Skip to main content
. 2019 Apr 8;32(6):899–918. doi: 10.1007/s10278-019-00196-1

Table 3.

Architecture of expert 2

Input image Layer Layer type Size Output shape
Across x axis 1 Convolution + ReLu Filters 10, Kernel: 3 × 3 (10, 93, 66)
Across y axis (10, 77, 66)
Across z axis (10, 77, 93)
Across x axis 2 Max pooling Kernel 2 × 2, stride 2 (10, 46, 33)
Across y axis (10, 38, 33)
Across z axis (10, 38, 46)
Across x axis 3 Convolution + ReLu Filters 10, kernel 3 × 3 (10, 44, 31)
Across y axis (10, 36, 31)
Across z axis (10, 36, 44)
Across x axis 4 Max pooling Kernel 2 × 2, stride 2 (10, 22, 15)
Across y axis (10, 18, 15)
Across z axis (10, 18,22)
Across x axis 5 Convolution + ReLu Filters 10, kernel 3 × 3 (10, 20, 13)
Across y axis (10, 16, 13)
Across z axis (10, 16, 20)
Across x axis 6 Max pooling Kernel 2 × 2, stride 2 (10, 10, 6)
Across y axis (10, 8, 6)
Across z axis (10, 8, 10)
Across x axis 7 Fully connected + ReLu dropout (rate 0.5) 400 hidden units 400
Across y axis 400
Across z axis 400
Across x axis 8 Softmax 2 2
Across y axis 2
Across z axis 2