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Learning leads to bounded 
rationality and the evolution of 
cognitive bias in public goods 
games
Olof Leimar   1* & John M. McNamara2

In social interactions, including cooperation and conflict, individuals can adjust their behaviour over 
the shorter term through learning within a generation, and natural selection can change behaviour 
over the longer term of many generations. Here we investigate the evolution of cognitive bias by 
individuals investing into a project that delivers joint benefits. For members of a group that learn how 
much to invest using the costs and benefits they experience in repeated interactions, we show that 
overestimation of the cost of investing can evolve. The bias causes individuals to invest less into the 
project. Our explanation is that learning responds to immediate rather than longer-term rewards. 
There are thus cognitive limitations in learning, which can be seen as bounded rationality. Over a time 
horizon of several rounds of interaction, individuals respond to each other’s investments, for instance 
by partially compensating for another’s shortfall. However, learning individuals fail to strategically take 
into account that social partners respond in this way. Learning instead converges to a one-shot Nash 
equilibrium of a game with perceived rewards as payoffs. Evolution of bias can then compensate for the 
cognitive limitations of learning.

Many different cognitive processes fall under the heading of learning. The most basic is when an individual learns 
solely from rewards, without forming a more sophisticated cognitive model of the situation. This corresponds to 
the much-studied learning processes in classical and operant conditioning in animal psychology1, as well as to 
the standard, model-free approach to reinforcement learning in the study of machine learning2. It is this kind of 
learning we investigate here, where individuals explore through randomness in their actions and come to prefer 
actions that result in higher than so-far estimated rewards.

In social interactions, individuals typically vary in their characteristics in ways that influence costs and ben-
efits. Examples could be differences in size and strength in aggressive interactions and variation in individual 
quality in cooperative interactions3,4. Variation in quality can cause individuals to vary in their investments into 
a joint project, which in turn can have the consequence that social partners respond through changes in their 
own investments. A question we raise is whether reinforcement learning allows individuals to take such dynamic 
responses from social partners into account when adjusting their own investments. As we show, the answer to 
the question can be no, because the responses by social partners occur over a too long time scale to be captured 
by learning. Instead, we show that the investment outcome of reinforcement learning in repeated rounds of the 
game corresponds to a Nash equilibrium of a one-shot game with the rewards acting as payoffs that are known 
to all players. Such a property of learning being myopic to future consequences of current actions can be seen as 
a kind of bounded rationality5,6. The phenomenon leaves open the possibility that evolutionary changes in the 
perceived rewards instead adjusts behaviour in a way that takes into account responses by social partners. The 
process can be thought of as an evolution of a bias in the innate perception of rewards, referred to as primary 
rewards or reinforcements in animal psychology. We show that such an evolution of cognitive bias indeed can 
occur, through the evolution of a tendency for individuals to act as if they underestimate their own quality, entail-
ing an overestimation of their Darwinian fitness cost of investing into a project. The net effect is a lowering of 
investments compared to what would be the case for a Nash equilibrium of a one-shot game where individuals 
know the qualities of all players.
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Our analysis is inspired by McNamara et al.7, who studied negotiation rules in games of cooperation with 
continuous actions. Our approach is to let reinforcement learning give rise to a “negotiation rule”, and then to 
examine the evolutionary consequences of such a rule. We study a public goods game where in each round each 
group member invests an amount into a joint project and shares equally in the benefit of the total investment by 
the group. Over the rounds, individuals learn to adjust their investments. For the learning dynamics, we use the 
actor-critic approach to reinforcement learning2, which is similar to so-called Bush-Mosteller learning8. We use a 
combination of analytical derivation and individual-based simulation to reach our main conclusion, that cogni-
tive bias evolves as a consequence of the bounded rationality of learning. In summary, we show that if learning is 
driven by short-term rewards, cognitive biases may evolve as a compensating mechanism.

Results
Model overview.  In each generation there are a number of investment rounds, t = 1, …, T, with an invest-
ment game involving a group of individuals. A group of size g stays together for life and ait is the investment by 
individual i in round t. Each game is independent and has the same payoff structure, and group members can 
learn about the rewards (payoffs) from the successive rounds. Group members can differ in individual quality 
qi, which influences the cost of investment. The quality is a non-genetic aspect of an individual’s phenotype that 
influences its capacity to invest. The qualities are assumed not to vary between rounds of the game, but an indi-
vidual’s quality is drawn randomly from a distribution at the start of a generation.

Concerning what is “known” by group members, we assume that they do not have any particular information, 
including about their own quality, but that they learn about which investment to make through the rewards they 
receive. We thus assume that at the start of a generation individuals do not have information about any of the qi in 
the group, and during the interaction they perceive their own rewards. This situation corresponds to traditional 
instrumental or operant conditioning, but in a game situation. The net reward for individual i from round t is a 
benefit B, which depends on the group mean investment, minus a cost K, which depends on the individual’s own 
investment and quality (Fig. 1A and Eqs 1–4). We first assume that payoffs are perceived as rewards by the players. 
To study the evolution of cognitive bias, we than investigate whether individuals could evolve to perceive rewards 
that differ from the payoffs that correspond to Darwinian fitness.

Actor-critic learning.  We implement the repeated investment game as a reinforcement learning process, 
using the actor-critic method described in sections 13.5–13.7 of2, for the case without state transitions (only one 
state). Individuals learn which actions to use from the rewards they perceive. They use a temporal difference (TD) 
method to update a value wit (estimated value by individual i at the start of round t), involving a TD error, or pre-
diction error, which is the difference between actual and estimated rewards. The prediction error can be thought 
of as a reinforcement. Individuals select actions using a policy, expressed as a probability density π(a|θit) of using 
the action a, assumed to be normal with mean θit and standard deviation (SD) σ. A so-called policy gradient 
method (ch. 13 in2) is used to update the parameter θit, representing the mean investment action. In the learning 
process, the wit and θit, i = 1, …, g, then perform a random walk in a 2g-dimensional space (Fig. 1B), specified by 
Eqs 5–11; (see Methods).

Reinforcement learning based on a policy gradient is thought to have good convergence properties (e.g., ch. 13 
in2), in the sense that for small rates of learning a local optimum is approached. In a game situation, the outcome 
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Figure 1.  Illustration of the learning model. Panel (A) illustrates the benefit and cost as functions of the 
investment actions. The two curves for the cost correspond to qualities q = 0 and q = 1. See Eqs (2, 3) for the 
formulas. Panel (B) shows simulated learning dynamics of the estimated values wi and mean actions θi for an 
interaction between two individuals with qualities q1 = 0 and q2 = 1. The dynamics of wi and θi are given in  
Eqs (7, 10). The starting point of learning was (arbitrarily) chosen as wi = 1.0 and θi = 0.2. The dashed lines 
are one-shot game predictions for the estimated value wi and the mean investment θi, corresponding to the 
investments in Eq. (14). These values of θi are also indicated in panel (A). Parameter values are: g = 2, B0 = 1, 
B1 = 4, B2 = −2, K1 = 1, K11 = 1, K12 = −1, σ = 0.05, αw = 0.04, and αθ = 0.002.
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of learning in successive rounds might approximate a Nash equilibrium of a one-shot game with the rewards as 
payoffs. In this one-shot game the payoffs, including the dependence on individual qualities, are known to the 
players, and are given by Eq. (4). From our individual-based simulations (Figs 1B and 2), the learning dynamics 
approach this Nash equilibrium, which is specified by Eqs (13, 14). Because learning is a stochastic process, driven 
by the individual exploratory choices of investment actions, there is variation in learning trajectories between 
groups with identical compositions of qualities. This variation is shown as shading, indicating ±1 SD, in Fig. 2. 
For small rates of learning we also show that the learning dynamics is approximately a vector autoregressive pro-
cess9 around the Nash equilibrium (see SI, Figs S1 and S2).

Evolution of cognitive bias.  We found that the learning outcome corresponds to a Nash equilibrium of a 
one-shot game, with payoffs illustrated in Fig. 1A and specified in Eq. (4). For these payoffs, the cost of an action 
depends on the “true” quality qi of a player. However, the analysis of learning applies in the same way if the qual-
ities qi are replaced by “perceived qualities” pi, as in Eq. (15), meaning that individual i behaves as if its quality is 
pi. We refer to the rewards used in learning as “perceived rewards”. An individual of quality qi would then learn 
from rewards corresponding to its perceived quality pi, which might differ from qi. Note that we assume that 
individuals only perceive their benefit and cost in each round. The bias thus occurs in an individual’s perception 
of its cost of investment, but for convenience we express it as a bias in perceived quality. Specifically, an individual 
is assumed to perceive a cost that corresponds to its perceived quality pi, while its Darwinian fitness cost is given 
by its true quality qi. We define an individual’s cognitive bias as the difference between its perceived and true 
qualities: di = pi − qi. We also assume that perceived qualities satisfy pi ≤ 1 and can be negative. This allows di to be 
either positive or negative, with negative di corresponding to higher perceived costs of investment.

A main result of our analysis is that when there are social partners, i.e. for group size g > 1, zero cognitive bias, 
i.e. di = pi − qi = 0, is not an evolutionary equilibrium, but instead a negative bias evolves. An intuitive explanation 
is that, given the perceived qualities of the group members, learning approaches a one-shot Nash equilibrium 
for these perceived qualities. The learning outcome does not strategically take into account that social partners 
respond to an individual’s lowered investment by increasing their investments somewhat. From the definition of 
a Nash equilibrium, it then follows that the individual can gain fitness by having a cognitive bias, i.e., by lowering 
its perceived quality from pi = qi. In effect, an individual whose perceived quality is lower than the real quality 
makes smaller investments, which in turn means that other players end up making larger investments. The indi-
vidual thus makes a fitness gain from the biased perception. The derivation of this result appears in the Methods, 
Eq. (16), and the evolutionarily equilibrium bias is given in Eq. (17), with detailed derivation in SI. This result is 
illustrated in Fig. 3A, which shows the evolution of a genetically determined perceived quality pi in a population 
where all individuals have true quality qi = 1. As can be seen, a negative cognitive bias di = pi − qi evolves.

For a given composition of qi, i = 1, …, g, in a group one can find the evolutionarily stable perceived qualities 
⁎pi  using Eq. (16). For the benefit and cost functions in Eqs (2, 3), which we use for illustration, this simplifies to 

Eq. (17), from which it follows that the evolutionarily stable cognitive bias = −⁎ ⁎d p qi i i depends on the group 
average quality q. However, it is not reasonable to assume that an individual has an evolved innate underestima-
tion of its true quality that depends on the particular group composition, because this composition is not known 
to the individual at the start of a generation. Instead, in individual-based simulations we assume that the trait that 
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Figure 2.  Mean and SD of simulated investment actions for individual i = 1 in populations of groups, plotted 
over the rounds of learning. At the start of learning, individuals are assigned random qualities from the set {0, 1}  
and the curves are labelled with with the qualities, qi, i = 1, …, g, of individuals in a group. The spread (SD) of 
values of θ in the population is shown as grey shading only for the subset of groups where all qi = 1 (for clarity, 
to avoid overlap). Panel (A) shows all cases of group compositions with g = 2, namely groups with q1 = 1, q2 = 1; 
q1 = 1, q2 = 0; q1 = 0, q2 = 1; and q1 = 0, q2 = 0. Panel (B) shows a subset of cases of group compositions with 
g = 3, labelled q1, q2, q3. The total population size is 24 000 individuals in both panels. The dashed lines are one-
shot game predictions, from Eq. (14). Other parameters are as in Fig. 1.

https://doi.org/10.1038/s41598-019-52781-7


4Scientific Reports | (2019) 9:16319 | https://doi.org/10.1038/s41598-019-52781-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

evolves is simply a bias di, such that the perceived quality is pi = qi + di, irrespective of the kind of group the indi-
vidual is a member of. An example with g = 2 and variation in true quality in the population appears in Fig. 3B. 
Our assumption means that perceived qualities cannot match the prediction from Eq. (17) for each particular 
group composition (Fig. 3B), but there is agreement between the population averages of the evolved and pre-
dicted cognitive biases (equal to −0.49 and −0.50, respectively).

This is further illustrated in Fig. 4, showing the outcome of individual-based simulations for populations 
with different group sizes. The most extreme bias occurs for g = 2, and as the group size g becomes large, the bias 
approaches zero (see SI). For solitary investing individuals (g = 1), there is no bias on average.

Discussion
A major conclusion from our analysis is that when individuals in a group learn how much to invest in a public 
goods game, there is scope for the evolution of cognitive bias, corresponding to an evolution of the perceived 
cost of investment into the public good (Figs 3 and 4). The reason is that cognitive limitations of reinforcement 
learning prevent individuals from fully taking into account how social partners respond to variation in the ability 
of individuals to invest. Reinforcement learning is a mechanism driven by immediate rewards, without foresight 
about the medium-term outcome of learning. This aspect of learning can be seen in Figs 1B and 2, where the 
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Figure 3.  Illustration of the evolution of individual perceived quality pi, through the genetically determined 
cognitive bias di = pi − qi, from individual-based simulation of populations similar to those illustrated in Fig. 2. 
Panel (A) shows evolution of mean and SD of pi = qi + di over the generations in a population with groups of size 
g = 2, with true qualities q1 = 1, q2 = 1 (i.e., all individuals have true quality 1). The mutation rate for alleles for di 
is 0.05 and the mutant increment is normally distributed with an SD of 0.04. The dashed line is the prediction 
from Eq. (17). Panel (B) shows the bias di, as a function of the mean quality q in the group, for a population with 
groups of size g = 2 and with true qualities selected randomly at the start of a generation from the set {0.00, 0.25, 
0.50, 0.75, 1.00}. The dashed line shows the prediction from Eq. (17) for each group composition in the final 
simulated generation. The mutation rate per allele for di is 0.001 with SD of mutant increments of 0.04. Other 
parameters are as in Fig. 1.

g = 1g = 2 g = 4

0

2

4

6

−0.8 −0.4 0.0 0.4

Cognitive bias, p−q

D
en

si
ty

Figure 4.  Illustration of the distribution of evolved cognitive bias di = pi − qi for different cases of group sizes. 
Parameters are as in Fig. 3B, and the distribution for g = 2 comes from the population illustrated in Fig. 3B. 
The dashed lines give the prediction from Eq. (17), averaged over the different group compositions in the 
population.
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mean investment θ of the lowest-quality individual in a group approaches its equilibrium by first overshooting the 
eventual equilibrium value. Furthermore, the learning interaction is particularly beneficial for a low-quality indi-
vidual (Fig. 1B), who ends up investing little, when interacting with higher-quality partners who end up investing 
more, by learning to compensate for the shortfall. This explains why evolutionary changes are in the direction of 
a reduced perceived quality, i.e. a negative cognitive bias.

For an individual to learn about how social partners respond to variation in its tendency to invest, several 
interactions with different social groups would be needed, where the individual could explore the consequences of 
changes in its tendency to invest. Even so, for an individual to learn that lowering its current investment increases 
rewards in future rounds, because others learn to increase their investments, the individual must connect current 
behaviour to future rewards. Animal psychology has shown that this can be difficult to do, in particular without 
any indicators to the individual that there might be such a causal connection. Pavlov10 discovered that the time 
interval between conditioned and unconditioned stimuli (the CS-US interval) needs to be short for an association 
to be formed. Exceptions to this rule represent special adaptations, of which taste aversion learning is the best 
known1. It has also been shown that learning can occur for longer CS-US intervals, if the CS is highly salient and 
there are no interfering stimuli during the interval1. A clearly perceived chain of states and actions, leading to a 
goal, can also support more sophisticated learning about future consequences of current actions11, but learning 
about social partners does not have a structure of that kind. It thus seems reasonable that unless individuals have 
some other special preparedness to connect current behaviour to medium-term rewards, mediated through the 
responses of social parters, this will be difficult to learn.

Game dynamics and learning.  As described by Weibull in the proceeding from a Nobel seminar12, the gen-
eral idea that players of a game are members of populations and revise their strategies in a more-or-less myopic fash-
ion was introduced in unpublished work by John Nash. This is now a foundation for game theory in economics13–15, 
and has also been used for game theory in biology16–18. Game dynamics based on reinforcement learning, including 
the actor-critic method2, can be seen as a variant of this approach, with its learning mechanisms inspired by exper-
imental psychology and neuroscience. Thus, the TD updating of an estimated value2, described in Eqs (6, 7), repre-
sent the critic component of an actor-critic mechanism and is connected to the influential Rescorla-Wagner model 
of classical conditioning19 as well as to the reward prediction error hypothesis of dopaminergic neuron activity20. For 
the actor component, from Eqs (10, 11), changes in the tendencies to perform actions depend on the covariance of 
eligibility and reward. This learning mechanism has been given an interpretation in terms of synaptic neural plas-
ticity2,21. It is worth noting that there is a certain similarity between the actor-critic learning dynamics in Eq. (11) and 
the so-called Price equation for selection dynamics22. Although these equations describe fundamentally different 
processes, natural selection vs. actor-critic learning, they are both helpful in providing intuitive understanding.

Bounded rationality.  The cognitive limitations of learning have been put forward as an important reason 
for bounded rationality6,23,24 and our work gives further support to the idea. It is a general principle that certain 
aspects of the situation an individual finds itself in might be learnt very slowly or not at all, even though they 
could influence payoffs. In our model, the effects on rewards of responses of social partners, resulting from learn-
ing about an individual’s characteristics, do not influence the learning of investment actions. Instead, we found 
a learning outcome where investments converged on a Nash equilibrium of a one-shot game with perceived 
rewards as payoffs, even though group members stayed together over successive investment rounds and, in prin-
ciple, might have discovered how social partners learn about investment variation.

Evolution of cognitive bias.  The possibility of cognitive bias in decision making has been of interest in 
economics, psychology and biology. Among the examples are the base rate bias25 and the judgement bias26. The 
general question of how to formulate an evolutionary theory of cognitive bias has also been raised27.

An insight from our analysis is that the bounded rationality of learning leaves scope for evolution to adjust the 
rewards (primary rewards or preferences) in a way that corresponds to a cognitive bias in an individual’s percep-
tion of its quality. With such a bias, learning by individuals results in an approach towards evolutionarily optimal 
behaviour. Our result is related to the idea of an “indirect evolutionary approach” in economic game theory28,29, 
where players are assumed to know or learn about each other’s preferences and to play a Nash equilibrium given 
the preferences, which are then assumed to be shaped by evolution. The connection with our work is that we 
showed that learning causes the investments to approach a one-shot Nash equilibrium given the perceived qual-
ities, and the indirect evolutionary approach assumes that players know or find out each other’s preferences and 
play a Nash equilibrium given these preferences.

A widespread and successful idea in animal psychology is that evolution causes primary rewards to indicate 
Darwinian fitness1. More generally, it is a basic element of evolutionary biology and behavioural ecology that 
actions can be given a Darwinian currency, in the form of reproductive value30,31. Our work here, as well as related 
work in economic game theory29,32,33, shows that an exact correspondence between primary rewards and repro-
ductive value need not hold. In our model this happened because of cognitive limitations of learning, although 
reproductive value was still important for the analysis.

As illustrated in Figs 3 and 4, there is variation between individuals in their cognitive bias, i.e. in how much their 
perceived qualities deviate from the true qualities, which is a consequence of a balance between selection, mutation and 
genetic drift. This is reminiscent of animal personality variation34, where individuals differ in important behavioural 
characteristics. One often assumes that disruptive selection lies behind personality variation35, but our results here show 
that there can be substantial variation also with stabilising selection on the trait in question. In general, whether selec-
tion is stabilising or disruptive, we propose that bounded rationality, from cognitive limitations of learning, opens up a 
possibility for individuals to vary in their characteristics, including cognitive biases in social interactions.
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Methods
Model details.  In round t, the group mean investment at is
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where B1 > 0 and B2 < 0 (Fig. 1A). Maximum benefit occurs for = −a B B/1 2, and we might constrain actions to 
be smaller than this, to ensure that benefits increase with the actions. The cost K(ai, qi) of investment ai by group 
member i is assumed to be a smooth convex and increasing function of ai that increases more rapidly with ai for 
smaller qi, and has a positive second derivative with respect to ai. For illustration we use
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with K1 > 0, K11 > 0 and K12 < 0 (Fig. 1A). We thus have a public goods game in each round with the payoff to 
player i given by
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where a−i denotes the vector of actions of all individuals in the group except for i.

Reinforcement learning: the actor-critic approach.  Actions are independent and normally distributed 
with mean θit and SD σ:
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For simplicity, we keep σ constant and rather small, but we note that variation in a is needed for a learner 
to explore and thus to discover how actions can be improved. Keeping with reinforcement learning notational 
conventions, the reward from Eq. (4) for individual i from the play in round t is denoted Ri,t+1. The TD error is 
given by

δ = − = − .+ −R w W a a q w( , , ) (6)it i t it i it it i it, 1

This is used to update the learning parameter wit as follows:
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where αw is a learning rate parameter (we do not use discounting in our formulation of learning and each round 
is treated as a new episode2). The expected change in wit is
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For the actor-critic method the learning updates for the policy involve the derivative of the logarithm of π(a|θ) 
with respect to θ, given by
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which sometimes is referred to as an eligibility. The update to the learning parameter θit is
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where αθ is a learning rate parameter. It is worth noting that the expectation of the increment in θi is proportional 
to the covariance of the TD error and the eligibility:

θ θ θ α δ ζ θ− | = | .θ+ ⋅ ⋅ ⋅ ⋅w wE [ , ] Cov [ , , ] (11)i t it t t it it t t, 1

A frequent issue for actor-critic reinforcement learning is how the learning rates αw and αθ should be chosen. 
Learning involves changes in both the estimated value wi and the action mean value θi and both are driven by the 
TD error δi. From Eqs (7, 10), noting that ai − θi has a magnitude of about σ, we ought then to have

α θ
α
σ

Δ ∼ Δθ w (12)w
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for learning to cause the wi and θi to move over approximate ranges Δw and Δθ. We have used this relation in our 
learning simulations, with ranges Δw and Δθ of around 1.

Intuitively, from Eqs (6–10) we might expect ∂Wi/∂ai = 0 to hold approximately for a learning equilibrium. 
This would correspond to a Nash equilibrium, and is the motivation for the following analysis.

One-shot game.  By our assumptions about the payoffs, this is a concave game, and using a result in36 one 
can show that the game has a unique Nash equilibrium (see SI). This equilibrium should satisfy ∂Wi/∂ai = 0 or, 
from Eq. (4),

′ =
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for i = 1, …, g. It follows that ∂ ∂ = ∂ ∂⁎ ⁎K a q a K a q a( , )/ ( , )/i i i j j j and, because ∂ ∂⁎K a q a( , )/i i i is increasing in ai and 
decreasing in qi, that >⁎ ⁎a ai j  when qi > qj, so higher-quality individuals invest more at the equilibrium. 
Furthermore, using results in37, one can show that ⁎ai  increases with qi and decreases with qj, j ≠ i (see SI, 
Equation S11). For our special case of Eqs (2, 3), one readily finds that

∑= + + = + + −
≠

−
⁎a e e q e q e e q e g q( 1) ,

(14)
i i

j i
j i i0 1 2 0 1 2

where, for g > 1, −q i is the average quality of all individuals the group except for i (see SI, Equation S21, for the 
coefficients). For large g we see from Eq. (13) that the equilibrium is for individual i to minimize K(ai, qi).

Evolution of cognitive bias.  The cost K(ai, qi), from Eq. (3), is assumed to be the true cost of investment, 
measured in terms of Darwinian reproductive value, for an individual with true quality qi. We also assume that 
B a( ), from Eq. (2), corresponds to reproductive value. These reproductive values represent payoffs in the standard 
sense of evolutionary game theory. The meaning of the perceived quality pi is that the individual perceives the cost 
K(ai, pi), in the sense of rewards influencing learning.

Let ⋅
⁎a p( )i  be a Nash equilibrium where the true qualities in Eq. (13) are replaced by perceived qualities, thus 

satisfying

=
∂
∂

′ ∗
⋅

∗
⋅¯

g
B a p K

a
a p p1 ( ( )) ( ( ), ),

(15)i
i i

for i = 1, …, g. If the true qualities of group members are qi, an evolutionary equilibrium for the perceived quali-
ties pi should satisfy (see SI)
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j i
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¯

From this it follows that pi = qi is not an evolutionary equilibrium for g > 1, because the expression in the 
square bracket is then zero and the other term is negative, because ∂ ∂ <⁎a p/ 0j i  for j ≠ i. This shows that an indi-
vidual could gain fitness by lowering its perceived quality from pi = qi to pi = qi + di with di < 0.

In such a case, an individual with true quality qi will perceive the cost K(ai, pi) = K(ai, qi + di). For our special 
case of Eq. (3), this means that the individual perceives an extra cost, or penalty, K12diai of the investment ai. The 
solution to Eq. (16) for the special case can be written as

β β− = +⁎p q q , (17)i i 0 1

which is worked out in the SI, with β0 and β1 given in Equation (S30). For g = 1 one sees from Equation (S30) that 
β0 = β1 = 0, so that =⁎p q1 1 is the solution.

Individual-based simulations.  For individual-based simulation of the actor-critic learning dynamics, we 
constructed populations of individuals, each with a randomly assigned quality, split into groups of size g. For 
ease of interpretation, qualities were drawn from a small set of values for q, for instance qi ∈ {0, 1} in Fig. 2. In this 
population, the learning dynamics follows Eqs (5–10) over rounds t = 1, …, T. The aim of the simulations is to 
compare the outcome of learning with the one-shot Nash equilibrium predictions from Eq. (14). For evolution-
ary simulations, over many generations, we implemented discrete, non-overlapping generations and assumed 
individuals to be hermaphrodites with one diploid locus additively determining the trait di = pi − qi. The time 
sequence of events for evolutionary simulations was as follows: (i) random sorting of newborn individuals into 
groups and assignment of random true qualities; (ii) learning dynamics over T rounds, with the perceived quality 
of an individual given as

= +p q d , (18)i i i
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where di is the individual’s genetically determined trait; (iii) assignment of a Darwinian payoff to each individual, 
computed as the individual’s average payoff over the rounds, based on its true quality; and (iv) formation of the 
next generation through mating, including mutation, with the probability of being chosen as parent being pro-
portional to an individual’s payoff.

Data availability
Source code for the individual-based simulations is available at GitHub, together with instruction for compilation 
on a Linux operating system, and with example input files: https://github.com/oleimar/pggsim. The R code and 
individual-based simulation output used to generate the figures are available from the corresponding author on 
reasonable request.
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