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Abstract

Purpose: Patient body motion during a cardiac Positron Emission Tomography (PET) scan can 

severely degrade image quality. We propose and evaluate a novel method to detect, estimate, and 

correct body motion in cardiac PET.

Methods: Our method consists of three key components: motion detection, motion estimation, 

and motion-compensated image reconstruction. For motion detection, we first divide PET list-

mode data into 1-second bins and compute the center of mass (COM) of the coincidences’ 

distribution in each bin. We then compute the covariance matrix within a 25-second sliding 

window over the COM signals inside the window. The sum of the eigenvalues of the covariance 

matrix is used to separate the list-mode data into “static” (i.e. body motion free) and “moving” (i.e. 

contaminated by body motion) frames. Each moving frame is further divided into a number of 

evenly-spaced sub-frames (referred to as “sub-moving” frames), in which motion is assumed to be 

negligible. For motion estimation, we first reconstruct the data in each static and sub-moving 

frame using a rapid back-projection technique. We then select the longest static frame as the 

reference frame and estimate elastic motion transformations to the reference frame from all other 

static and sub-moving frames using non-rigid registration. For motion-compensated image 

reconstruction, we reconstruct all the list-mode data into a single image volume in the reference 

frame by incorporating the estimated motion transformations in the PET system matrix. We 

evaluated the performance of our approach in both phantom and human studies.

Results: Visually, the motion-corrected (MC) PET images obtained by the proposed method 

have better quality and fewer motion artifacts than the images reconstructed without motion 

correction (NMC). Quantitative analysis indicates that MC yields higher myocardium to blood 

pool concentration ratios. MC also yields sharper myocardium than NMC.

Conclusion: The proposed body motion correction method improves image quality of cardiac 

PET.
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1. INTRODUCTION

Positron Emission Tomography (PET) is a powerful imaging technique commonly used in 

the fields of oncology, neurology, and cardiology. The spatial resolution of PET scanners has 

greatly improved in recent years owing to advances in hardware (e.g., PET detector) and 

software (e.g., reconstruction algorithm) technologies. However, the intrinsic resolution of 

PET is seldom realized in practice because of patient motion. Motion causes image artifacts 

that can degrade the diagnostic value of PET images1–4. When severe motion occurs, an 

ongoing scan may have to be aborted or sometimes rescheduled.

Two different types of motion can affect cardiac PET imaging: physiologic motion (i.e. 

pseudo-periodic motion due to cardiac and respiratory functions) and body motion (i.e. 

unpredictable changes in the patient’s body position). Cardiac and respiratory motion 

correction has recently attracted great attention in PET imaging5–10. Methods designed to 

correct physiologic motion may become inaccurate if data are corrupted by body motion. 

Therefore, a step toward correction for both types of patient motion is to tackle body motion. 

Although body motion can be minimized by patient cooperation, it remains a challenging 

problem in PET11, 12.

Most of body-motion correction methods reported in the past focused on the head region. 

One group of methods is to employ external markers, such as optical tracking13–15 or 

wireless or wired magnetic resonance (MR) micro-coils16,17, to track the head motion. 

Another group of methods is based on image-driven motion correction techniques18–21. The 

first step of these method is to reconstruct multiple short-frame data for a given scan –

typically 10–60 seconds per frame (depending on the tracer used). Subsequently, rigid 

registrations are performed by aligning all frames to a selected reference frame. The 

corrected image is formed as the summation of all aligned images. It has been shown that 

such image-driven methods can effectively improve the cardiac PET image quality22,23.

On the other hand, list-mode event-driven methods were shown to have the capability to 

detect respiratory and/or cardiac motion signals24–30. A similar technique was applied to 

detect rigid head movement with time-of-flight (TOF) information31. Inspired by these 

works, we propose an approach that can detect, estimate, and compensate for body motion 

using list-mode data in cardiac PET. Visual assessment and quantitative analysis were 

performed to evaluate the performance of the proposed approach in cardiac PET.

2. MATERIALS AND METHODS

Because body motion in a PET scan is unpredictable, it must always be tracked during the 

scan. We propose to use list-mode data to detect body motion, which is then estimated and 

corrected accordingly. Our method consists of three key steps: motion detection, motion 
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estimation, and motion-compensated image reconstruction. Motion detection employs a list-

mode event-driven metric to detect body motion, allowing us to split the scan into a set of 

“static” (i.e. body motion free) and “moving” (i.e. body motion contaminated) frames. The 

underlying assumption is that body motion will cause shifts in the spatial distribution of 

measured events that can be captured by event coordinates. Motion estimation obtains elastic 

transformations that register every static and moving frame to a selected static reference 

frame. Finally, motion-compensated image reconstruction incorporates the estimated 

transformations into the PET system matrix. The list-mode data are jointly reconstructed 

with the updated system matrix to obtain a motion-free image volume in the reference 

frame. We assessed the performance of our method using both phantom and human studies.

2.A. Motion detection

Given a PET scan, we first divided the list-mode data into 1-second bins and computed a 

center-of-mass (COM) vector, mb, for each bin using:

mb = mx, b, my, b, mz, b = 1
Nb

∑
l

Nb
ax, l,

1
Nb

∑
l

Nb
ay, l,

1
Nb

∑
l

Nb
az, l , Eq. (1)

where b is the bin index, Nb is the total number of line of responses (LOR) detected in the 

bin, (ax,l, ay,l, az,l) is the (x,y,z) coordinate of the center of the lth LOR in the bin.

Outlier events, which were identified using a Hampel filter32, were removed for further 

analysis. The filtering procedure worked as follows: for each 1-second bin, a median COM 

was computed over seven bins centered at the bin; then, the standard deviation of COM 

around the median value was calculated; if the COM of the bin differed from the median 

value by more than three standard deviations, that bin was discarded.

To define a single metric that can be used to detect body motion, we first computed a 

covariance matrix C using a sliding window (length=25 seconds, step size=1 second) using:

C = ci j = 1
L − 1 ∑

b

L
mi, b − mi m j, b − m j , Eq.(2)

where mi = 1
L ∑b

Lmi, b, i, j = x, y, z, and L = 25. The diagonal elements of C provide the 

variance of position along x, y, and z axis. The off-diagonal elements of C provide 

covariance information between axes. We then computed the eigenvalues of C using 

principal component analysis (PCA). The resulting eigenvalues, (δ1, δ2, δ3), were then used 

to compute the following metric, denoted motion index:

β = δ1 + δ2 + δ3 , Eq. (3)

which represents the degree of movement in the sliding window. The central 1-second list-

mode data of each 25-second sliding window were labelled as “static” if β ≤ ρ or “moving” 

if β > ρ, where ρ is a global adaptive threshold. We set ρ to the motion index value, where 

the number of 1-second bins equals to 5% of the (static) peak value in the histogram of 
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signal β. After labelling all 1-second bins, they were combined into continuous static (SF) 

and moving frames (MF). Frames shorter than 25-second were not used for subsequent 

processing. Each MF was further evenly divided into multiple 25-second sub-moving-frames 

(sub-MF) (the last sub-MF can be longer than 25 seconds because of the residual data), 

during which body motion was assumed to be negligible.

2.B Motion estimation

The list-mode data in each SF and sub-MF were binned into sinograms. For efficient 

computation, each sinogram was directly back-projected to the image space. The back-

projected image was divided by the sensitivity image, followed by applying a Butterworth 

bandpass filter to enhance the contrast. The resulting images were used to estimate non-rigid 

motion transformations between a selected reference SF (the longest SF), denoted SFref, and 

all other SFs and sub-MFs using parametric B-spline registration method. In this study, we 

used elastic rather than rigid registration to estimate motion. The elastic registration was, 

however, initialized using a rigid registration to obtain a more accurate motion estimation. 

The registration method, implemented in the elastix toolbox33, minimizes mutual 

information between a fixed image and a target image. The convergence of the registration is 

accelerated using a multi-resolution technique34.

2.C Motion-compensated Image Reconstruction

We jointly reconstructed all the list-mode data of the motion-contaminated scan into a single 

image volume, λref, depicting the radioactivity distribution in SFref. This was performed by 

incorporating the estimated motion transformations into the PET system matrix during an 

iterative reconstruction process. The forward model for a given SF or sub-MF, k, is

yk = ΔDkSAkGMref kλref + sk + rk, Eq. (4)

where ΔDk is a scalar equal to the relative duration of frame k to the whole scan, yk, sk, and 

rk are the sinograms containing the expected number of prompt, scattered, and random 

coincidence events, respectively, S is a diagonal matrix containing the LOR sensitivity 

coefficients, Mref→k is the motion transformation from SFref, to frame k, G is the geometric 

forward-projection operator, and Ak is a diagonal matrix containing the motion-dependent 

attenuation coefficients in each sinogram bin derived by deforming the attenuation map in 

SFref, followed by projection into the sinogram space. Random contribution for each frame 

was estimated by Gaussian smoothing of a delayed coincidence window. Scatter 

contribution for each frame was estimated with the single scatter simulation (SSS) method35. 

Both random and scatter contributions were computed using Siemens e7 tools. Based on this 

forward model, we used the ordered subset expectation maximization (OSEM)36 to estimate 

λref. The update equation is:

λref
n+1 =

λref
n ∑k = 1

K ΔDkMref k
T GT yk

GMref kλref
n + AkS −1 sk + rk

∑k = 1
K ΔDkMref k

T GTAkS1I

Eq. (5)
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where yk is the measured sinogram in frame k, 1I is the sinogram filled with the value of 

ones, K is the number of frames. Two iterations and 21 angular subsets were used in all 

reconstructions.

2.D. Phantom and human studies

Both phantom and human studies were performed on a Siemens PET/MR (Biograph mMR, 

Siemens Healthcare, Knoxville, TN). We performed phantom studies using an 

anthropomorphic torso phantom (Data Spectrum Corporation, Hillsborough, NC), which 

consists of multiple compartments. The myocardial defect, myocardium, ventricle cavity, 

left/right lungs, liver, and soft-tissue background compartments were filled with 0.85, 0.04, 

0.67/0.76, 4.39, and 6.6 mCi 18F, respectively. The resulting concentration ratios between all 

compartments and background were close to previously reported values in cardiac [18F]-

Fludeoxyglucose (FDG) PET37. The torso phantom has no “inherent” motion, e.g., 

deformation of the lung or cardiac compartments. PET list-mode data were acquired during 

two separate scans. In the first scan, data were acquired for ~4 minutes, during which a 

sudden movement (~12 mm translation) along the z-axis was induced manually to the 

phantom ~2 minutes after the start of the acquisition. In the second scan, data were acquired 

for ~3 minutes, during which a slow movement (up-to 20° rotation lasting for ~50 seconds 

along an arbitrary axis) was induced right after the start of the acquisition. For each scan, 

two separate MR scans (2-point gradient echo Dixon) were acquired before and after the 

movement. Afterwards, motion-free PET data were acquired for ~3 minutes (also another 

MR scan), which were used as the reference.

Three human cardiac PET-MR scans performed in our institution were retrospectively 

identified with noticeable motion artifacts. All human studies using 18F-FDG and 18F-TPP 

were approved by the Massachusetts General Hospital Institutional Review Board (IRB). 

The first subject was administrated with a bolus injection of ~11 mCi 18F-FDG and scanned 

for 65 minutes afterwards. The other two subjects were administrated with 4-[18F]-

tetraphenylphosphonium (TPP) with a bolus injection of ~8 mCi plus continuous infusion of 

~2 mCi and scanned for 90 minutes. For each of the three studies, the attenuation map was 

measured at the beginning of each PET scan using the vendor’s supplied Magnetic 

Resonance based Attenuation Correction (MRAC) protocol. The last 20-minute list-mode 

data of the FDG scan and 10-minute list-mode data of the TPP scans were used for analysis.

For each study, the selected list-mode data were used to perform motion detection and 

estimation as described in Secs. 2.A–B. The list-mode data were then reconstructed with and 

without motion correction. The static frame with the longest duration was selected as the 

reference frame. The list-mode data in the selected reference frame were reconstructed to 

serve as a motion-free reference image. A dimension of 344×344×127 and voxel size of 

2.0×2.0×2.0 mm3 were used for image reconstruction. No post-reconstruction smoothing 

was applied.

For both phantom and human studies, the quality of motion-corrected (MC), non motion-

corrected (NMC), and reference (REF) images was evaluated by comparing myocardium 

target-to-background-ratio (TBR) and myocardial wall thickness values. First, all the images 

were re-oriented into short-axis view and five evenly spaced planes from apex to the base 
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were chosen. For each plane, four circular target regions of interest (ROI) (four mm in 

radius) were drawn in septal, lateral, anterior and inferior walls, separately (See Fig. 1). A 

background ROI (four mm in radius) was drawn in the middle of the left ventricle (LV) 

blood pool. For each target ROI, TBR was computed as the ratio between activity 

concentration in the target and background ROIs. The myocardial wall thickness was 

quantified by plotting line profiles across different regions in the five short-axis planes, as 

illustrated in Fig. 1. In the five short-axis planes, a total number of 20 profiles were plotted. 

For each profile, the wall thickness was quantified as the full-width half maximum (FWHM) 

of 1-D Gaussian distribution fitted to the profile. Paired t-tests were performed to evaluate 

differences between NMC and MC for both TBR and measured wall thickness values. A 

value of p<0.05 was considered statistically significant.

3. RESULTS

Figs. 2a–c show COM derived from the list-mode data as a function of time along x, y, and z 
directions for the phantom study with slow motion. Fig. 2d shows the motion index, β, 

which was derived using Eq. (3), versus time. The motion-contaminated frame can be 

clearly separated from the SF by thresholding the motion index at ρ = 0.05, which was 

derived as described in Sec. 2A. Fig. 3 shows images obtained with and without motion 

correction for both fast- and slow-motion phantom studies. The REF image from the motion-

free scan was also shown.

Figs. 4a–c show COM as a function of time along x, y, and z directions for three human 

studies (a: FDG, b–c: TPP). Subjects 1 and 2 had both non-negligible fast and slow body 

motion. Subject 3 had only non-negligible slow body motion. Fig. 5a shows the motion 

index, β, derived using Eq. (3) as a function of time for subject 1. Fig. 5b shows the 

corresponding histogram of motion index. Again, this histogram allows us to define a 

threshold to separate MFs from SFs. With a derived threshold, ρ = 0.015, the motion index 

clearly identifies three SFs and two MFs.

Fig. 6 shows short- and horizontal long-axis views of MC, NMC, and REF myocardium 

images for subject 1. Fig. 7 shows short-axis views of MC, NMC, and REF myocardium 

images for subjects 2 and 3. MC images exhibited sharper myocardium, reduced spillover of 

activity from the myocardium to the blood pool, and more visible structures than NMC, as 

evidenced by the improved delineation of papillary muscles (see arrows in Figs. 6 and 7). 

Visually, myocardial walls of MC were also thinner than the ones of NMC. For each subject, 

both MC and REF images had similar spatial resolutions, although the REF image appeared 

noisier because it was obtained by reconstructing only the events in the reference frame.

Fig. 8 shows TBR and apparent wall thickness in MC, NMC, and REF images for all three 

subjects. For all subjects, MC yielded higher TBR (p<0.05) and lower wall thickness 

(p<0.05) than NMC. The quantitative results were consistent with the visual inspection (See 

Figs. 6 and 7). Table I summarizes the mean of TBR and measured wall thickness values for 

both phantom and human studies. In the selected ROIs, the increase in mean TBR after body 

motion correction was 114.0%, 44.2 % and 6.7 % for each human subject, respectively. For 
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all sampled profiles, the mean decrease in myocardial wall thickness was 16.8 %, 11.2 % 

and 16.9 % for each subject, respectively.

4. DISCUSSION

In this paper, we proposed a method that can correct body motion in PET imaging. We 

evaluated the performance of the method using both phantom and human studies. The results 

suggest that the proposed body motion correction method mitigates body motion artifacts in 

cardiac PET images. Improved spatial resolution, recovery of the myocardium activity, and 

reduced spill-over to the blood pool in the left ventricle were observed. Significantly higher 

TBR (p<0.05 for all the subjects) and lower wall thickness (p<0.05 for all the subjects) were 

obtained in MC, as compared to NMC images. All regions in myocardium exhibited 

improvement of image quality after motion correction. MC and REF images have similar 

image quality except that REF images were noisier. It is worth noting that the proposed 

approach is not limited to the specific scanner used in this study. Because the motion 

correction was performed purely based on PET raw data, the approach can be applied to 

stand-alone PET, PET/CT, and PET/MR as long as the scanner supports data acquisition in 

list-mode. Furthermore, the proposed approach can be extended to TOF-PET. With TOF 

information available, COM can be computed using TOF information rather than simply the 

center of each LOR. As a result, the correlation between COM and movement of activity 

distribution will be enhanced, therefore, leading to improved motion detection sensitivity 

and hence overall quality of correction.

Unlike some of the previously developed methods, our approach uses the information only 

from PET list-mode data, therefore, does not require information from external sensors. This 

makes it easier to implement the method in clinical settings. Also, the proposed method has 

two advantages over the conventional image-driven motion correction method (See Sec. 1). 

First, the conventional image-driven method bins list-mode data into even frames followed 

by reconstructing the data in each frame. The time duration of each frame is somewhat 

arbitrary. It ignores intra-frame motion and cannot determine exactly when body motion 

happens during a scan. Our approach computes a single metric, i.e., motion index, using a 

sliding window to detect motion. This allows us to bin the data according to the detected 

body motion during the scan, therefore, making motion compensation more accurate. 

Second, in our method, motion compensation is performed using a joint image 

reconstruction framework, which preserves Poisson noise properties in each SF and sub-MF. 

As a result, the noise level in motion-corrected image volume is not compromised38.

The proposed method is fully automatic that requires no intervention, e.g., manual selection 

for the adaptive threshold or separation of static and moving frames. To process a 20-minute 

list-mode data, it took ~7.5 hours in total using a single core on a 2.40-GHz 8-core Intel(R) 

Xeon(R) CPU. Reading list-mode events into the memory, motion detection, motion 

estimation, and image reconstruction took ~ 1 hour, 30 seconds, 1 hour, and 5.5 hours, 

respectively. Parallel computing could be used in the future to speed up the time-consuming 

steps.
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To detect motion, we first divided list-mode data into 1-second bins and computed COM 

signals using Eq. (1). Because a typical respiratory cycle lasts ~5 seconds, we can see the 

influence of respiratory motion in the COM signals as shown in Fig. 4. Such respiratory 

signals, however, will have negligible effect on the motion index, which is used to detect 

body motion, because we used a 25-second sliding window, which is much longer than a 

respiratory cycle.

In this study, a given 1-second bin was assigned to either SF or MF by thresholding the 

motion index signal derived from Eq. (3). In this study, the threshold was set to the motion 

index value, at which the number of 1-second bins equals to 5% of the (static) peak value in 

the histogram of motion index. The periods when motion index is less than the threshold 

were assigned as SFs, otherwise, as MFs. The sensitivity of motion is affected by the value 

of the threshold as well as by the length of each sub-MF. The lower the threshold or shorter 

the length of each sub-MF, the higher the sensitivity. The length of each sub-MF, during 

which no motion is assumed, should be, however, long enough so that enough counts are 

contained and the effect from the respiratory signals becomes negligible.

We want to point out some limitations associated with our approach. First, we target at static 

PET scans, in which the tracer distribution remains relatively stable during the scan. Before 

reaching equilibrium, tracer distribution in the subject changes as a function of time. Such 

change, especially during the first few minutes after the injection, can contaminate the 

covariance matrix obtained in Eq. (2), making it difficult to detect motion. However, if 

motion is much faster than the change of tracer distribution, our approach can still be applied 

even if the tracer distribution is not at equilibrium. For instance, the 20-minute list-mode 

data used in this study for subject 1 were acquired ~45 minutes after the injection. During 

that 20 minutes, the FDG distribution was not at equilibrium yet, but its change was much 

slower than the speed of body motion. As a result, our approach was able to detect the 

motion successfully. While we have proved the feasibility of the proposed approach on 

myocardial viability studies, our approach still needs to be validated for myocardial 

perfusion imaging (MPI) studies. 82Rb and 13NH3 are the most commonly used PET tracers 

for MPI. For these two, our motion detection method may not work well because the change 

of tracer distribution can be fast when data are acquired. However, we expect the proposed 

approach will work for 18F-flurpiridaz PET imaging39. This new 18F labelled tracer is 

currently being evaluated in a clinical trial40 and has significant clinical potential because of 

its long half-life, high extraction factor and slow wash-out rate. Our approach is more 

important for 18F based tracers because 18F has smaller positron range than other PET 

radionuclides, hence better spatial resolution. We believe this feasibility study using 18F-

FDG and 18F-TPP serves as an important step toward body motion correction for 18F-

flurpiridaz PET, which is currently unavailable for human studies. Second, we only detected 

and corrected body motion in this study. There are three types of motion, which include 

cardiac, respiratory, and body motion, associated with a cardiac PET scan. We and others 

have previously studied extensively how to correct for cardiac and respiratory motion alone 

or together assuming no body motion5–10, 41, 42. One future work is to correct for all types of 

motion together for cardiac PET. We can assume that cardiac motion is superimposed on top 

of respiratory motion while respiratory motion is superimposed on top of the body motion. 
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Further studies are needed to investigate how body motion affects motion phase tracking and 

motion field measurement for both cardiac and respiratory motion.

The proposed approach can be applied to other applications such as the brain and thoracic/

abdominal oncologic imaging. Depending on the application, some modifications might be 

needed in the implementation of our approach. For example, only rigid registration is needed 

for motion estimation and motion-compensated image reconstruction for brain imaging. 

Also, the interval of sub-MFs can be less than 25 seconds to achieve more sensitive motion 

detection if we do not need to average out both cardiac and respiratory effects.

5 CONCLUSION

Body motion, which is unpredictable and should to be tracked all the time during a PET 

scan, can introduce unacceptable artifacts in PET images. In this study, we have proposed a 

data-driven approach that can detect and compensate such motion in PET. We detect motion 

using a sliding time window and estimate motion transformations using back-projected 

images. We incorporate the estimated motion transformations into PET system matrix and 

jointly reconstructed data in all frames to obtain a motion-corrected image volume in a static 

reference time frame without compromising PET statistics. We have applied our technique 

to cardiac phantom and human studies. Our approach yields improved image quality both 

visually and quantitatively.
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Figure 1: 
(a) Illustration of the positioning of ROIs and line profiles for the calculation of myocardium 

TBR and wall thickness. Circular ROIs (4 mm in radius) were placed approximately at the 

center of the anterior, inferior, septal, and lateral regions. Another same-size ROI was drawn 

in the middle of the LV blood pool, (b) Five short-axis planes (from base to apex), in which 

a total number of 20 ROIs/profiles were made.
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Figure 2: 
(a–c) COM in x, y, and z directions, respectively, versus time for the phantom study with 

manually induced slow motion. Left and right-most vertical dashed lines indicate when 

motion started and ended, respectively, (d) The motion index of the COMs in a 25-second 

sliding window versus time. The parameter ρ is the threshold that separates MF from SF 

frames.
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Figure 3: 
Short axis-views of NMC, MC, and REF images for the phantom studies.
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Figure 4: 
COM (after removing outliers) in x, y, and z directions versus time for human subjects 1 (a), 

2 (b), and 3 (c).
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Figure 5: 
(a) Motion index versus time for the subject 1. (b) Histogram of motion index for the same 

subject. The adaptive threshold ρ = 0.015 separates SF from MF.
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Figure 6: 
NMC, MC and REF images for subject 1 (FDG) in short-axis and horizontal long-axis 

views. The REF images were obtained by reconstructing the data in the selected reference 

frame. Arrows indicate the papillary muscle, which is visible in both MC and REF, but not 

in NMC images. The profiles on the right were made along the dashed line shown on the 

short-axis image on the left.
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Figure 7: 
NMC, MC and REF images for subjects 2 and 3 (TPP) in short-axis view. Arrows indicate 

the delineation of the structures.
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Figure 8: 
Myocardium TBR and wall thickness comparison between NMC, MC and REF images for 

human subjects. Overall, MC yields higher TBR and lower wall thickness than NMC.
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Table I:

TBR and wall thickness measured in NMC, MC and REF images for all phantom and human subject studies. 

These results were the mean values calculated based on the ROIs and profiles described in Fig. 1.

Study
TBR Thickness (mm)

MC REF NMC MC REF NMC

Phantom fast 4.8 4.71 2.12 9.52 9.54 N/A*

Phantom slow 2.53 4.57 1.76 10.86 9.42 14.32

Subject 1 3.66 3.78 1.71 15.1 15.28 18.14

Subject 2 3.1 3.19 2.15 13.98 13.46 15.74

Subject 3 5.28 5.47 4.95 19.7 18.82 23.72

*
Unable to be quantified due to the ghost artifacts caused by motion in the image (left-bottom in Fig.3).
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