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Abstract

Neurodegenerative diseases (NDDs) include more than 600 types of nervous system disorders in
humans that impact tens of millions of people worldwide. Estimates by the World Health
Organization (WHO) suggest NDDs will increase by nearly 50% by 2030. Hence, development of
advanced models for research on NDDs is needed to explore new therapeutic strategies and
explore the pathogenesis of these disorders. Different approaches have been deployed in order to
investigate nervous system disorders, including two-and three-dimensional (2D and 3D) cell
cultures and animal models. However, these models have limitations, such as lacking cellular
tension, fluid shear stress, and compression analysis; thus, studying the biochemical effects of
therapeutic molecules on the biophysiological interactions of cells, tissues, and organs is
problematic. The microfluidic “organ-on-a-chip” is an inexpensive and rapid analytical technology
to create an effective tool for manipulation, monitoring, and assessment of cells, and investigating
drug discovery, which enables the culture of various cells in a small amount of fluid (1079 to 10718
L). Thus, these chips have the ability to overcome the mentioned restrictions of 2D and 3D cell
cultures, as well as animal models. Stem cells (SCs), particularly neural stem cells (NSCs),
induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs) have the capability to
give rise to various neural system cells. Hence, microfluidic organ-on-a-chip and SCs can be used
as potential research tools to study the treatment of central nervous system (CNS) and peripheral
nervous system (PNS) disorders. Accordingly, in the present review, we discuss the latest progress
in microfluidic brain-on-a-chip as a powerful and advanced technology that can be used in basic
studies to investigate normal and abnormal functions of the nervous system.

Mol Neurobiol. Author manuscript; available in PMC 2020 December 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Jahromi et al.

Keywords

Page 3

Nervous system; Brain; Neurodegenerative diseases; Microfluidic brain-on-a-chip; Stem cells

Introduction

Investigation into the central nervous system (CNS) is pivotal to develop novel therapies for
neurodegenerative diseases (NDDs). NDDs include more than 600 types of nervous system
disorders in humans such as Alzheimer’s disease (AD), Parkinson’s disease (PD),
Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS or Lou Gehrig’s), multiple
sclerosis (MS), and impact tens of millions of people worldwide of which 15 million suffer
from AD [1-4]. According to the World Health Organization (WHO), NDDs will increase
by nearly 50% by 2030, and more than twofold by 2050. Therefore, there is an essential
necessity to establish effective models of NDDs and efficacious therapeutic strategies to
inhibit or slow the progression of these disorders [5, 6]. The United States (US) “Brain
Research through Advancing Innovative Neurotechnologies” (BRAIN) initiative has
proposed to encourage the development of devices to image and assess the function of the
brain, and the European Union (EU) Human Brain Project (HBP) has also tried to construct
computational models of the brain. These organizations have allocated more than US $1
billion and EU €1 billion to promote BRAIN and HBP, respectively [7]. Moreover, the
Defense Advanced Research Projects Agency (DARPA), National Science Foundation
(NSF), and National Institutes of Health (NIH) have contributed to fund the BRAIN
initiative to further understand the human brain and it’s diseases [8].

The Challenges Faced by Current Researches into Neural System Disorders

There are several models of neural systems that have been used to study the physiological
and pathological functions of the CNS in NDDs, including animal models, 2D and 3D cell
cultures, and clinical studies. However, investigators have to face different challenges that
limit the various models. For example, in randomized clinical trials (RCT), adherence to the
Consolidated Standards of Reporting Trials (CONSORT) guidelines requires consideration
be given to patient diagnosis and selection process, alongside other ethical issues [9].
Animal models are important to study the function of the CNS and NDDs, although they
often cannot be generalized to humans. For instance, rodents have a less complex brain
structure and different cognitive functions. Some transgenic animal models of human
diseases may not provide the physiopathological features of the human neural system and
NDDs. As such, significant differences at the molecular and cellular levels exist between
rodents and humans [10]. It has been reported that many clinical trials in humans have failed
despite promising results that were achieved in pre-clinical studies on animal models [11,
12].

Classical two-dimensional (2D) monolayer cell cultures have been widely utilized to

discover therapeutic molecules, including nano-drug delivery, and to predict their side
effects [13—-15]. However, these models have a poor ability to assess drug responses in
complex diseases, and they cannot fully simulate the physiological condition of tissue
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architecture and the microenvironment as they are altered during the disease (Table 1) [17-
19].

Three-dimensional (3D) models comprising bioprinted organ cell cultures, self-organized
spherical organoids, and microfabricated organ-on-a-chip systems are used to assess drug
delivery, drug discovery, and toxicity in neural systems for therapeutic purposes [20-24].
Organoids are one of the most important 3D culture techniques, which by utilizing self-
regenerating SCs enable recapitulating the normal function of organs such as breast, liver,
stomach, eye, kidney, lung, gut, pancreas, prostate, and specially the brain, which is the most
complex organ in animals and humans [25-27]. Nevertheless, these 3D cell culture models
can be very variable structures, and it is hard to predict the exact positions of different neural
cells for evaluating the biological activities of neural networks [28, 29]. Furthermore, the
genetic and biochemical assessment of the seeded cells in the 3D cell culture models such as
the production, entrapment, absorption, secretion, and trans- and intracellular transportation
of a vast range of molecules is difficult. In addition, these models are generally unable to
account for cellular tension, fluid shear stress, and compression analysis. As well, they are
unable to recapitulate the normal microenvironment and tissue architecture including blood
supply and circulation of immune cells, and also tissue-tissue interaction between
parenchymal cells, connective tissue, and vascular endothelium that are pivotal to organ
function in health and disease [30, 31]. A large number of molecules and genes govern cell
expansion, tissue regeneration, and organogenesis under the influence of mechanobiological
stimuli and epigenetic regulator elements [32, 33]. It is essential to establish a model that
recapitulates the in vivo structure of diseases to understand the causes and mechanisms of
these illnesses and enables the discovery of new therapeutic strategies for NDDs [34-36].
Although in vivo models have many advantages to understand disease mechanisms, they
have some disadvantages like being costly, time consuming, and exhibit uncertain translation
of their results to humans. Therefore, in vitro models have attracted a lot of attention due to
lower costs, time saving, and the greater simplicity of experiments. Recently, 3D cell culture
in vitro models, which use human brain cells, have been developed to study the structure and
physiological properties of CNS diseases in greater detail [37]. Recent progress suggests that
organoids can be used as a preclinical model of human diseases, including NDDs [38].

As mentioned above, there are several limitations to the current models for research on
neural systems. Hence, advanced models are needed to overcome these limitations and
improve experimental models. As a result, investigators have put forward human organ-on-a-
chip devices to substitute for current models as a safe and applicable strategy for drug
discovery (Fig. 1).

Microfluidic Technology

Microfluidic systems can create a powerful microengineered scaffold-free or scaffold-based
tool for the manipulation, monitoring, and assessment of cells, and for use in drug discovery
with high specificity and resolution [39-46]. This technology was developed in the early
1990s as a very small-scale vehicle, which was usually constructed of microchambers,
microchannels, and functionalized microdomains whose dimensions range from tens to
hundreds of micrometers, used for culturing various cells in a small 1072 to 10718 L volume
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of fluid, that is constantly under flow conditions to evaluate the function of cells, tissues, and
organs (Fig. 2) [39, 44, 47]. Currently, a vast range of microfluidic systems have been
fabricated using various materials and methods. These systems are able to be applied in the
manufacture of microfluidic brain-on-a-chip devices for brain activities evaluation.
Microfluidic chips are usually fabricated by “soft lithography, photolithography, contact
printing, laser patterning, and 3D printing” techniques using several materials such as
polydimethylsi-loxane (PDMS), polycarbonate (PC), polyetherimide (PEI), silicon, glass,
hyaluronic acid, matrigel, collagen, silk protein, agarose, etc. [48, 49]. Although the most
commonly used material for microfluidic device is PDMS, there are several other potential
candidate materials that can be used for microfluidic devices (Table 2). Microfluidic brain-
on-a-chip systems can be manufactured using a combination of soft lithography and
photolithography as well as 3D printing technologies. These microfluidic brain-on-a-chip
systems have used an optically transparent, highly flexible, nontoxic, and air-permeable
polymer called PDMS, which provides the ability for high-resolution optical imaging [44,
47, 51-54]. More detailed discussion of the production methods for various microfluidic
brain-on-a-chip systems can be obtained elsewhere [51] and are summarized in Table 3. In
comparison with 2D cell cultures and 3D organoids, and also animal models, microfluidic
systems consume only a very small amount of samples and materials. They also have the
ability to allow detection of cell, tissue, and organ activities in an inexpensive, rapid, highly
accurate, and precise analytical method [45, 55, 56]. Moreover, microfluidic brain-on-a-chip
systems can potentially improve the drug evaluation process in an in vitro environment.
Selected human-derived nerve cells are able to be proliferated, differentiated, and organized
in brain-on-a-chip models [57]. Moreover, these platforms are able to create a uniform
profile of controlled flow of nutrients, establish individual cellular activity, and provide a
platform for monitoring and excitation of neuronal cells. In addition, this technology can
allow the study of mechanical, physiological, pharmacological, and biochemical aspects,
such as dynamic scaffold alteration and the occurrence of stress seen when nervous diseases
undergo progression, and treatments for these diseases are able to be investigated and
monitored in real time [37, 58, 59].

The so-called homo chippiens was conceived as a laboratory-on-a-chip (LOC) project to
emulate the functions of the entire human body by a collection of different microfluidic
organ-on-a-chip systems [60]. The US National Center for Advancing Translational
Sciences (NCATS) has also awarded grants to construct synthetic tissues and organs for drug
development. The reliability of microfluidic brain-on-a-chip systems can be improved by
selecting human-derived nervous cells, and can be more appropriate than conventional
animal models used for drug assessment and disease monitoring. The US Food and Drug
Administration (FDA) has proposed to encourage this technology to predict results of novel
drug testing before they are tested in animal models and in human clinical trials [57, 61-63].

Hence, microfluidic systems have been developed to improve research into NDDs in vitro.
In this regard, several studies have been performed based on microfluidic chips for analysis
of CNS axon propagation [64], dopaminergic neurons [65, 66], creation of a neurovascular
unit-on-a-chip [67], studies on neural stem cells (NSCs) [68], blood-brain barrier (BBB)
function [69-74], AD [37, 75], brain tumors [76, 77], and neurotransmitter function (Table
4) [83]. In order to show whether microfluidic brain-on-a-chip devices can overcome these
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restrictions, in the current article, we review novel reports about the applications of
microfluidic brain-on-a-chip devices in studies of neural system disorders.

Microfluidic SC-Based Neural Tissue Engineering

SCs have the capability of continuous self-renewal, unrestricted proliferation, and the
capacity to differentiate into various different cell types depending on external cues [84, 85].
SCs can be potentially used for drug delivery, cell therapies, tissue remodeling, organ
regeneration, and for disease models [86]. This ability is due to transcriptional factors, which
are pivotal regulatory molecules governing the maintenance of these cells [87]. NSCs,
hiPSCs derived from somatic cells, embryonic stem cells (ESCs), and also embryonic germ
cells (EGCs) can all be encouraged to differentiate into astrocytes (ASTS), oligodendrocytes,
and neurons (Fig. 3). Hence, the creation of models using SC-based neural systems might
facilitate drug discovery and the elucidation of NDD mechanisms [88-93]. The ability to
differentiate into different cells makes SCs suitable for autologous cell transplantation [94].
NSCs, ESCs, and hiPSCs have been employed as potential neuro-regenerative cells in neural
system including CNS and peripheral nervous system (PNS) in LOC devices [95-98].

NSC-Based Microfluidic Systems—Microfluidic devices have produced a powerful
technology for investigation of NSC differentiation. NSCs are known as neural progenitor
cells (NPCs) or neural stem/progenitor cells (NSPCs) that are multipotent cells capable of
generating both neuronal and glial cells [99, 100]. Glial cells include four main cell types
including microglia, ASTs, oligodendrocytes, and their progenitors, NG2-glia [101]. NSC
transplantation, which leads to differentiation and expansion of various nervous cells, is
pivotal for the restoration of the damaged nervous system and for the treatment of NDDs
[102]. In addition, autologous NSCs have also been used to treat non-acute severe traumatic
brain injury (TBI) [103]. NSCs express non-specific lineage molecules including stage-
specific embryonic antigen (SSEA)-1 and cluster of differentiation (CD)133 (Prominin-1),
which can be used to isolate and characterize these cells for research and therapeutic
application [104]. Neuronal cells derived from NSCs are able to mature and integrate into
the host neural system tissue and recover damage after stroke. Hence, NSCs are
therapeutically valuable [105]. Neuronal cells differentiated from NSCs are highly sensitive
to physicochemical agents present in their microenvironment, thus these cells must be
cultured and evaluated in controlled conditions like those achieved in microfluidic organ-on-
a-chip devices [106, 107].

Extracellular matrix (ECM) glycoproteins play important roles in the nervous system and are
widely expressed in constituent cells [108, 109]. Early changes in the ECM have been
observed in several neurological disorders, including ischemic stroke, MS, AD [109, 110],
and schizophrenia [111]. Hence, ECM is important in the study of neural systems and
NDDs. In this regard, Wang et al. [68] developed a 3D ECM-based microfluidic system for
NSC differentiation and regeneration. NSCs isolated from the fetuses were cultured on a
microfluidic device fabricated using PDMS. Then, these cells were investigated under two
conditions consisting of conventional static 2D cell culture and a dynamic microfluidic
engineered ECM-based 3D model. Their findings showed the dynamic 3D cell culture, using
ECM accelerated NSC self-renewal and proliferation, whereas the static 2D cell culture only
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allowed NSC differentiation into the neuron lineage. Spheroid culture on ECM under
perfusion allowed NSCs to differentiate into glial cells [68].

Localization and delivery of stem cells to the target site is one of the major challenges in cell
transplantation therapies. SCs microencapsulation has several advantages, such as allowing
localization of the cells to a single area, and sustaining cell viability through exchange of
nutrients and waste products between the surrounding tissue and the encapsulated cells [78,
112]. Murine cortex cells were differentiated to neurospheres from floating cells. These
aggregated neurosphere cells were separated by accutase to single NSCs, loaded into
alginate—collagen microcapsules, and then they were placed in a control-lable microfluidic
device. Ultimately, their results revealed that the 3D-based microfluidic microenvironment
had the ability to improve the viability, expansion, and differentiation of NSCs [78].

hiPSC-Based Microfluidic Systems—hiPSCs are a useful cell types for analyzing
brain development and NDDs [113]. Neural cells can be derived from hiPSCs and can be
used as an important dynamic model to evaluate the molecular, cellular, and structural
activities of the human neural system [114-116]. Implementing these cells in drug discovery
devices allows the development of novel investigative models for studying treatment of
NDDs [117-119]. Wang et al. [79] developed hiPSC-derived 3D brain organoids using an
organ-on-a-chip method prepared from PDMS and soft lithography (Table 2). The results
demonstrated that the brain organoids possessed the key features of early human brain
development, including neural differentiation, regionalization, and cortical organization [79].
These authors [80] also developed a brain organ-on-a-chip as a microfluidic model to assess
neuronal dysfunction caused by nicotine. They found that exposure to nicotine enhanced
premature neuronal differentiation and the human pluripotent (hPSCs) based microfluidic
organ-on-a-chip device could be a model for the nervous system damaged by nicotine [80].

Microfluidic 3D Chip Models for NDDs Studies

NDDs are generally age-dependent disorders, which are characterized by a slow decrease of
the number and function of CNS neural cells [120]. AD is the most common type of NDD
seen in elderly people [121, 122]. The limited number of relevant animal models for AD is
one of the major challenges hindering development of new AD therapies because studies in
rodents and non-human primates often do not translate to humans [123]. Hence, new tools to
study AD are needed. Park et al. [37] designed a neurospheroid 3D in vitro model based on a
microfluidic chip for AD researchers to evaluate the toxicity of B-amyloid on
neurospheroids (Figs. 4 and 5). They found that amyloid-p treatment impaired formation of
neural networks and significantly decreased the viability of neurospheroids. Indeed, the
neural networks became larger and more complex when neurospheroids were cultured in the
presence of interstitial flow when compared to those cultured under static conditions. Such
difference could be due to cytokines, better access to nutrients and oxygen (O,), and
clearance of metabolic wastes in the flow conditions (Fig. 6) [37].

MacKerron et al. [81] developed a microfluidic platform for the characterization of CNS
active compounds. The pharmacological properties of a glutaminergic receptor antagonist
could be evaluated using this method [81].
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Motor neuron disease (MND), also called amyotrophic ALS, is a NDD that affects motor
neurons with an unknown etiology. This disease has few experimental models for laboratory
investigation [124]. Osaki and colleagues [82] studied MND by designing a 3D microfluidic
platform containing vascular and neuronal networks. They found that this model enabled
study of neurovascular coupling, which is essential to understanding the pathogenesis of
NDDs, such as ALS [82].

BBB-on-a-Chip

Blood circulates throughout the body via blood vessels to deliver O, nutrients, and
hormones to tissues, and to remove CO, and metabolic wastes from tissues. Circulating
blood in the brain is separated from the parenchyma by a highly selective semipermeable
membrane known as the BBB designed to exclude pathogens and toxins from the brain
[125]. The BBB is made up of four cell types consisting of pericytes, neurons, ASTs, and
brain endothelial cells [126]. The BBB is composed of non-fenestrated endothelial cells with
tight intercellular junctions, which regulate the movement of molecules and cells between
blood and the CNS [125, 127]. Some special compounds such as O, CO,, and lipid-soluble
molecules can generally diffuse freely across the BBB. Essential nutrients like glucose and
larger molecules are actively transported across BBB through molecular transporters and
receptor-mediated endocytosis, respectively [128]. In addition, harmful agents such as
lipophilic agents are effluxed from the endothelial cells by specific membrane efflux pumps
like P-glycoprotein (Pgp) [129, 130]. Animal and in vitro models have been used to study
the effect of various treatments or drugs on the BBB at cellular, tissue, and systemic levels.
Animal models do provide the complexity of the BBB environment for the study of
immunology, pharmacodynamics, and pharmacokinetics [131]. However, animal models
have less complex brain structures than humans and may not be completely suitable for
study of the BBB [96, 132, 133]. The neurovascular unit on-a-chip is an in vitro model,
which is reproducible, cost-effective, and time saving, allowing for accelerated evaluation of
emerging new drugs [134].

Brown et al. [70] designed a microfluidic device to mimic the BBB function to analyze the
influence of a cytokine cocktail and lipopolysaccharide (LPS) on inflammatory reactions.
The results revealed that initial exposure to LPS compromised the BBB function and had
effects on both physical and metabolic properties of the BBB. Inflammatory cytokines
compromised the BBB function as well as LPS [70].

Adriani et al. [69] developed a new 3D microfluidic device containing ASTSs, neuron, and
human cerebral microvascular endothelial cell (h\CMEC/D3) model the permeability
properties of the BBB in an in vitro system (Figs. 7 and 8). The immunostaining results
showed that endothelial cells had formed a monolayer with intercellular junctions in a
monolayer (Fig. 9). In addition, permeability testing revealed that the endothelial cells
monolayer acted as a size-selective barrier similar to the BBB in vitro [69, 135].

Wang et al. [74] designed a microfluidic BBB model for in vitro drug permeability assays.
The results showed that this model mimicked the physiological BBB function while the
measured permeability coefficients for large molecules (caffeine, fluorescein-isothiocyanate
(FITC)-dextrans, cimetidine, and doxorubicin) were comparable to those found in in vivo
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models [74]. Indeed, this model formed continuous tight junctions and had a high barrier
integrity with values of trans-endothelial electrical resistance (TEER) above 2000 Q.cm? that
were similar to in vivo models [74]. Neuroinflammation is known to be involved in the
pathophysiology of several neurological and psychiatric disorders and study of neural
inflammatory markers can help to discover new treatment options for these disorders [136,
137]. For the study of neural inflammatory processes, Herland et al. [72] engineered a 3D
BBB in vitro model using a microfluidic chip containing primary human brain pericytes and
microvascular endothelial cells (hBMVECS). Then the cells were stimulated with the
inflammatory cytokine tumor necrosis factor alpha (TNF)-a and the cytokine release profile
(interleukin (IL)-6 and granulocyte colony-stimulating factor (G-CSF)) was measured. The
findings revealed that the chip had a barrier permeability similar to the BBB and the level of
inflammatory mediators (IL-6 and G-CSF) was significantly higher in the 3D BBB chip than
that for the same cells co-cultured in static trans-well plates [72].

Microfluidic devices are commonly fabricated using PDMS, which has good optical
transparency, high flexibility, and high gas permeability that allows fabrication of
microtissue models [138]. Sellgren et al. [73] designed a 3D microfluidic BBB model with
two PDMS micromolded channels instead of a polyester membrane and found that this
model was able to provide optical transparency with suitable physiological fluid shear stress
to study the function of the BBB model [73].

Brain Cancer-on-a-Chip

The cellular microenvironment in tumors is heterogeneous and complex with varying levels
of vascularization and restricted mass transport that may limit the efficiency of therapeutics
[139]. Commonly, cell culture on 2D surfaces is used as an in vitro model to characterize the
cell biology of tumors and to evaluate newly developed drugs [140]. However, there is a
need for 3D cell culture, which claimed to be more similar to the in vivo situation than 2D
cell culture, to study cell-to-cell and cell-to-matrix interactions [139, 141-143]. 3D cell
culture have also been used to identify signaling molecules involved in cell-cell and cell-
matrix interactions as well as to develop new drugs. Thus, LOC microfluidic technology as a
3D in vitro tissue model could improve the screening of personalized drugs [144, 145].

Glioblastoma multiforme (GBM) is a highly malignant brain tumor and is one of the most
challenging types of cancer to treat. Standard treatment regimens for GBM consist of a
combination of maximal surgical resection followed by chemotherapy and radiotherapy
[146]. The development of advanced models for studying drug delivery to brain tumors
could help to discover new treatment options for brain tumors. Fan et al. [76] designed a 3D
brain cancer chip to mimic GBM tumors for drug screening. They delivered two different
drugs, pitavastatin and irinotecan, to cancerous spheroid cells growing in a PEGDA hydrogel
in a PDMS microfluidic device. PEGDA is a hydrophilic long-chain monomer that is
suitable as a carrier for drug delivery and biomedical applications. The findings revealed that
this 3D brain cancer-on-a-chip was able to generate a useful GBM cancer model for drug
screening and drug release assays [76]. Prediction of tumor progression is a challenging
issue in brain cancer. Sun and co-workers [77], designed a microfluidic platform for single-
cell proteomic analysis of GBM cells. They reported that this microfluidic platform enabled
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accurate prediction of tumor progression. In another study, Altemus et al. [147] developed a
microfluidic BBB model to investigate breast tumor metastasis to the brain. The results
revealed that the chip had the capability to model the molecular mechanisms of brain
metastasis as well as help in the development of new drugs [147].

The Technical and Biological Challenges of Microfluidic Brain-on-a-Chip Systems

Several technical challenges remain to be overcome in microfluidic brain-on-a-chip systems.
One of the remaining major technical challenges is the tendency of drugs and chemicals to
undergo non-specific binding to PDMS. As well, PDMS has a structure, which is
incompatible with a many organic solvents. Keng et al. [148] developed a compatible type of
2D microscale platform, which was called “electrowetting-on-dielectric” (EWOD). The
EWOD device was made of inorganic materials, which were coated with a perfluoropolymer
layer. It was manufactured as a typical device including two parallel plates and electrodes
that were coated with conductive, dielectric non-wetting layers [148].

Other technical restrictions of microfluidic brain-on-a-chip systems are providing sterile
conditions during manufacture, avoiding bubbles, different flow rates between platforms,
creating ideal hemoglobin-based oxygenation and nutrient levels, and inclusion of
biosensors [149]. Furthermore, the modeling of cell-matrix or cell—cell interactions, cell
migration, and 3D cell growth by microfluidic brain-on-a-chip platforms present difficulties.
As well, in surface-based microfluidic brain-on-a-chip platforms, cell growth and migration
are geometrically restricted in comparison with bulk-based microfluidic brain-on-a-chip
systems.

Another important limitation in 3D-based microfluidic brain-on-a-chip platforms is the use
of electroactive systems constructed of microelectrode arrays (MEAS) and fluidic channels
to simultaneously monitor different microenvironmental factors. More recently, Haehnel et
al. [150] utilized a magnetic force method to construct a microelectrode-microfluidic device.
This device detected and analyzed many microbiological, chemical, and environmental
factors relevant to microfluidic LOC technologies [150].

Most microfluidic systems, with the exception of 3D-printed microfluidic organ-on-a-chip
platforms, have not yet used a fully automated technology to create and control their
activities [51, 151]. More recently, Kane et al. [152] claimed to have fabricated the first
example of an automated microfluidic organ-on-a-chip using SC-derived dopaminergic
neurons to evaluate PD. Their automated microfluidic device had the potential ability to
allow individual investigation for this neural disease [152]. It is likely that more fully
automated biomanufacturing processes for microfluidic brain-on-a-chip systems will be
developed in the near future.

However, there are also several biological challenges remaining in brain-on-a-chip systems.
The design and creation of these complex systems is not a simple process as the overall size
becomes increasingly smaller. In humans and animals, there are complex inter-connections
between different organs that exert influences on each other. For instance, the endocrine and
immune systems exert an influence on many different organs. In organ-on-a-chip systems,
providing these interactions is challenging and complex [153, 154].
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Another important biological and technical challenge is the reconstruction of the entire brain
including the simulation of vasculogenesis and angiogenesis in a micro-scale platform.
Thus, to better mimic the properties and activities of human brain in vitro, it is essential to
create a microvasculature 3D-based microfluidic model of the brain. In comparison with 2D-
based models, the endothelial cells taking part in vasculogenesis and angiogenesis in 3D-
based ECM microfluidic brain-ob-a-chip systems grow inside ECM with a self-assembled
mechanism. Hence, 3D-based ECM microfluidic brain-on-a-chip systems are able to
generate a more natural vascular structure of the brain, compared to 2D cell culture.

PDMS-based microfluidic brain-on-a-chip systems have a single layer of microchannels
with the diameter ranging from 60 to 200 um, which allows more precise control of these
brain-like microenvironments. Nevertheless, endothelial cells in 3D-based ECM
microfluidic brain-on-a-chip systems are adherent to a basement sheet with 40-120 nm
thickness using proteins such as collagen 1V, laminin, and fibronectin for cell adherence.
However, monitoring this small system is an important problem [82, 155, 156].

More recently, studies have shown that creating a 3D microenvironment using scaffolds
composed of ECM, hydrogels etc. (Table 3) is almost able to mimic the BBB and neural
tissues similar to the human brain [153, 154]. As noted in BBB-on-a-Chip section, Adriani
et al. [69] constructed a 3D neurovascular microfluidic BBB system including cerebral
endothelial cells, neurons, and ASTs, which mimicked the human BBB [69].

Whole Body-on-a-Chip

In fact, a major challenge of microfluidic brain-on-a-chip technology is the nature of the
method, which may be unable to provide mimicry of entire human organs. Many laboratory
models lack the ability for pharmacokinetic studies including absorption, distribution,
metabolism, and excretion (ADME) [157, 158]. The microfluidic organ-on-a-chip can
emulate the biological function of organs such as bone marrow, spleen, gut, brain, and liver.
Nevertheless, to predict the effects and toxicity of therapeutic agents, it is necessary to
design and manufacture multi-organ-on-a-chip devices using microtechnology. Hence,
researchers have designed and generated the “human-on-a-chip” that functions as whole
body-on-a-chip. This has been called “homo chippiens.” These whole-body models are able
to accelerate the pharmacokinetic and pharmacodynamic studies of experimental drugs using
the multi-organ-on-a-chip in technology in comparison with microfluidic single-organ-on-
chip devices [61, 159-163]. Thus, the whole body-on-a-chip has been designed to emulate
multiple different organs such as brain, liver, lung, kidney, adipose tissue, bone marrow, and
the heart [164-166].

Conclusions and Future Directions

NDDs affect tens of millions of people worldwide. Therefore, there is an essential need to
establish advanced models and develop new therapeutic strategies to inhibit or slow the
progression of these disorders. The use of 2D and 3D cell cultures and animal models cannot
completely recapitulate the etiology and pathophysiology of NDDs because researchers need
to study the biochemical effects of molecules on the microenvironment and architecture of
neural tissues. 3D-based ECM microfluidic brain-on-a-chip devices can create a potential
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solution to allow the controlled manipulation, monitoring, and assessment of cells. The
enablement of drug discovery on a microscale can facilitate high-throughput screening of
large drug libraries. More recently, SC-based microfluidic brain-on-a-chip system have
given rise to many neural system structures in the laboratory. Hence, the microfluidic brain-
on-a-chip system is a novel and advanced technology, which can be utilized for NDD
modeling in order to evaluate both normal and abnormal conditions of the CNS and the PNS
for basic medical investigations and can also be used for therapeutic aims in clinical
applications and personalized medicine.
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Fig. 1.
Schematic illustrations of SCs in a brain-on-a-chip technology for NDDs investigations
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Fig. 2.
Schematic illustration of a microfluidic brain-on-a-chip device. human induced pluripotent

stem cells (hiPSC)-based can be produced from adult somatic cells using a hanoliposome-
based-clustered regularly interspaced palindromic repeats (CRISPR) system. The hiPSCs
can differentiate into many cell types such as (A)) astrocytes (ASTSs), (B) neurons, and (C)
oligodendrocytes. Co-culture of theses neural cells (A, B, and C) in a microfluidic brain-on-
a-chip device can be used to evaluate the molecular, cellular, and structural connections
between neural cells such as ASTs, neurons, and oligodendrocytes for NDDs researches
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Blastocyst Somatic cell

Astrocyte

Fig. 3.
Schematic illustrations of SCs in a microfluidic brain-on-a-chip for NDD studies. SCs;

particularly NSCs, hiPSCs, and ESCs have the capability to give rise to various neural
system cells. Hence, the combination of SCs and microfluidic brain on-a-chip is able to be
used as a potential strategy for the investigation of NDDs
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Fig. 4.
Formation of neural networks in a microfluidic device to develop an in vitro model of

Alzheimer’s disease (AD). Formation of neural networks has a critical role for
communication of neurons and brain function. In this study, formation of neural networks
was compared in two patterns; group | (with static condition) and group 11 (with dynamic
condition), (aand c). Figs 4a and c are scanning electron microscopy (SEM) images of
neurospheroids that demonstrates the greater neurite extension in group with the dynamic
condition (4a) than the static condition group (4c). Consequently, greater neurite extension
in group with dynamic condition leading to the formation of a more robust neural network
than the group with the static condition. Figs 4b and d illustrate optical images of the chip
with the static and dynamic conditions, respectively, in which demonstrate more active
neural network formation in group with dynamic condition (d) compare with the static
condition (b). Figs 4e and f reveals a quantitative analysis of the optical images. As shown in
the beneath sections of the figs 4b and d, the chip was divided into ten sections by column
that each column contains five microwells from inlet to outlet. For comparative analysis
between the groups I and 11, the average size of neurospheroids and the total number of
neurites that extended from microwells was analyzed in each section. The results
demonstrate that no neurites were distinguished from the static group, whereas in the
dynamic group, a high number of neurites extending from microwells was detected near the
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inlet and declined towards the outlet of the microchip (Fig 4e). Fig 4f have shown that the
sizes of neurospheroids in the static group were almost the same throughout the microchip,
conversely, neurospheroids were larger near the inlet and become smaller toward the outlet
in the dynamic group.Reprinted with permission from ref. [37], Copyright 2015, Royal
Society of Chemistry
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Fig. 5.
Comparative immunostaining of neurospheroids for the synaptic marker between the static

and dynamic groups. The neurospheroids were immunostained for the synapsinlla and
nestin. Synapsinlla was increased in the dynamic model compared with the static model (a)
indicating that interstitial flow augments synapse formation that leads to the formation of a
complex neural network. Fig 5a also illustrates that the levels of synapsinlla and nestine
were less intense in the groups 1A (static, medium + amyloid-B (Ap)) and I1A dynamic,
medium + AB), which indicates greater destruction of neural networks in the groups that
treated with Ap. The quantitative analysis of the intensity of synapsinlla and nestine are
illustrates in the Figs 5b and c. Reprinted with permission from ref. [37], Copyright 2015,
Royal Society of Chemistry
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Scale bar : 100 um

Fig. 6.
Comparative immunofluorescence imaging of neurospheroids stained with thioflavin S

(green) and immunostained against neural marker p-111 tubulin (red). The fluorescence
intensity of neurospheroids that stained with thioflavin S (green) was increased after
treatment with AB. In contrast, lower intensity of B-111 tubulin was detected in the groups
that treated with amyloid- (section a, groups IA and I1A). The quantitative analysis of the
intensity of immunofluorescence images are illustrates in the Figs 6b and c. Reprinted with
permission from ref. [37], Copyright 2015, Royal Society of Chemistry
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B Medium

B Gel with astrocytes
[ Gel with neurons
B ECs /Medium

Experimental timeline

Neurite outgrowth analysis for neurons
Calcium imaging for neurons
Permeability assay for ECs

hCMEC/D3

DIV 11

Fig. 7.
A schematic illustration of 3D model of neurovascular system in a microfluidic device.(a) a

designed model of a microfluidic device stained with a food dye (left) and a schematic
design of the 3D neurovascular chip (NVC) with focus on their channels: ASTs and neurons
are cultures in two central hydrogel channels (blue and orange channels, respectively),
endothelial cells (ECs) and the media are hosted in two side channels (green and red,
respectively). (b) experiment timeline. (c) Phase contrast imaging of the growth and
development of primary neurons, primary ASTs, and ECs (HUVEC and hCMEC/D3) in
their respective microfluidic channels over time. Reprinted with permission from ref. [69],
Copyright 2017, Royal Society of Chemistry
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70

HUVEC hCMEC/D3.

50 um 50 pm 50 um . 50 um

Fig. 8.

Irr?munocytochemical staining of initial neurons, primary ASTs, and ECs in 3D
neurovascular microfluidic model. (a) The side and top views of the three types of cells in
the 3D microfluidic devices: neuronsidentified by doublecortin (DCX) (red), ASTs are
positive for GFAP (white), and HUVEC are GFP labeled (green). (b) a 3D view of the
neuron in the gel regions. (c) Representative images from the left to right showing immature
neurons identified by DCX, AST susing GFAP which exhibited star-shaped morphology,
HUVEC and hCMEC/D3 express ingzonula occuldens-1 (ZO-1)(which is a tight junction
protein), and GFAP positive ASTs (red) residing to GFP-marked ECs (green) in the NVC.
Reprinted with permission from ref. [69], Copyright 2017, Royal Society of Chemistry
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Fig. 9.
The characterization of the endothelial barrier in neurovascular microfluidic 3D model.

Monolayers of HUVEC and (a) hCMEC/D3 (b) were stained with Hoechst for nucleus,
rhodamine phalloidin for F-actin, and monoclonal antibody and NucBlue against VE-
cadherin. Images c,d and e,f represent the 3D visualization and sections of the endothelial
walls for HUVEC and hCMEC/D3, respectively. Permeability coefficients of 10kDa and
70kDa dextrans in monoculture (with endothelial cells only) and triple co-culture of
HUVEC and hCMEC/D3 are calculated in the Graph g and h, respectively 7 days and 4 days
in vitro as the permeability time point were chosen for \CMEC/D3 and HUVEC,
respectively. Reprinted with permission from ref. [69], Copyright 2017, Royal Society of
Chemistry
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