose this disorder in the
right time and before the manifestation of behavioral symptoms. The purpose of this study is to present the intelligent model to
diagnose ASD in young children based on resting-state functional magnetic resonance imaging (rs-fMRI) data using
convolutional neural networks (CNNs). CNNs, which are by far one of the most powerful deep learning algorithms, are mainly
trained using datasets with large numbers of samples. However, obtaining comprehensive datasets such as ImageNet and
achieving acceptable results in medical imaging domain have become challenges. In order to overcome these two challenges,
the two methods of Bcombining classifiers,^ both dynamic (mixture of experts) and static (simple Bayes) approaches, and
Btransfer learning^ were used in this analysis. In addition, since diagnosis of ASD will be much more effective at an early
age, samples ranging in age from 5 to 10 years from global Autism Brain Imaging Data Exchange I and II (ABIDE I and ABIDE
II) datasets were used in this research. The accuracy, sensitivity, and specificity of presented model outperform the results of
previous studies conducted on ABIDE I dataset (the best results obtained from Adamax optimization technique: accuracy =
0.7273, sensitivity = 0.712, specificity = 0.7348). Furthermore, acceptable classification results were obtained from ABIDE II
dataset (the best results obtained from Adamax optimization technique: accuracy = 0.7, sensitivity = 0.582, specificity = 0.804)
and the combination of ABIDE I and ABIDE II datasets (the best results obtained fromAdam optimization technique: accuracy =
0.7045, sensitivity = 0.679, specificity = 0.7421). We can conclude that the proposed architecture can be considered as an
efficient tool for diagnosis of ASD in young children. From another perspective, this proposed method can be applied to
analyzing rs-fMRI data related to brain dysfunctions.
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Introduction

One of the most important organs of the human body is the
brain. Therefore, its function as the core member of the ner-
vous system has always been of interest to researchers. During
the life of a person, his or her brain function can partially be
impaired due to living conditions and genetic factors. This
impairment usually erupts in the form of diseases such as
depression, Parkinson, multiple sclerosis (MS), attention def-
icit hyperactivity disorder (ADHD), and ASD. Some of these
diseases such as depression are completely treatable using
medications while others such as ASD do not have a definite
cure and only their progress can be controlled. Unfortunately,
in most cases, these types of diseases are only diagnosed when
symptoms have erupted and the patient is suffering from
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untreatable complications. Therefore, accurate diagnosis of
these diseases in the early stages is considered very important.
There are numerous methods for studying brain functions,
including electroencephalography (EEG), magnetoencepha-
lography (MEG), positron emission tomography (PET) and
fMRI. As a noninvasive tool, fMRI has the best spatial reso-
lution among the abovementioned methods, and it has an ac-
ceptable time resolution compared to other methods [1]. This
method studies the brain activity by measuring the fluctua-
tions of oxygen levels in the blood [1, 2]. The fMRI is per-
formed in two different ways: task-based fMRI and resting-
state fMRI. Rs-fMRI has been extensively used to detect func-
tional brain networks and provides information on brain func-
tional connectivity [3–6]. ASD is one of the disorders that can
be diagnosed using rs-fMRI data. Statistics show that the risk
of ASD is increasing in the world. ASD is a pervasive devel-
opmental disability that can affect social communication, so-
cial skills, imagination, and behavior [7–11]. Thus far, the
childhood diagnosis of ASD has been done based on clinical
interviews and behavioral observations. There is a significant
need to reduce the use of traditional diagnostic techniques and
to diagnose this disorder in the right time and before the onset
of behavioral symptoms as well as improving the accuracy of
diagnosis based on advances in medical imaging [12, 13]. In
other words, advances in medical imaging technology, such as
fMRI, allows for constructive approaches for diagnosing of
disorders associated with brain dysfunctions such as ASD.

Since the publication of ABIDE I [14] dataset, various
studies have attempted to diagnose ASD based on rs-fMRI
data. Each of which has their own advantages and disadvan-
tages. These methods will be briefly addressed in this paper.
Nielsen et al. [15] examined the model proposed by Anderson
et al. [16] using general linear model on 964 samples from 16
different sites of ABIDE I dataset. A model was proposed by
Uddin et al. [17] to distinguish between healthy and patient
groups using the independent component analysis [18, 19]
and logistic regression classifier on 40 fMRI data. In addition,
some personality traits such as age, gender, and intelligence
quotient were also involved in this analysis. Ghiassian et al.
[20] rejected the method based on functional connectivity ma-
trix of rs-fMRI data as an appropriate solution and proposed a
new model for distinguishing between autistic and non-
autistic people based on the features of structural magnetic
resonance imaging (sMRI) and rs-fMRI data plus some per-
sonality traits such as intelligence quotient. Using histogram
of oriented gradients, maximum relevance minimum redun-
dancy and with the help of support vector machine with radial
basis function kernel, they performed feature extraction, fea-
ture selection, and classification of images, respectively. Sen
[21] proposed a new algorithm based on rs-fMRI data of
ABIDE I dataset using principal component analysis and in-
dependent component analysis in order to distinguish between
healthy group and people with ASD.

In recent years, machine learning techniques are employed
to help improve diagnosis of neurological disorders. Deep
learning techniques are by far one of the most powerful ma-
chine learning algorithms in the tasks of classification and
representation learning [22]. The initial incentive of deep
learning models is inspired by communication patterns in hu-
man nervous system [23]. Depending on these different pat-
terns, various deep learning models have been proposed.
These are beneficiary to exploit the latent high-level features
inherent in data to enhance the diagnostic performance [22,
24–26]. Thus, deep learning approaches have yielded break-
throughs in medical imaging analysis recently. This study pre-
sents a model based on rs-fMRI data to diagnose ASD using
CNNs as one of the most powerful deep learning methods. In
addition, the presented model employs the two methods of
Bcombining classifiers^ both dynamic (mixture of experts)
and static (simple Bayes) approaches, and Btransfer learning,^
to achieve the two following objectives: Firstly, obtaining ac-
ceptable classification results based on a combination of rs-
fMRI data around three coordinate axes. Secondly, solving the
challenge of training CNNs with comprehensive datasets such
as ImageNet [27, 28] in medical imaging domain based on rs-
fMRI data.

Furthermore, subjects ranging in age from 5 to 10 years
from global ABIDE I and ABIDE II datasets were included
in this analysis due to the fact that diagnosis of ASD will be
much more effective at an early age.

Materials and Methods

Datasets

For this study, data were selected from ABIDE I and ABIDE II
datasets [29], a collection of 1112 and 1144 resting-state scans
from more than 24 international sites, respectively. The samples
who participated in this analysis are between the ages of 5 and 10
due to the fact that the diagnosis of ASDwill bemore effective at
an early age. Based on this criterion, the number of individuals
selected from ABIDE I and ABIDE II datasets is equal to 116
(typical control (TC) = 62 and ASD= 54) and 343 (TC = 187
and ASD= 156), respectively. Table 1 summarizes participants’
information. For more detailed information, see [29].

fMRI Preprocessing

Preprocessing is an essential component in the fMRI data
analysis. In other words, in order to obtain reliable results,
preprocessing steps should be applied [30]. The preprocessing
was conducted using SPM8 [31] through the following steps:

& The first five volumes were removed from the data for
further processing to ensure magnetization equilibrium.
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& In order to compensate for differences in the time of slice
acquisition, slice-timing correction was performed [32].
Furthermore, the time corresponding to the first slice
was chosen to be the reference.

& Head motion is the most damaging problem for fMRI data
analysis. A little head motion can make the data meaning-
less and unusable. It can cause signal changes over time
and it can also cause signal loss on the edges of the brain.
The general process of spatially aligning two image vol-
umes is called co-registration. The goal of motion correc-
tion is to adjust the series of images so that the brain is
always in the same position. Motion correction is basically
co-registering all of the brain volumes in a scan with the
first (or another) subject-matched functional image.

& After motion correction, to map the functional and
subject-matched structural images to each other,
functional-structural co-registration was performed.

& By using a voxel size of 2×2×2 mm3, spatial normaliza-
tion to theMontreal Neurological Institute (MNI) standard
space was performed so that all samples had equal spatial

dimensions and coordinates [32, 33]. The product of this
step was an image with 79 × 95 × 68 spatial dimensions.

& The fMRI data were smoothed in order to increase the
signal to noise ratio (SNR). Gaussian filters are generally
used to smooth images [31, 32]. In this study, spatial
smoothing was performed with a Gaussian kernel of
8×8 × 8 Full-Width Half-Maximum (FWHM) mm3.

& Numerical normalization was done. In this step, values of
each fMRI data are to be placed between zero and one.

Dimension Reduction

In this study, dimensions of four-dimensional (4D) rs-fMRI
data were reduced to two as follows:

1. As we know, each 4D rs-fMRI data (three spatial dimen-
sions + one temporal dimension) consists of several 3D
sMRI data (three spatial dimensions). Each sMRI data
belonged to a specific time point. We also know that each

Table 1 Participants information

Datasets Sites Sample size
(total)

Sample size Sample size Measurements

TC ASD TC ASD

Female Male Female Male

ABIDE I Pitt 2 1 1 – 1 1 – 200

Olin 1 1 – – 1 – – 210

OHSU 11 7 4 – 7 – 4 82

SDSU 1 1 – 1 – – – 180

USM 3 3 – – 3 – – 240

KKI 26 17 9 6 11 2 7 156

NYU 40 17 23 6 11 1 22 180

Stanford 24 12 12 3 9 2 10 180

UCLA 8 3 5 – 3 2 3 120

Total 116 62 54 16 46 8 46 –

ABIDE II EMC 51 26 25 5 21 5 20 160

GU 41 25 16 16 9 3 13 152

IP 9 4 5 3 1 2 3 85

KKI 90 64 26 28 36 9 17 156

NYU1 53 20 33 1 19 4 29 180

NYU2 27 – 27 – – 3 24 180

OHSU 42 32 10 16 16 3 7 120

SDSU 11 4 7 – 4 1 6 180

TCD 1 – 1 – – – 1 210

UCLA 17 12 5 4 8 1 4 120

USM 1 – 1 – – – 1 240

Total 343 187 156 73 114 31 125 –

Combination of ABIDE I and ABIDE II Total 459 249 210 89 160 39 171 –
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sMRI consists of several 2D spatial slices around x, y, and
z coordinate axes (first spatial slice, …, middle spatial
slice, ...., final spatial slice). By extracting the 2D first
spatial slice of each sMRI belonged to a specific time
point around x, y, and z axes, 4D rs-fMRI data were con-
verted to three 3D images (two spatial dimensions + one
temporal dimension). Figure 1a, b, and c are the 2D first
spatial slice of each sMRI belonged to a specific time
point across x, y, and z axes, respectively.

2. By applying fast Fourier transform on the time dimension of
each 3D image and selecting themaximum frequency of each
voxel, the dimensions of the images were reduced from three
to two. This step produced images with 95 × 68, 79 × 68, and
79 × 95 dimensions, around the x, y, and z axes, respectively.

Convolutional Neural Networks

CNNs are one of the most important deep learning approaches in
the tasks of classification and representation learning. In general,
a CNN is a hierarchical neural network consists of three main
layers: convolutional layers, pooling layers, and fully-connected
layers [34]. There are two stages for training a CNN: a feed
forward stage and a backward stage. In the feed forward stage,
the prediction output is used to calculate the loss cost with the
ground truth labels. In the backward stage, based on the calcu-
lated error, the gradient of each parameter is computed by the
chain rules, and all the parameters are updated based on the
gradients. After adequate iterations of these two stages, the learn-
ing of the CNN can be stopped [34].

Combining Multiple Networks

In order to achieve acceptable results, the results of several net-
works can be combined. In this paper, the results of multiple
networks were fused using both dynamic (mixture of experts)
and static (simple Bayes) combining classifiers methods, in order
to classify autistic and non-autistic people based on rs-fMRI data
around three coordinate axes (x, y, and z).

Mixture of CNN Experts

This section discusses the combined structure of mixture of
CNN experts (MCNNEs), which is a new deep learning struc-
ture for achieving acceptable results in diagnosis of ASD.
Firstly, the mixture of experts (MEs) method will be explained
in the BMixture of Experts^ section.

Mixture of Experts The MEs is one of the most popular dy-
namic models in combining classifiers. MEs was proposed by
Jacobs et al. [35] based on the Bdivide and conquer^ principle
in which a gating network divide the problem space among a
number of neural network experts. Figure 2 illustrates the
structure of MEs with three experts and a gating network. In
this paper, the CNNwas used as experts and a gating network.

MEs Learning Method In MEs architecture, there is competi-
tive learning process among experts; that is, the expert with
fewer errors will be rewarded [35]. LetΩ = {ω1, ..., ωK}be the
set of class labels, E = {E1, E2, ...,EL} the set of experts and
x = {x1, x2, ...,xn} the input pattern vector. If the output of
expert i for the input vector x is denoted as yi(x) and the final
output of the architecture is denoted as Y(x), then we have:

yi xð Þ ¼ we
i :x ð1Þ

Y xð Þ ¼ ∑
L

i¼1
gi yi xð Þ ð2Þ

where we
i is the weight vector of expert i; the operator (.) is a

symbol for dot product of two vectors ofw and x; L is the number
of experts and gi is the weight assigned to the output of expert i
generated by the gating network. gi can be considered as an esti-
mation of the probability function p Eijx;we

i

� �
. In this architecture,

the number of neurons in the output layer of the gating network is
equal to the number of experts. The output of neuron i of the gating
network can be defined by Eq. (3):

hi xð Þ ¼ ∑
n

t¼1
xtw

g
it i ¼ 1; 2;…; L ; t ¼ 1; 2;…; n ð3Þ

Fig. 1 The 2D first spatial slice of
each sMRI data belonged to a
specific time point around three
coordinate axes: (a) around x axis,
(b) around y axis, and (c) around z
axis
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where wg
it is the connection weight between neuron t in the input

layer to neuron i in the output layer of the gating network. Given
the values of hi, the gi values are calculated from Eq. (4):

gi xð Þ ¼ exp hi xð Þð Þ
∑L

j¼1exp hj xð Þ� � i ¼ 1; 2;…; L ð4Þ

where gi is softmax function, so the sum of all the gi is equal to
one. The biggest gi for an expert means that the expert is more
capable of generating desired output.

For each expert i and gating network, the weights are up-
dated according to the following rules:

Δwe
i ¼ ηeki d xð Þ−yi xð Þð Þ:xT i ¼ 1; 2;…;L ð5Þ

Δwg
i ¼ ηg ki−gið Þ:xT i ¼ 1; 2;…; L ð6Þ

where d(x) is ideal output vector for the input vector x, ηe, and
ηg are learning rate for each expert i and gating network,
respectively. Furthermore, ki can be defined by Eq. (7):

Fig. 2 Structure of MEs with
three experts and a gating network

Table 2 Architecture of expert 1
and gating network Input image Layer Layer type Size Output shape

Across x axis 1 Convolution + ReLu Filters 8, kernel 3 × 3 (8, 93, 66)

Across y axis (8, 77, 66)

Across z axis (8, 77, 93)

Across x axis 2 Max pooling Kernel 2 × 2, stride 2 (8, 46, 33)

Across y axis (8, 38, 33)

Across z axis (8, 38, 46)

Across x axis 3 Convolution + ReLu filters: 8, kernel: 3 × 3 (8, 44, 31)

Across y axis (8, 36, 31)

Across z axis (8, 36, 44)

Across x axis 4 Max pooling Kernel 2 × 2, stride 2 (8, 22, 15)

Across y axis (8, 18, 15)

Across z axis (8, 18, 22)

Across x axis 5 Convolution + ReLu Filters 8, kernel 3 × 3 (8, 20, 13)

Across y axis (8, 16, 13)

Across z axis (8, 16, 20)

Across x axis 6 Max pooling kernel: 2 × 2, stride: 2 (8, 10, 6)

Across y axis (8, 8, 6)

Across z axis (8, 8, 10)

Across x axis 7 Fully connected + ReLu dropout (rate 0.5) 300 hidden units 300

Across y axis 300

Across z axis 300

Across x axis 8 Softmax 2 2

Across y axis 2

Across z axis 2
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ki ¼
gi exp −

1

2
d−yið ÞT d−yið Þ

� �

∑L
j¼1gi exp −

1

2
d−yið ÞT d−yið Þ

� � i

¼ 1; 2;…; L ð7Þ

Structure of the ProposedMCNNEs The general architecture of
our proposed MCNNEs network is shown in Fig. 2. Experts
and a gating network consist of three convolutional layers,
three max pooling layers, and one fully connected layer. The
architectural details of gating and expert networks are present-
ed in Tables 2, 3, and 4, respectively. As can be observed,
there are two differences among these architectures: the num-
ber of convolutional filters and the number of neurons in the
fully connected layer. In this study, the non-linear activation
function called rectified linear unit (ReLu) was used [36] in
each convolutional layer. In addition, in order to prevent
overfitting, dropout strategy with probability 0.5 was also
employed [37] in the fully connected layer of each expert
and gating network (Tables 2, 3, and 4). It should be noted
that the binary softmax regression (logistic regression) was
used as the classifier.

Combining MCNNEs Using Simple Bayes Method

This section combines the MCNNEs networks with rs-fMRI
input data around three coordinate axes (x, y, and z axes) using
simple Bayesmethod in order to achieve acceptable results in the
diagnosis of ASD and what was discussed in the BDimension
Reduction^ section (Fig. 3). Firstly, thismethodwill be explained
in the BSimple Bayes method^ section.

Simple Bayes Method Static methods such as voting-based al-
gorithms are based solely on the output label computed by each
classifier. No expertise is considered. However, using Bayes the-
orem, the expertise of classifier is also considered. In thismethod,
first, a confusionmatrix, CMj, is formed according to the training
data for each classifier Dj. Each row of the matrix represents the
instances in an actual class while each column represents the
instances in a predicted class. The elements of this matrix are
denoted as cmj(k, s); that is, number of instances (input pattern x)
belong to class ωk but classifier Dj is categorized into class ωs.
cmj(s) can be calculated from Eq. (8).

cm j sð Þ ¼ ∑
K

k¼1
cm j k; sð Þ ð8Þ

Table 3 Architecture of expert 2
Input image Layer Layer type Size Output shape

Across x axis 1 Convolution + ReLu Filters 10, Kernel: 3 × 3 (10, 93, 66)

Across y axis (10, 77, 66)

Across z axis (10, 77, 93)

Across x axis 2 Max pooling Kernel 2 × 2, stride 2 (10, 46, 33)

Across y axis (10, 38, 33)

Across z axis (10, 38, 46)

Across x axis 3 Convolution + ReLu Filters 10, kernel 3 × 3 (10, 44, 31)

Across y axis (10, 36, 31)

Across z axis (10, 36, 44)

Across x axis 4 Max pooling Kernel 2 × 2, stride 2 (10, 22, 15)

Across y axis (10, 18, 15)

Across z axis (10, 18,22)

Across x axis 5 Convolution + ReLu Filters 10, kernel 3 × 3 (10, 20, 13)

Across y axis (10, 16, 13)

Across z axis (10, 16, 20)

Across x axis 6 Max pooling Kernel 2 × 2, stride 2 (10, 10, 6)

Across y axis (10, 8, 6)

Across z axis (10, 8, 10)

Across x axis 7 Fully connected + ReLu
dropout (rate 0.5)

400 hidden units 400

Across y axis 400

Across z axis 400

Across x axis 8 Softmax 2 2

Across y axis 2

Across z axis 2
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Using the values of cmj(s) and cmj(k, s), the label matrix,
LMj, can be calculated. This is a K ×K matrix. The elements
of this matrix are denoted as lmj(k, s) which are calculated by
the following formula:

lm j k; sð Þ ¼ P̂̂ ωk jDj xð Þ ¼ ωs
� � ¼ cm j k; sð Þ

cm j sð Þ ð9Þ

If S1, S2,…, SL are the labels that classifiersD1 toDj assign
to input pattern x, the estimation of the probability of actual
label of input pattern x; ωi, is calculated from Eq. (10).

μi
D xð Þ ¼ ∏

L

j¼1
P̂̂ ωijDj xð Þ ¼ S j
� � ¼ ∏

L

j¼1
lmi

i;s j ; i

¼ 1;…;K ð10Þ

where P̂ ωijDj xð Þ ¼ s j
� �

is estimated based on the training
data.

Transfer Learning

Transfer learning [38–42] is the process of using a pretrained
CNN on dataset with a large number of samples, freezing the

weights of the convolutional layers, replacing fully-connected
layers and training these layers based on the small dataset.
This method is very popular in CNN-based networks due to
the fact that it accelerates the learning process and is one of the
most effective strategies for training a CNN when the dataset
may not be adequate to train a full structure of network.

Applying Transfer Learning in Diagnosis of ASD

The number of individuals ranging in age from 5 to 10 years in
ABIDE I, ABIDE II, and the combination of them are 116,
343, and 459, respectively. In order to train CNNs, these are
small datasets. Since CNNs are basically trained using a large-
scale dataset, transfer learning strategy is one of the most
effective strategies when having datasets with limited number
of samples. Consequently, in this study, transfer learning strat-
egy was applied as follows:

1. Formation of large datasets: Since each rs-fMRI data con-
tains multiple sMRI images equal to the number of its
time points, a large dataset considering the image of each
time point as a sample was formed. As a result, the size of
the created large ABIDE I, ABIDE II, and the

Table 4 Architecture of expert 3
Input Image Layer Layer type Size Output

shape

Across x axis 1 Convolution + ReLu Filters 12, kernel 3 × 3 (12, 93, 66)

Across y axis (12, 77, 66)

Across z axis (12, 77, 93)

Across x axis 2 Max pooling Kernel 2 × 2, stride 2 (12, 46, 33)

Across y axis (12, 38, 33)

Across z axis (12, 38, 46)

Across x axis 3 Convolution + ReLu Filters 12, kernel 3 × 3 (12, 44, 31)

Across y axis (12, 36, 31)

Across z axis (12, 36, 44)

Across x axis 4 Max pooling Kernel 2 × 2, stride 2 (12, 22, 15)

Across y axis (12, 18, 15)

Across z axis (12, 18, 22)

Across x axis 5 Convolution + ReLu Filters 12, kernel 3 × 3 (12, 20, 13)

Across y axis (12, 16, 13)

Across z axis (12, 16, 20)

Across x axis 6 Max pooling Kernel 2 × 2, stride 2 (12, 10, 6)

Across y axis (12, 8, 6)

Across z axis (12, 8, 10)

Across x axis 7 Fully connected + ReLu dropout (rate 0.5) 500 hidden units 500

Across y axis 500

Across z axis 500

Across x axis 8 Softmax 2 2

Across y axis 2

Across z axis 2
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combination of these two datasets is 19,808; 51,392; and
71,200; respectively.

2. Pretraining of the proposed CNNs: Large datasets gener-
ated in step 1 were used for pretraining of the proposed
CNNs.

Fig. 3 The combined MCNNEs

Table 5 Hyper-parameters

Datasets Batch size Number of
epochs

Regularization Optimization
method

Learning
rate

Learning rate
decay

Beta-
1

Beta-
2

Epsilon

Pre-
training

Fine-
tuning

ABIDE I 30 22 50 0.01 Adam 0.01 0 0.9 0.999 1e-08
Adamax 0.002

ABIDE II 20 Adam 0.01

Adamax 0.002

ABIDE I and
ABIDE II

20 Adam 0.01

Adamax 0.002

906 J Digit Imaging (2019) 32:899–918



3. Using the pretrained CNNs from step 2, by freezing
the weights of the initial layers and replacing the
fully connected layer, only the fully connected and
classifier layers of these networks were fine-tuned
by these small datasets (datasets transformed to the
frequency domain in the BDimension reduction^
section).

It should be noted that for transfer learning in med-
ical imaging domain, natural image datasets or other
med i ca l imag ing da t a s e t s c an be used [43 ] .
Furthermore, the transfer learning is possible between
two different domains. In this study, transfer learning
between two spatial and frequency domains was
performed.

Implementation Details

In this research, the proposed model was implemented using
Keras [44], one of the deep learning libraries written in
Python. Keras can use both Theano [45, 46] and Tensorflow
[47] as the backend. Keras with the Theano backend was used
in this study. All the experiments were conducted using com-
puter with an Intel Core i7 CPU (2.2 GHz) and 16 GB DDR3
memory. To train the model, the loss function and optimiza-
tion methods are required. Since the problem is a binary clas-
sification, a binary cross-entropy loss function was used. In
order to minimize loss function, adaptive moment estimation
(Adam) and Adamax [48] optimization techniques were used.
Adamax method was employed for pretraining of each expert
and gating network. Furthermore, both Adam and Adamax

Fig. 4 Accuracies obtained from fine-tuning of the last layers of MCNNEs structures with rs-fMRI input data around three axes and combining them
using Adam optimization technique
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approaches were used for fine-tuning of the last layers of
proposed CNNs. A list of hyper-parameters used in this study
is presented in Table 5.

Results

This section presents the results and analysis of proposed
model, combination of pretrained MCNNEs using simple
Bayes method. In order to do so, in the BComparison of the
Results of Combining MCNNEs with Each of These
Networks on the Three Datasets^ and theBComparison of
the Results of Combining MCNNEs with Combination of
Simple CNNs on the Three Datasets^ sections, we will com-
pare the results of combination of three MCNNEs with the
results of both each MCNNEs and combination of three

simple CNNs. In each section, the results will be presented
based on fine-tuning of the last layers of the CNNs in two
stages. Adam and Adamax optimization methods were used
in the first and second stages, respectively.

Comparison of the Results of Combining MCNNEs
with Each of These Networks on the Three Datasets

Results Obtained from Adam Optimization Technique

The classification accuracies, sensitivities, and specificities
obtained from fine-tuning of the last layers ofMCNNEs struc-
tures with rs-fMRI input data around three axes and combin-
ing these three structures using Adam optimization technique
are shown in Figs. 4, 5, and 6 respectively.

Fig. 5 Sensitivities obtained from fine-tuning of the last layers of MCNNEs structures with rs-fMRI input data around three axes and combining them
using Adam optimization technique
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Referring to Fig. 4, it can be observed that in a combination
of ABIDE I and ABIDE II datasets, the accuracy of combined
MCNNEs using simple Bayes method is higher than accura-
cies obtained from singular MCNNEs with rs-fMRI input data
around each axis. Meanwhile, in ABIDE I and ABIDE II
datasets, in spite of obtaining less accuracy from the compo-
sition mode compared to maximum accuracy obtained from
the single mode (around z axis), there was no significant dif-
ference. That is because, as it is shown in Table 6, by applying
the t test to the accuracies obtained from tenfold cross valida-
tion, no significant difference was found between the maxi-
mum accuracy obtained from the singular structure (around z
axis) and the accuracy of the combined MCNNEs
(p (ABIDE I) = 0.6695, (p (ABIDE II) = 0.5658)).

The results were also calculated in terms of other evalua-
tion criteria such as sensitivity and specificity (Figs. 5 and 6).

These figures also demonstrate that the composition modewill
not provide better results compared to single networks.
Furthermore, by applying the t test to the sensitivities and
specificities which resulted from tenfold cross validation and
calculating the p value, it can be concluded that there was no
significant difference between maximum of these criteria ob-
tained from each single network and their combination
(Table 6).

Results Obtained from Adamax Optimization Technique

The classification results in terms of accuracies, sensitivities,
and specificities obtained from fine-tuning of the last layers of
MCNNEs structures with rs-fMRI input data around x, y, and z
axes and combining them using Adamax optimization tech-
nique are shown in Figs. 7, 8, and 9, respectively.

Fig. 6 Specificities obtained from fine-tuning of the last layers of MCNNEs structures with rs-fMRI input data around three axes and combining them
using Adam optimization technique

J Digit Imaging (2019) 32:899–918 909



As shown in Fig. 7, it can be observed that, unlike Adam
optimization technique on ABIDE II dataset, the accuracy of
combined MCNNEs using simple Bayes method is higher
than accuracies obtained from each MCNNEs with rs-fMRI

input data around each axis. Meanwhile, in ABIDE I dataset in
composition mode, despite obtaining accuracy equal to max-
imum accuracy obtained around z axis, a sustainable result
was obtained. That is because, as it is shown in Table 6, by

Table 6 Applying the t test to
evaluation criteria obtained from
tenfold cross validation on
MCNNEs with maximum value
obtained around one axis and
combining MCNNEs according
to rs-fMRI data based on first
slices and using Adam and
Adamax optimization techniques

Optimization techniques Datasets p value

Accuracy Sensitivity Specificity

Adam ABIDE I 0.6695 0.3473 –

ABIDE II 0.5658 0.6519 0.7912

Combination of ABIDE I and ABIDE II – 0.8583 –

Adamax ABIDE I 1 0.7014 0.925

ABIDE II – 0.8945 –

Combination of ABIDE I and ABIDE II 0.2495 0.0906 –

Fig. 7 Accuracies obtained from fine-tuning of the last layers of MCNNEs structures with rs-fMRI input data around three axes and combining them
using Adamax optimization technique
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applying the t test to the accuracies obtained from tenfold
cross validation, there was no significant difference between
the maximum accuracy and combined MCNNEs (p = 1). In
the results obtained from a combination of these two datasets,
the accuracy obtained from the composite mode is lower than
the maximum accuracy (around z axis); however, by applying
the t test (Table 6), a similar conclusion is drawn in terms of
lack of a significant difference (p = 0.2495). Meanwhile, in
Adam optimization technique, the accuracy obtained from
the combinedMCNNEs with simple Bayes method on a com-
bination of these two datasets was higher compared to the
each MCNNEs alone. Figures 8 and 9 represent other evalu-
ation criteria such as sensitivity and specificity. As it was
mentioned in the BResul ts Obtained from Adam
Optimization Technique^ section, t test was also applied to
sensitivity and specificity of MCNNEs with maximum values

and the result of combined MCNNEs. With consideration to
the p value, it can be concluded that the null hypothesis of
equality of the averages of these criteria cannot be rejected
(Table 6).

Comparison of the Results of Combining MCNNEs
with Combination of Simple CNNs on the Three
Datasets

Results Obtained from Adam Optimization Technique

The performance measures namely, accuracy, sensitivity, and
specificity obtained from fine-tuning of the last layers of com-
bined MCNNEs and combined simple CNNs structures with
rs-fMRI input data using Adam optimization technique are
shown in Figs. 10, 11 and 12, respectively.

Fig. 8 Sensitivities obtained from fine-tuning of the last layers of MCNNEs structures with rs-fMRI input data around three axes and combining them
using Adamax optimization technique
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Figure 10 illustrates that the best accuracy was obtained
from combined MCNNEs on ABIDE II dataset and a combi-
nation of ABIDE I and ABIDE II datasets. The accuracy ob-
tained from combined MCNNEs on ABIDE I dataset only
fails to exceed the combined CNNs with 12 filters. In other
words, by applying the t test, considering the p value, it can be
concluded that there was no significant difference between the
accuracy of combined MCNNEs and combined CNNs with
12 filters on ABIDE I dataset (p = 0.8384).

Figures 11 and 12 also represent sensitivity and specificity of
combined MCNNEs and combined CNNs based on different
filters. Figure 11 shows that only the sensitivity of combined
MCNNEs exceeds combined CNNs in all structures with 8, 10
and 12 filters on a combination of two datasets. However, the

sensitivity in the composite mode of MCNNEs on ABIDE I
dataset is higher compared to combined CNNs with 8 filters.
Also, on ABIDE II dataset, the sensitivity of combined
MCCNEs is higher than combined CNNs with both 10 and
12 filters. In other words, despite obtaining less sensitivity from
the composite mode of MCNNEs compared to combined
CNNs, no significant difference was obtained (Table 7).

Figure 12 shows that in terms of specificity, the composi-
tion mode of MCNNEs has obtained lower results compared
to combined CNNs with 8, 10, and 12 filters on all three
datasets whereas by applying the t test and considering the
p values (p > 0.05) on all three datasets, the null hypothesis
of equality of the averages of specifies cannot be rejected
(Table 7).

Fig. 9 Specificities obtained from fine-tuning of the last layers of MCNNEs structures with rs-fMRI input data around three axes and combining them
using Adamax optimization technique
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Results Obtained from Adamax Optimization Technique

The classification accuracies, sensitivities, and specificities
obtained from fine-tuning of the last layers of combined
MCNNEs and combined simple CNNs structures with rs-
fMRI input data using Adamax optimization technique are
shown in Figs. 13, 14, and 15 respectively.

Figure 13 indicates that (unlike Adam optimization tech-
nique) on ABIDE I and ABIDE II datasets, the best accuracy
was obtained from the combined MCNNEs. The accuracy
obtained from combined MCNNEs on a combination of these
two datasets (unlike Adam optimization technique) only fails
to exceed the combined CNNs with 12 filters. In other words,
by applying the t test, considering the p value, it can be

Fig. 10 Accuracies obtained from fine-tuning of the last layers of combined MCNNEs and combined simple CNNs structures with 8, 10, and 12 filters
with input data, using Adam optimization technique

Fig. 11 Sensitivities obtained from fine-tuning of the last layers of combinedMCNNEs and combined simple CNNs structures with 8, 10, and 12 filters
with input data, using Adam optimization technique
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concluded that there was no significant difference between the
accuracy of combined MCNNEs and combined CNNs with
10 filters on a combination of ABIDE I and ABIDE II datasets
(p = 0.617).

Moreover, Figs. 14 and 15 also represent criteria such as
sensitivity and specificity of combined MCNNEs and com-
bined CNNs based on different filters. Figure 14 demonstrates
that only the sensitivity of combined MCNNEs exceeds com-
bined CNNs in all structures with 8, 10, and 12 filters on
ABIDE I dataset (unlike Adam optimization technique).
However, the sensitivity in the composite mode of
MCNNEs increased (unlike Adam optimization technique)
on the combination of two ABIDE I and ABIDE II datasets
compared to combined CNNs with 8 and 12 filters. Also, on
ABIDE II dataset (similar to Adam optimization technique),
the sensitivity of combined MCNNEs is higher compared to
combined CNNs with 10 and 12 filters. In other words, de-
spite obtaining less sensitivity in the composite mode of

MCNNEs compared to combined CNNs, no significant dif-
ference was observed (Table 7).

According to Fig. 15, unlike Adam optimization technique,
the specificity of combined MCNNEs compared to combined
CNNs is exceeded in all structures with 8, 10, and 12 filters
only on ABIDE I dataset. Meanwhile, by applying the t test
and considering the p values, according to Table 7, the null
hypothesis of equality of the averages of specificities cannot
be rejected.

Discussion

Accuracy, sensitivity, and specificity of our proposed
method and previous works are summarized in Table 8.
This research demonstrated the utility of combined
MCNNEs model based on both Adam and Adamax opti-
mization techniques and achieved higher accuracy,

Fig. 12 Specificities obtained from fine-tuning of the last layers of combinedMCNNEs and combined simple CNNs structures with 8, 10, and 12 filters
with input data, using Adam optimization technique

Table 7 Applying the t test to
evaluation criteria obtained from
tenfold cross validation on
combined CNNs with maximum
value and combined MCNNEs
according to rs-fMRI data based
on first slices and usingAdam and
Adamax optimization techniques

Optimization techniques Datasets p value

Accuracy Sensitivity Specificity

Adam ABIDE I 0.8384 0.4528 0.9438

ABIDE II – 0.8541 0.7385

Combination of ABIDE I and ABIDE II – – 0.3233

Adamax ABIDE I – – –

ABIDE II – 0.8784 0.78

Combination of ABIDE I and ABIDE II 0.617 0.5967 0.3856

914 J Digit Imaging (2019) 32:899–918



sensitivity, and specificity in comparison to models pre-
sented by Nielsen et al. [15], Ghiassian et al. [20], and
Sen [21]. Previously, on ABIDE I dataset, the best accura-
cy, sensitivity, and specificity was 0.6502 [20], 0.62 [15],
and 0.6475 [21], respectively. Our proposed model built
with CNNs and Adamax optimization technique increased
that accuracy (from 0.6502 to 0.7273), sensitivity (from

0.62 to 0.712), and specificity (from 0.6475 to 0.7348),
respectively. It should be noted that the results obtained
based on ABIDE II dataset and combination of ABIDE I
and II datasets are not comparable to the results of the
study of Nielsen et al. [15], Ghiassian et al. [20], and Sen
[21], because no results have been published on them.
However, acceptable classification results obtained on

Fig. 13 Accuracies obtained from fine-tuning of the last layers of combined MCNNEs and combined simple CNNs structures with 8, 10, and 12 filters
with input data, using Adamax optimization technique

Fig. 14 Sensitivities obtained from fine-tuning of the last layers of combinedMCNNEs and combined simple CNNs structures with 8, 10, and 12 filters
with input data, using Adamax optimization technique
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these datasets. CNN is able to extract hierarchical repre-
sentations from large-scale data via multiple layers of non-
linear transformations. These transformations created rep-
resentations that are beneficial for automated feature learn-
ing and classification task. With such discovering latent
feature representation, particularly in case of complex
fMRI datasets, it becomes easier to achieve better perfor-
mance than traditional machine learning models that used
hand-crafted features and considered only simple low-level
features extracted from fMRI data. Furthermore, our com-
bined MCNNEs architecture has its drawbacks as well.
Deeper networks and especially presented model require
more computational time and take longer time to train
compared to the traditional methods such as support vector
machine [20]. However, the computational burden of our
proposed model was mostly related to the pretraining
phase. In addition, despite increasing computational

burden in combined networks compared to a single net-
work, combined model exceeds a single model due to
obtaining a more reliable, stable, and reproducible results.
Another difficulty is the selection of appropriate parame-
ters such as the number of convolutional filters and neu-
rons in each fully connected layer and training hyper-
parameters like learning rate, in order to obtain the best
results and have acceptable computational burden.
Furthermore, based on the experience gained in this re-
search, the two following methods are recommended for
future works and improvements of the results: Firstly, since
the spatial dimensions of fMRI data are three, a 3D CNN
can be designed instead of the 2D CNN presented in this
study. Secondly, the CNNs proposed in this study were
forward networks. Such networks are able to classify static
images. Having sequences of images requires dynamic
models. One solution for such problems is using recurrent

Fig. 15 Specificities obtained from fine-tuning of the last layers of combinedMCNNEs and combined simple CNNs structures with 8, 10, and 12 filters
with input data, using Adamax optimization technique

Table 8 Comparison of results
Datasets Method Accuracy Sensitivity Specificity

ABIDE I Nielsen et al. [15] 0.6 0.62 0.58

Ghiassian et al. [20] 0.6502 – –

Sen [21] 0.6139 0.5781 0.6475

Our proposed
method

Adam 0.691 0.641 0.737

Adamax 0.7273 0.712 0.7348

ABIDE II Adam 0.6765 0.570 0.783

Adamax 0.7 0.582 0.804

Combination of ABIDE I and
ABIDE II

Adam 0.7045 0.679 0.7421

Adamax 0.7 0.59 0.798
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neural network such as long short-term memory along with
CNNs.

Conclusions

This study presented an intelligent image-based computer-
aided detection system for diagnosis of ASD based on rs-
fMRI data of subjects ranging in age from 5 to 10 years from
the ABIDE I and ABIDE II datasets. This system is based on
CNNs using Bcombining classifiers,^ both dynamic (mixture
of experts) and static (simple Bayes) approaches, and Btransfer
learning^ strategy. Some of the benefits of this model include
achieving acceptable results and overcoming the challenge of
obtaining dataset with sufficient samples in medical imaging
domain. In addition, compared to the previous methods, re-
searchers and specialists will be able to automatically extract
features and classify images in a unique structure. In this pa-
per, the results of diagnosis of ASD increased compared to the
results of previous studies based on ABIDE I dataset.
Moreover, acceptable classification results were obtained on
the ABIDE II and the combination of ABIDE I and ABIDE II
datasets. Furthermore, Adam and Adamax optimization tech-
niques were employed. According to the obtained results on
all three datasets, ABIDE I, ABIDE II, and the combination of
them, it was observed that Adamax optimizer effectively tends
to have smaller errors compared to Adam optimizer. We can
conclude that the proposed architecture can be considered as
an efficient tool for diagnosis of ASD in young children. From
another perspective, this proposed method can be applied to
analyzing fMRI data related to brain dysfunctions.
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