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Abstract

Binge drinking is characterized by bouts of high-intensity alcohol intake and is associated with an 

array of health-related harms. Even though the transition from occasional impulsive to addictive 

alcohol use is not well understood, neurobiological models of addiction suggest that repeated 

cycles of intoxication and withdrawal contribute to the development of addiction in part through 

dysregulation of neurofunctional networks. Research on the neural sequelae associated with binge 

drinking is scant but resting state functional connectivity (RSFC) studies of alcohol use disorders 

(AUD) indicate that the development and maintenance of long-term excessive drinking may be 

mediated by network-level disruptions. The present study examined RSFC in young adult binge 

(BD) and light (LD) drinkers with seeds representing the networks subserving reward (the nucleus 

accumbens and caudate nucleus), salience (anterior cingulate cortex, ACC), and executive control 

(inferior frontal cortex, IFC). BDs exhibited enhanced connectivity between the striatal reward 

areas and the orbitofrontal cortex and the ACC, which is consistent with AUD studies and may be 

indicative of alcohol-motivated appetitive behaviors. Conversely, BDs demonstrated lower 

connectivity between the IFC and hippocampus which was associated with higher craving. This 

may indicate impaired ability to suppress unwanted thoughts and a failure to employ memory of 

the harmful consequences of heavy drinking in prospective plans and intentions. The observed 

greater connectivity of the reward/salience network and the lower prefrontal-hippocampal 

connectivity were associated with hazardous drinking levels indicating that dysregulation of 

neurofunctional networks may underlie binge drinking patterns.
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Introduction

Effective cognitive processing requires efficient communication among different regions in 

the brain. Neuroimaging techniques such as resting state functional connectivity (RSFC) 

provide insight into how these regions interact at the level of dynamically coherent 

neurofunctional systems (Bullmore and Sporns 2009). RSFC analysis is based on 

correlations of the time series of blood-oxygen-level dependent (BOLD) activity recorded 

from different brain areas while the subject is at rest. Similarities in brain activity patterns 

are assumed to underlie functional connectivity between regions comprised in different 

networks (Prohovnik et al. 1980; Biswal et al. 1995; Greicius et al. 2003). Spontaneous 

fluctuations in the RSFC BOLD signal are not confounded with task-induced activity related 

to attention or cognitive demands, rendering the RSFC suitable for investigating the neural 

assemblies that form intrinsic functional networks (Smith et al. 2009). Large-scale studies 

indicate that spontaneous activity is reflected in largely replicable networks (Deco et al. 

2011; Smith et al. 2009). Furthermore, spatial connectivity maps and network coherence 

have been associated with variability in behavior (Fox and Raichle 2007), making it possible 

to examine the disruptions of neural systems associated with different disorders including 

addiction (Sutherland et al. 2012).

It has been well established that repeated cycles of intoxication and withdrawal can 

dysregulate the neurofunctional networks necessary for effective cognitive processing 

(Volkow et al. 2004; Oscar-Berman 2012; Loeber et al. 2009a). Neurobiologically driven 

models of addiction suggest the shift from impulsive to compulsive drug consumption is 

mediated by enhanced saliency of drug-related rewards and a simultaneous lowering of a 

top-down executive control network (Baler and Volkow 2006; Goldstein and Volkow 2011; 

Volkow et al. 2004; Garavan and Weierstall 2012). This extensive evidence implicates 

dysregulation of frontal, striatal, and limbic circuitry that underlies progression from 

recreational to compulsive drug use (Everitt and Robbins 2016; Feil et al. 2010; Haber and 

Knutson 2010; Koob and Volkow 2016; Van den Oever et al. 2010).

Alcohol use disorder (AUD) is characterized by excessive and compulsive alcohol use, 

craving and loss of control over alcohol intake, and dysphoric affect when sober, 

contributing to relapse (Koob 2000; Loeber et al. 2009a; Loeber et al. 2009b). Consistent 

with neurobiological accounts of addiction, imaging studies indicate that these attributes 

may be mediated by the disruption of several functional networks including the reward, 

salience, and the executive control networks (Beck et al. 2012; Muller-Oehring et al. 2015; 

Kim et al. 2017; Zhu et al. 2017; Sullivan et al. 2013; Camchong et al. 2013a; Oscar-Berman 

2012). The reward network plays a key role in the development of addiction by mediating 

reinforcement of the hedonic effects experienced in the binge/intoxication stage (Baler and 

Volkow 2006; Goldstein and Volkow 2011). Imaging studies indicate the striatum, as part of 
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the reward circuitry, is affected by chronic alcohol consumption (Schulte et al. 2010; Makris 

et al. 2008; Muller-Oehring et al. 2015). Alcohol elevates dopamine levels in the nucleus 

accumbens (NAcc) in the ventral striatum which plays an essential role in the rewarding 

effects of alcohol and the development of addiction (Engel and Jerlhag 2014; Soderpalm et 

al. 2009). Indeed, mesolimbic regions have demonstrated enhanced activation in response to 

alcohol-related cues (Grusser et al. 2004; Myrick et al. 2004; Wrase et al. 2007), while 

RSFC studies indicate dysregulated communication between regions within the reward 

network (Muller-Oehring et al. 2015; J. Wang et al. 2016; Fein et al. 2017). Tightly coupled 

with rewarding behavior is the motivation for completing and reengaging in such behaviors 

which is mediated by the salience attributed to appetitive cues. The process of detection and 

evaluation of salient stimuli is dependent on a number of brain regions including the insula, 

orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), amygdala, and thalamus 

(Menon and Uddin 2010), which have been shown to be dysfunctional in AUD 

(Schoenbaum et al. 2006; Ivanov et al. 2012; Tremblay and Schultz 1999; Harsay et al. 

2012; Taylor et al. 2009). Individuals with AUD have displayed greater OFC and ACC 

activation in response to alcohol-related cues which was associated with higher alcohol 

craving and relapse (Grusser et al. 2004; Myrick et al. 2004; Tapert et al. 2004; Oberlin et al. 

2016).

Decreased executive control has been heavily implicated in the development and 

maintenance of AUD (Brion et al. 2017; Le Berre et al. 2017; Muller-Oehring and Schulte 

2014; Naim-Feil et al. 2014; Oscar-Berman et al. 2014; Oscar-Berman and Marinkovic 

2007) as impaired executive control limits the ability to inhibit alcohol consumption (Crews 

and Boettiger 2009; Field et al. 2010; Fillmore 2003; Garavan and Weierstall 2012). 

Neuroimaging studies indicate that regions subserving executive control with primary 

contributions from lateral and medial prefrontal cortices including the cingulate cortex, are 

compromised in AUD (Sullivan and Pfefferbaum 2005; Wilcox et al. 2014). Recent studies 

have focused on changes at the level of networks subserving executive functions and have 

demonstrated lower connectivity between the lateral prefrontal and medial prefrontal 

cortices (Muller-Oehring et al. 2015; Kim et al. 2017) but greater connectivity of these 

regions with the reward network including ventral tegmental area, caudate nucleus, and 

NAcc (Camchong et al. 2013a; Fein et al. 2017; Kohno et al. 2017; Zhu et al. 2017). 

Furthermore, studies of acute alcohol challenge point to the medial prefrontal cortex, 

especially the ACC, as being particularly sensitive to alcohol during cognitive control tasks 

with implications for self-control (Kovacevic et al. 2012; Marinkovic et al. 2012; 

Marinkovic et al. 2013; Rosen et al. 2016).

Patterns of alcohol consumption and alcohol-related risk behaviors associated with alcohol 

use disorder (AUD) derive from a complex interplay of sociocultural, psychological, and 

heritable dimensions whose influence varies over the lifespan (Begleiter 1991; Brown and 

Tapert 2004; Finn 2002; Fromme et al. 2004; Schuckit 2000; K.J. Sher et al. 2014). Binge 

drinking is characterized by the intake of large quantities of alcohol, typically five or more 

drinks for men and four or more drinks for women within a two-hour time frame, bringing 

the blood alcohol concentration to approximately 0.08 g/dL (NIAAA 2004) and alternations 

between periods of consumption and withdrawal (Courtney and Polich 2009; Koob 2013a; 

Naimi et al. 2010). However, a substantial proportion of drinkers significantly exceed these 
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levels of consumption, imbibing alcohol at much higher levels (Linden-Carmichael et al. 

2017; Terry-McElrath and Patrick 2016). Prevalence rates peak in the early 20-ies (Naimi et 

al. 2010; Patrick et al. 2019) and then subsequently decline as young adults mature out of 

binge drinking and assume adult responsibilities(Lee and Sher 2018; Patrick et al. 2019; K.J. 

Sher et al. 2014). However, a subset of heavy drinkers continue drinking at similar or 

enhanced levels(Witkiewitz et al. 2014). The precipitating factors surrounding the transition 

from impulsive to compulsive drinking are not well understood but longitudinal studies have 

reported that binge drinking during the college years is a significant predictor of AUD after a 

10-yr period (Jennison 2004; O’Neill et al. 2001). With binge drinking being especially 

prevalent among young and emerging adults (Johnston et al. 2018), the potential neurotoxic 

effects (Jacobus and Tapert 2013; Vetreno and Crews 2015), greater risk of developing AUD, 

and other negative health effects (Colby et al. 2004; Hingson et al. 2017; Wells et al. 2004) 

are a serious public health issue. Despite these growing concerns, evidence on the functional 

connectivity in young individuals engaging in binge drinking is exceedingly scant. In a study 

comprising a large number individuals whose drinking patterns ranged from binge drinking 

to severe AUD, the connectivity of the executive network was negatively correlated with 

AUD severity (Weiland et al. 2014). It is not clear, however, whether the connectivity 

patterns in binge drinkers resemble those reported in individuals with AUD.

Here we examine the association between binge drinking patterns and functional 

connectivity during wakeful rest in young, healthy individuals. Given the extensive evidence 

suggesting that long-term alcohol use induces alterations in the reward, salience and 

executive control networks, we performed a connectivity analysis by applying “seed” 

regions of interest in the areas that have been implicated in the reward and top-down 

regulation in previous reports on AUD (Muller-Oehring et al. 2015; Zhu et al. 2015; 

Camchong et al. 2013b; Jansen et al. 2015; Kohno et al. 2017; Volkow and Baler 2013). 

These seeds included the striatum (NAcc and caudate nucleus) for the reward network, the 

ACC for the salience network, and the IFC for the executive control network. RSFC 

investigations may reveal dysfunctional networks associated with binge drinking and may 

provide insight into a potential transitional stage in the development of AUD. In the absence 

of similar studies in binge drinkers, we based our hypotheses on previous reports in AUD. 

We expected that, in comparison to LDs, the BDs would show greater connectivity between 

the caudate nucleus and the ACC (Muller-Oehring et al. 2015) and between the NAcc and 

the OFC (Zhu et al. 2015), as well as greater connectivity of the IFC with prefrontal regions 

(Zhu et al. 2015), especially in the context of the compensatory activity in the IFC that we 

observed in BDs during cognitive challenge (Molnar et al. 2018).

Materials and Methods

Participants

Participants in this study were thirty five young, healthy adults who were 24.5 ± 3.8 yrs old, 

age range: 18 – 30, 19 females. They were all right-handed and reported no illicit drug or 

tobacco use for at least one month prior to the study. They had no history of seizures, brain 

injury, neurological or neuropsychiatric disorders, no vision or hearing problems or learning 

difficulties, and were medication-free at the time of the study. During screening, they 
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provided extensive information about their current and recent drinking including alcohol 

consumption rate, frequency, and pattern of intake and were assigned into binge drinking 

(BD, N = 18) and light drinking (LD, N =17). A binge episode was defined as consuming at 

least 6 drinks for males (5 for females) within a two hour time span. This criterion was based 

on empirical evidence indicating that young adults are more likely to reach BAC of 0.08% or 

above at this level of intake (Lange and Voas 2001). The BD group reported at least five 

binge episodes in the past six months whereas LDs reported no more than one binge episode 

in the past six months (see Table 1 1 for details on group characteristics). The two groups 

were matched on age, gender, education, ethnicity/race, and family history of alcoholism. 

While the BD group reported higher levels of drinking and scored higher on all alcohol-

related variables, no group differences were found on dispositional variables and personality 

dimensions except for greater impulsivity-related traits reported by BD. They had higher 

scores on disinhibition and boredom as sensation seeking (Stephenson et al. 2002), and 

tended to have higher motivation measures (Coutlee et al. 2014).

Participants completed an extensive battery that probed their alcohol use including alcohol 

abuse problem behaviors (Alcohol Use Disorder Identification Test, AUDIT, (Saunders et al. 

1993)), alcohol misuse (Short Michigan Alcoholism Screening Test, SMAST, (Selzer et al. 

1975)); alcohol cravings (The Penn Alcohol Craving Scale, PACS, (Flannery et al. 1999)), 

motivational influences on their drinking patterns (Drinking Motive Questionnaire Revised 

Short Form, DMQ-R SF, (Kuntsche and Kuntsche 2009)), the severity of alcohol 

consequences (Brief Young Adult Alcohol Consequences Questionnaire, B-YAACQ, 

(Kahler et al. 2005)). Dispositional traits were assessed with respect to depressive 

symptomology (Patient Health Questionnaire, PHQ-9, (Kroenke et al. 2002)), anxiety 

(Generalized Anxiety Disorder, GAD7, (Spitzer et al. 2006)), impulsivity (Abbreviated 

Impulsiveness Scale, ABIS (Coutlee et al. 2014)), attention deficit and hyperactivity 

symptomology (Adult ADHD Self-Report Scale, ASRS, (Kessler et al. 2005)), and risk-

taking behavior (Brief Measure of Sensation Seeking Scale, BSSS, (Stephenson et al. 

2002)). Personality traits including neuroticism, psychoticism, and extraversion were 

assessed with Eysenck Personality Questionnaire (EPQ, Eysenck reference). Intelligence 

was assessed with Wechsler Abbreviated Scale of Intelligence (Wechsler 2011)). A modified 

version of the Family History Assessment Module (FHAM, Rice) was used to evaluate 

family history for alcoholism (FH+). Participants, who reported at least one first-degree and 

one first- or second-degree relative, or at least three second-degree relatives diagnosed with 

AUD, were classified as FH+. On the day of the scan all subjects were screened for illicit 

substances via urinary analysis and women were additionally tested for pregnancy and all 

tests were negative. Informed consent was obtained from all individuals participants 

included in the study.

Imaging data acquisition

MRI scans were acquired with a GE Discovery MR750 3 T scanner (General Electric) 

equipped with an Invivo HD 8 channel high resolution head coil. A 6 minute resting-state 

echo-planar imaging (EPI) scan was acquired for each participant with 35axial slices; slice 

thickness = 4 mm; TR = 1800 ms; TE = 30 ms; flip angle 70°; matrix 64 × 64; FOV 24 cm; 

200 volumes. Participants were instructed to rest quietly with their eyes open while focusing 
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on a fixation point on a screen. High resolution IR-Prepped 3 FSPGR T1-weighted 

anatomical images with 166 contiguous axial 1.2 mm thick slices were also acquired (TR = 

7.38 ms; TE = 2.984 ms; flip angle 8°; matrix 256 × 192; FOV 24 cm).

Resting-state functional connectivity analyses

Functional connectivity analysis was carried out using the CONN-fMRI Functional 

Connectivity toolbox v17 (Whitfield-Gabrieli and Nieto-Castanon 2012). Data were pre-

processed using CONN’s default MNI pipeline which includes the typical steps used in a 

functional activation analysis: slice-timing correction, realignment, co-registration, 

normalization, and spatial smoothing. Additionally, white matter and CSF masks were 

created and Principal Component Analysis (PCA) was applied to the BOLD time series to 

estimate noise within these masks. These components and motion parameters were then 

regressed from the BOLD time series across all voxels. The residual time series were band-

pass filtered within a frequency window of 0.008 to 0.09 Hz.(Whitfield-Gabrieli and Nieto-

Castanon 2012).

To analyze the RSFC data, seed-to-voxel functional connectivity maps were created for each 

participant. The same a priori regions-of-interest (ROIs) were chosen as seeds of interest for 

all subjects based on their theoretical relevance from a set of default pre-defined areas 

provided by CONN-fMRI Functional Connectivity toolbox. They comprised bilateral 

regions in the reward network including the ventral striatum (nucleus accumbens, NAcc) and 

the dorsal striatum (caudate nucleus). The salience network was represented by the anterior 

cingulate cortex (ACC), and the executive control network was represented by the lateral 

inferior frontal cortices (IFC) (Fig. 1).

The mean BOLD time series was computed across all voxels within each ROI. The seed-to-

voxel analysis computes the correlation between these average time series and the BOLD 

time series for all other voxels in the brain. Bivariate-correlation analyses were used to 

determine the linear association of the BOLD time series between each pair of sources and a 

Fisher Z transformation was applied. Individual seed-to-voxel maps were entered into a 

group-level analysis.

A peak voxel threshold of p ≤ 0.001 and a cluster extent threshold of p ≤ 0.05 were set for 

bidirectional (i.e. positive and negative) explorations of connectivity associations. Results 

were considered significant if they survived correction for multiple comparisons with 

Family-Wise Error (FWE) p ≤ 0.05. Functional Connectivity values (mean z-scores) for 

significant clusters were extracted using the REX toolbox (Whitfield-Gabrieli and Nieto-

Castanon 2012). There were no significant correlations between head motion and the 

functional connectivity indices.

A limitation of this method is that the direction of the connectivity findings cannot be 

determined. The RSFC analysis is based on correlations and is, therefore, not sensitive to the 

direction, causality, or temporal relationships between the BOLD time series. In order to 

infer directionality, connectivity methods based on Granger causality or Dynamic Casual 

Modelling will have to be explored in future studies.
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Statistical analysis

SPSS 24 was used for all statistical analyses (IBM Corp., Armonk, NY, USA). 

Nonparametric (Spearman’s rho) correlations were conducted to characterize the 

relationship between individuals’ connectivity values (i.e., seed-to-cluster) and variables 

related to alcohol use and dispositional traits. Correction for multiple correlations was 

achieved with a false discovery rate approach relying on Benjamini-Hochberg procedure 

(Hochberg and Benjamini 1990).

Results

Participant characteristics(Table 1)

BD and LD groups were matched on age, education, FH+, and intelligence. As expected, the 

BD group reported higher levels of drinking and had higher scores on all alcohol-related 

variables. There were no group differences on the measures of anxiety, depression, attention 

deficit disorder, and personality including psychoticism, neuroticism, extraversion, and 

social desirability. However, BD had higher scores on measures of sensation seeking 

including disinhibition and boredom. BD also had lower undergraduate grade point average 

(GPA).

Seed-to-voxel analysis

BD and LD groups showed different functional connectivity patterns in three ROIs used as 

seeds in the seed-to-voxel analysis (Fig 2, Table 2). In line with our expectations, the BDs 

demonstrated greater functional connectivity relative to LDs for two ROIs. More 

specifically, BD participants had significantly higher connectivity between the left caudate 

and the left OFC and bilateral ACC (Fig. 2a), and between the right NAcc and the bilateral 

OFC (Fig. 2b). In contrast, BD participants had lower connectivity than LD subjects 

between the right IFC and the left hippocampus (Hc) (Fig 2c). There were no main effects of 

gender or group × gender interactions in any of the analyses so the factor of gender was 

omitted from subsequent analyses.

Correlation analysis

Nonparametric Spearman’s rho correlations were computed to examine the relationship 

between functional connectivity patterns and alcohol-related and personality variables (Table 

3). Multiple correlations were corrected with the FDR-based Benjamini-Hochberg 

procedure. Across all subjects, greater connectivity values between the striatal seeds and the 

medial prefrontal cortex, and lower connectivity between the right IFC and the hippocampus 

were associated with a range of alcohol-related variables with an emphasis on high-intensity 

drinking including AUDIT scores, the number of binge episodes in the past 6 months, the 

maximum number of drinks consumed in 24 hrs, alcohol-related harmful consequences, etc. 

A subset of the representative correlations is shown in Fig 3. In contrast, no significant 

correlations were observed between any of the connectivity values and personality, 

disposition, or mood indices.
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Discussion

This study examined functional connectivity during wakeful rest in young individuals as a 

function of their binge drinking patterns. Of particular interest were the reward, salience, and 

executive networks which have been implicated in the development and maintenance of 

AUD. Group comparisons indicate that: (1) BDs showed greater connectivity of the reward 

network regions (NAcc and the caudate nucleus) with the salience network regions (ACC, 

OFC) which was positively correlated with AUDIT scores and other variables sensitive to 

high-intensity drinking; (2) BDs were characterized by lower connectivity of the IFC with 

the hippocampus which was negatively correlated with AUDIT and other alcohol-related 

variables. These group differences in RSFC were observed in the absence of differences in 

intelligence scores, personality traits, and self-reported negative emotional states including 

depression and anxiety. However, BD participants tended to report higher disinhibition and 

boredom susceptibility which has been implicated in dysregulated control over alcohol 

intake (Kuntsche et al. 2006; Leeman et al. 2012; K. J. Sher and Trull 1994; Stautz and 

Cooper 2013).

Enhanced RSFC between the subcortical reward regions and the prefrontal salience areas 
in BD

BDs exhibited greater connectivity between the subcortical reward areas (NAcc and the 

ventral caudate nucleus) and the OFC and ACC in the medial prefrontal cortex in line with 

similar reports in AUD studies (Jansen et al. 2015; Kohno et al. 2017; Zhu et al. 2015). 

Furthermore, Muller-Oehring and colleagues (Muller-Oehring et al. 2015) observed 

expanded connectivity of the reward network with medial prefrontal regions and a lower 

within-network connectivity in AUD group. Overall, these results are aligned with a well-

established role of the ventral striatum in the mesocorticolimbic network as it subserves 

alcohol’s rewarding effects (Bjork et al. 2010; Bjork et al. 2008; Haber and Behrens 2014; 

Jia et al. 2011). Pleasure-inducing, reinforcing effects of alcohol are mediated by 

dopaminergic pathways from the NAcc which is associated with drug wanting (Robinson 

and Berridge 1993). Because initiation and development of addiction depend on 

dysregulation of reward circuitry (Everitt and Robbins 2005; Koob and Volkow 2010), the 

ventral striatum is considered a key structure in addiction (Koob and Le Moal 2005; Pierce 

and Kumaresan 2006). Results of the present study are consistent with the prevalent 

accounts indicating that binge drinking reflects a gradual process as impulsive drinking 

shifts towards compulsive intake (Enoch 2006; Kimbrough et al. 2017; Koob 2013b; Koob 

and Le Moal 2008). Indeed, the observed greater connectivity between the ventral striatum 

and the OFC correlates with daily alcohol intake, binge episodes, and high-level drinking 

(Table 3). The appetitive dimension has been confirmed in functional imaging studies 

showing greater activity of the striatum to alcohol-related cues in young heavy drinkers 

(Ihssen et al. 2011; Vollstadt-Klein et al. 2010). Similar activation has been observed in 

individuals diagnosed with AUD (Grusser et al. 2004; Myrick et al. 2004). Furthermore, 

detoxified alcoholics have shown less activation of the ventral striatum to monetary gain but 

greater activation alcohol-related cues which correlates with craving (Wrase et al. 2007).
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Extensive evidence indicates that the ventral striatum is closely coupled with the medial 

prefrontal cortex including the OFC and ACC which are implicated in the salience valuation 

and perception of reward (Haber 2011; Rolls 1996, 2004). The mesocortico-ventral striatal 

circuitry is involved in learning reward associations and in making behavioral choices 

(O’Doherty et al. 2003; Schultz et al. 2000; Sesack and Grace 2010; Tobler et al. 2006; Rolls 

2004). At the neuroanatomical level, the NAcc receives dopaminergic projections from the 

ventral tegmentum as well as glutamatergic projections from the frontal cortex including the 

orbitofrontal area (Humphries and Prescott 2010). Both the NAcc and dorsal striatum have 

reciprocal connections with the medial prefrontal cortex (Haber 2016; Jarbo and Verstynen 

2015) which is implicated in reinforcement learning and integrating reward, salience 

valuation, and learning reward contingencies (Haber and Knutson 2010; Jarbo and Verstynen 

2015; Rolls 2004). Imaging studies have reported greater OFC and ACC activation in 

response to alcohol-related cues in AUD individuals which correlated with higher craving 

and relapse (Grusser et al. 2004; Myrick et al. 2004; Tapert et al. 2004). Similarly, greater 

striatal activation was associated with greater craving in heavy drinkers (Vollstadt-Klein et 

al. 2010). Using a multimodal approach which combined fMRI and PET imaging in heavy 

drinkers, Oberlin and colleagues have shown that alcohol flavor cues enhanced fMRI 

activation in the OFC and the right ventral striatum which was associated with craving for 

alcohol. Furthermore, dopamine release in the NAcc was induced by presenting alcohol 

flavor cues (Oberlin et al. 2016; Oberlin et al. 2015). Greater connectivity between the 

ventral striatum and the OFC and ACC observed in the present study in binge drinkers is in 

agreement with studies in AUD, indicating the importance of the reward/salience network in 

appetitive behavior as a result of alcohol intake. This connectivity rise is associated with 

greater alcohol-seeking behaviors such as the number of binge episodes, high-intensity 

drinking, and AUDIT scores. These data suggest the enhanced saliency of alcohol-related 

rewards may mediate greater alcohol-seeking behavior as drinking shifts from impulsive to 

compulsive. Other studies investigating different types of addiction such as pathological 

gambling (Camara et al. 2008) and substance abuse (Ma et al. 2010; Upadhyay et al. 2010; 

Y. Wang et al. 2013; Wilcox et al. 2011) have confirmed greater connectivity of the reward/

salience network. Even though in the present study it was the ventral aspect of the caudate 

nucleus that primarily contributed to the greater connectivity with the OFC and ACC, the 

dorsal striatum is highly functionally connected with the NAcc as they are both involved in 

contingency and habit learning, and reward processing (Haber 2011; Voorn et al. 2004; Wise 

2009). Repeated bouts of heavy drinking reinforce associations with alcohol-seeking 

behavioral patterns (Tomasi and Volkow 2013), with a shift towards engagement of the 

dorsal striatum. Habit formation such as engaging in drinking on a regular basis, and goal-

directed actions including alcohol seeking and consuming, depend on the dorsal striatum 

(Balleine et al. 2009; Gremel et al. 2016). Indeed, the fronto-striatal connections are 

supported by the dopaminergic system (Bromberg-Martin et al. 2010) and are enhanced by 

alcohol (Everitt and Robbins 2016). The present results confirm that the reward-salience 

networks are altered in young individuals engaging in bouts of binge drinking in ways that 

are similar to those in AUD individuals. This observation is consistent with the importance 

of alcohol-motivated appetitive behaviors in young binge drinkers and could serve as a 

marker of a transitional stage in a cyclic process leading towards compulsive intake (Koob 

and Le Moal 2008).
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Reduced prefrontal-hippocampal functional connectivity in BD

Previous studies in AUD cohorts have reported stronger resting connectivity within 

primarily frontal networks presumed to underlie executive control (Camchong et al. 2013a; 

Jansen et al. 2015; Kohno et al. 2017; Zhu et al. 2015). In comparison to short-term 

abstinent alcoholics, the resting connectivity of the executive network was especially greater 

in individuals after long-term abstinence (Camchong et al. 2013a), lending support to a 

compensatory interpretation of these changes (Chanraud and Sullivan 2014). In that view, 

strengthening of the executive network serves an adaptive purpose of enhanced recruitment 

of cognitive control in support of maintaining abstinence (Camchong et al. 2013b; Jansen et 

al. 2015; Kohno et al. 2017). However, results are inconsistent as other studies reported 

lower connectivity in the executive network (Kim et al. 2017; Muller-Oehring et al. 2015; 

Weiland et al. 2014) which is interpreted as lower cognitive control and gretaer likelihood of 

relapse. In contrast to our expectations, binge drinking patterns in the present study were not 

associated with altered connectivity of the prefrontal seeds comprising the anterior cingulate 

cortex, and the left and right inferior frontal cortices. Despite the greater appetitive drive in 

BD, these results suggest that the frontally-mediated cognitive control is not altered 

sufficiently to promote lapsing into AUD pattern.

However, compared to light drinkers, BDs exhibited lower connectivity between the right 

IFC (rIFC) and the hippocampus. It has been well established that the rIFC is an essential 

node in the cognitive control network with key contributions to response suppression and 

attentional control (Aron et al. 2014; Hampshire et al. 2010; Levy and Wagner 2011; 

Munakata et al. 2011; Wessel et al. 2016). A recent study reported lower activity and 

oscillatory synchrony in rIFC during attentional control in young binge drinkers which 

correlated with drinking levels (Correas et al. 2018). The hippocampus plays a critical role 

in memory encoding and retrieval (Eichenbaum and Fortin 2005; Moscovitch et al. 2006; 

Suzuki 2006) and its connections with the prefrontal cortex underlie a range of memory 

processes (Barker et al. 2017; Eichenbaum 2017). Prefrontal-hippocampal connectivity and 

its role in inhibitory control over memory has been examined with functional imaging. In a 

recent study, a decrease of hippocampal activity observed on “No Think” trials is consistent 

with memory suppression mediated by well described prefrontal-hippocampal pathways 

traced in non-human primates (Anderson et al. 2016). Greater activation of the right frontal 

cortex is associated with downregulation of the hippocampus during inhibition of memory 

retrieval (Depue et al. 2016; Marinkovic et al. 2009). Numerous studies have reported 

greater activation in the rIFC during active memory suppression (Benoit et al. 2015; Depue 

2012; Depue et al. 2016; Levy and Anderson 2008; Mitchell et al. 2007). The prefrontal-

hippocampal interplay is important for cognitive and emotional functions and its 

dysregulation has been proposed to underlie a range of psychiatric disorders (Godsil et al. 

2013) including addiction. In a study of cocaine users, lower right prefrontal activity was 

associated with the inability to suppress interference by drug-related stimuli (Hester and 

Garavan 2009). Similarly, in a task investigating the inhibition of memory retrieval, 

alcoholics were impaired in their ability to suppress unwanted thoughts (Nemeth et al. 

2014). In the present study, the prefrontal-hippocampal connectivity was lower among BDs 

which was associated with higher craving scores, r = −.51, p < .002, suggesting that BDs 

may be impaired in their ability to suppress intrusive thoughts and memories, potentially 
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related to alcohol craving. These results are consistent with a mechanistic account of 

GABA-mediated suppression of hippocampal activity. In a study that combined fMRI during 

a thought suppression task and proton magnetic resonance spectroscopy, lower resting 

concentration of hippocampal GABA was associated with lower suppression (Schmitz et al. 

2017). It has been well established that heavy alcohol use results in neuroadaptive changes 

reflected in down-regulated GABAA receptors (Most et al. 2014; Roberto and Varodayan 

2017). Lower hippocampal GABA underlies impaired prefrontal-hippocampal circuitry 

needed for thought suppression (Schmitz et al. 2017). Therefore, the inability to suppress 

unwanted, intrusive thoughts due, in part, to GABA downregulation may contribute to 

greater cravings in BDs.

Recent theories also propose that the hippocampus is involved in decision-making through 

the role of prospective memory, which enables the imagination of future outcomes (Johnson 

and Redish 2007; Kwan et al. 2012; Schacter et al. 2007). Indeed, memories are essential for 

planning adaptive, goal-directed behavior which is the essence of cognitive control. 

Therefore, lower connectivity between the IFC and hippocampus might also suggest 

impairments in prospective memory or the ability to employ memory in intended plans or 

actions in the context of adaptive constraints. In the current study, lower connectivity 

between the IFC and hippocampus was associated with more binge episodes, blackouts, 

AUDIT scores, habitual alcohol intake levels, and greater alcohol-related negative 

consequences. These data provide supporting evidence that an impaired ability to suppress 

intrusive thoughts or cravings together with a failure to employ prospective memory of the 

harmful consequences of heavy drinking may subserve the transition to more compulsive 

drinking. This is broadly consistent with a recent study of young binge drinkers that reported 

lower frontolimbic connectivity which mediated a relationship between impulsivity and rates 

of alcohol consumption (Crane et al. 2018).

In sum, we found enhanced connectivity between the reward areas in the striatum and the 

medial prefrontal cortex in young BDs which is consistent with similar observations in AUD 

cohorts and is indicative of the importance of alcohol-motivated appetitive behaviors. While 

we did not observe alterations in the connectivity of the prefrontal seeds within the executive 

network, BDs were characterized by lower prefrontal-hippocampal connectivity which was 

associated with higher craving. This may indicate impaired ability to suppress unwanted 

thoughts and a failure to employ memory of the harmful consequences of heavy drinking in 

prospective plans and intentions. Overall, connectivity indices correlated with a range of 

alcohol-related variables with sensitivity to high-intensity drinking which is suggestive of 

the vulnerability of neural networks to hazardous drinking levels. Even though connectivity 

values did not correlate with any measures of personality or mood, this study cannot address 

a possibility of preexisting vulnerability. Taken together, these results support 

neurobiologically based models of addiction suggesting that, in the context of heavy 

drinking, dysregulation of reward/salience and memory circuitry may mediate the shift from 

impulsive to compulsive alcohol consumption (Baler and Volkow 2006; Goldstein and 

Volkow 2011). Thus, the characteristics observed in BDs are suggestive of potential markers 

for the development of alcohol addiction and may have clinical implications for intervening 

before alcohol-seeking behavior becomes more severe.
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Informed Consent

Informed consent was obtained from all individual participants included in the study.
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Fig. 1. 
Seed regions shown in slices along the z-axis are based on the atlas used by CONN-fMRI 

Functional Connectivity toolbox
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Fig. 2. 
Seed-to-voxel resting state connectivity maps (upper panel) and the corresponding bar 

graphs of connectivity values (lower panel). Compared to LD, BD participants show (A) 

higher connectivity between the left caudate (seed region) and the clusters in the OFC and 

ACC; (B) higher connectivity between the right NAcc (seed region) and the clusters in the 

OFC; (C) lower connectivity between the right IFC (seed region) and the clusters in the 

hippocampus (Hc)

Arienzo et al. Page 24

Brain Imaging Behav. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Scatter plots of the representative correlations between connectivity indices and drinking 

variables. Red and blue colors signify BD and LD respectively..
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Table 1.

Participant characteristics for the BD and LD groups.

BD (n=18) LD (n=17) Stat. Value p<

% Female 64.3% 50.0% .62 .43
a

Age 23.3 ± 3.1 25.6 ± 4.2 103 .10

Family History Positive for Alcoholism 50.0% 56.3% .12 .73
a

Education years 15.3 ± 1.8 15.8 ± 2.2 117 .48

Undergraduate GPA 3.3 ± 0.4 3.6 ± 0.3 72.5 .03

drinking days/wk 2.7 ± 1.1 1.5 ±1.0 63.5 .003

drinks/occasion 5.3 ± 2.5 2.3 ± 1.2 41 < .001

binge episodes in past 6 mos 14.9 ± 14.0 0.4 ± 0.7 .000 < .001

alcohol-induced blackouts in 6 mos 3.2 ± 2.7 0.2 ± 0.5 35 < .001

Max no. of drinks in 24 hrs/past 6 mos 12.6 ± 8.9 3.6 ± 2.0 12.5 < .001

Age Onset of alcohol use 16.2 ± 1.8 18.4 ± 2.0 58.5 .005

AUD symptom severity (SMAST) 2.4 ± 2.3 0.8 ± 1.0 76 .009

AUD Identification Test (AUDIT) 13.7 ± 5.9 4.1 ± 1.5 5.5 < .001

Drinking Motivation (DMQ-R SF)

 Enhancement 2.3 ± 0.3 1.7 ± 0.4 36.5 < .001

 Social 2.7 ± 0.4 2.0 ± 0.4 39 <.001

 Conformity 1.5 ± 0.6 1.4 ± 0.5 129 .57

 Coping 1.7 ± 0.5 1.2 ± 0.3 51.5 <.001

Drinking consequences (B-YAACQ) 9.6 ± 6.5 2.7 ± 3.1 49.5 .001

Alcohol Craving (PACS) 8.1 ± 4.9 2.8 ± 2.7 51 .001

Anxiety (GAD-7) 2.7 ± 2.6 3.0 ± 2.7 147 .84

Depression (PHQ-9) 3.4 ± 3.2 3.1 ± 3.0 144.5 .77

ADHD Symptoms (ARSS) 1.7 ± 1.6 1.0 ± 1.2 120.5 .26

Impulsivity (ABIS)

 Attention 2.1 ± 0.5 1.9 ± 0.4 116.5 .22

 Motor 2.2 ± 0.8 1.8 ± 0.4 1081 .13

 Non-Planning 2.1 ± 0.6 1.8 ± 0.5 125 .35

Sensation Seeking (BSSS)

 Experience 4.3 ± 0.8 4.0 ± 0.9 114 .27

 Boredom 4.1 ± 0.8 3.6± 0.7 81.5 .02

 Thrill 3.6 ± 1.1 3.6 ± 1.2 138 .82

 Disinhibition 3.8 ± 0.7 3 ± 1.1 82 .03

Eysenck Personality Quest. (EPQ)

 Neuroticism 3.7 ± 2.8 3.5 ± 3.8 126.5 .53

 Psychoticism 2.5 ± 2.1 2.4 ±1.4 141 .91

 Extraversion 9.4 ± 2.6 7.9 ± 3.55 109.5 .22

WASI-II intelligence scale (percentile) 68.3 ± 21.4 76.6 ± 19.4 110 .24

Included are group characteristics (Mean ± SD or %) for BD and LD groups.
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a
Tested with Chi-Square; all other comparisons performed with the Mann-Whitney U test.

Brain Imaging Behav. Author manuscript; available in PMC 2021 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Arienzo et al. Page 28

Table 2.

Seed regions with Functional Connectivity parameters in BD vs LD.

Seed region Cluster
regions

Voxels
In region

BD conn.
mean(SD)

LD conn.
mean(SD)

cluster-size
p-FWE corr.

L-Caudate
↕

L-OFC 137 .1 (.14) −.031 (.08) < .001

L-FP 63

Cluster coord MedFC 20

−18, 26, −26
SubCC 13

L-PCG 3

L-Caudate
↕

ACC 124 .29 (.15) .06 (.1 3) < .009

L-FP 36

Cluster coord L-SFG 26

−06, 58,18 L-PCG 18

R-NAcc
↕

OFC 113 .31 (.12) .12 (.09) < .008

L-PCG 73

Cluster coord - R-PCG 24

−12, 52, 0 L_FP 16

R_FP 33

R-IFC
↕

L-Hc 73 −.08 (.1) 13 (.1) < .05

L-TFC 72

Cluster coord L-PHc 18

−36, −18, −24

Seed regions are listed individually in the first column along with peak-voxel coordinates of the clusters exhibiting significant connectivity with 
each seed. For each seed region, clusters are then listed together with their number of voxels, the averaged connectivity values for each group and 
FWE-corrected cluster-level p-values.

NAcc: nucleus accumbens, OFC: orbitofrontal ctx, FP: frontal pole, MedFC: medial frontal ctx, PCG: paracingulate gyrus, SFG: superior frontal 
gyrus, SubCC: subcallosal ctx, TFC: temporal fusiform ctx, PHc: parahippocampal ctx, Hc: hippocampus.
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Table 3.

Spearman’s rho correlations between RSCF and alcohol-related and personality variables

Alcohol-related variables L caud-LOFC L caud-ACC R NAcc-OFC R IFC-L HC

rho rho rho rho

no. drinks day/week .39 .47 .51* −.53*

no. drinks/occasion .52* .42 .58* −.34

binge episodes in 6 mos .65* .55* .75* −.68*

no. of blackouts in 6 mos .40 .37 .51* −.56*

max no. drinks in 24 hrs/6 mos .61* .53* .65* −.47

AUD symptoms (SMAST) .30 .07 .31 −.30

AUD Identif. Test (AUDIT) .52* .43 .70* −.64*

Drinking Consequences .3 .24 .46 −.63*

Alcohol craving (PACS) .39 .32 .51* −.51*

Drinking Motivation (DMQ-R) .33 .31 .41 −.47

Personality/mood measures

Impulsivity (ABIS) .015 −.02 .23 −.39

Sensation seeking (BSSS) .13 .19 .28 −.16

Anxiety (GAD-7) .20 .02 −.007 .001

Depression (PHQ-9) .19 .12 .17 −.21

Attn. deficit (ASRS) .25 .08 .35 −.35

Neuroticism (EPQ) .011 −.13 −.014 −.19

Psychoticism (EPQ) .014 −.13 .12 .17

Extraversion (EPQ) .15 .24 .23 −.21

SMAST: Short Michigan Alcoholism Screening Test, AUDIT: Alcohol Use Disorder Identification Test, B-YAACQ: Brief Young Adult Alcohol 
Consequences Questionnaire, PACS: Penn Alcohol Craving Scale, DMQ-R: Drinking Motive Questionnaire Revised, ABIS: Abbreviated 
Impulsiveness Scale, BSSS: Brief Measure of Sensation Seeking Scale, GAD7: Generalized Anxiety Disorder, PHQ-9: Patient Health 
Questionnaire, ASRS: Adult ADHD Self-Report Scale. EPQ: Eysenck Personality Questionnaire

Spearman’s rho coefficients are marked with * and written in boldface font if they survived FDR-based Benjamini-Hochberg correction for 
multiple correlations
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