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Abstract

Purpose: Recent efforts have demonstrated that radiomic features extracted from the peritumoral 

region, the area surrounding the tumor parenchyma, have clinical utility in various cancer types. 

However, as like any radiomic features, peritumoral features may also be unstable and/or non-

reproducible. Hence, the purpose of this study was to assess the stability and reproducibility of 

computed tomography (CT) radiomic features extracted from the peritumoral regions of lung 

lesions where stability was defined as the consistency of a feature by different segmentations, and 

reproducibility was defined as the consistency of a feature to image acquisition.

Methods: Stability was measured utilizing the “Moist run” dataset and reproducibility was 

measured utilizing the Reference Image Database to Evaluate Therapy Response test-retest 

dataset. Peritumoral radiomic features were extracted from incremental distances of 3–12 mm 

outside the tumor parenchyma segmentation. A total of 264 statistical, histogram and texture 
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radiomic features were assessed from the selected peritumoral region-of-interests. All features 

(except wavelet texture features) were extracted using standardized algorithms defined by the 

Image Biomarker Standardization Initiative. Stability and reproducibility of features were assessed 

using concordance correlation coefficient. The clinical utility of stable and reproducible 

peritumoral features were tested in three previously published lung cancer datasets using overall 

survival as the endpoint.

Results: Features found to be stable and reproducible, regardless of the peritumoral distances, 

included statistical, histogram and a subset of texture features suggesting that these features are 

less affected by changes size or shape differences of the peritumoral region due to different 

segmentations and image acquisitions. The stability and reproducibility of 3D Laws and wavelet 

texture features were inconsistent across all peritumoral distances. The analyses also revealed that 

a subset of features were consistently stable irrespective of the initial parameters (e.g., seed point) 

for a given segmentation algorithm. No significant differences were found for stability for features 

that were extracted from region-of-interests (ROIs) bounded by a lung parenchyma mask versus 

ROIs that were not bounded by a lung parenchyma mask (i.e., peritumoral regions that were 

allowed to extend outside of lung parenchyma). After testing the clinical utility of peritumoral 

features, stable and reproducible features were shown to be more likely to create repeatable 

models than unstable and non-reproducible features.

Conclusions: This study identified a subset of stable and reproducible CT radiomic features 

extracted from the peritumoral region of lung lesions. The stable and reproducible features 

identified in this study could be applied to a feature selection pipeline for CT radiomic analyses. 

According to our findings, top performing features in models for overall survival are most likely to 

be stable and reproducible hence, it may be best practice to utilize them to achieve repeatable 

studies and reduce the creation of overfit models.
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Introduction

Radiomics is the process of converting standard-of-care medical images into quantitative 

image-based data that can subsequently analyzed using conventional biostatistics, machine 

learning methods, and artificial intelligence1. Conventional radiomic features based on 

shape, size, intensity, and texture are typically extracted from the intratumoral region-of-

interest (ROI) to quantify the cancer phenotype2. These radiomic features, of which many 

are beyond visual acuity, have shown to be significantly associated with cancer detection, 

diagnosis, prognosis, prediction of response to treatment, and monitoring of disease 

status3–7. However, there has been a renewed interest in quantitative characterization of the 

peritumoral region, the area immediately surrounding the tumor parenchyma, since this 

region is involved in immune infiltration, blood and lymphatic vascular networks, and 

stromal inflammation8–11. Early efforts preceding the “modern era of radiomics” 

demonstrated that peritumoral image-based features have diagnostic and predictive 

utility12–15. Recent efforts have shown the clinical utility of peritumoral radiomic features in 

studies of lung, breast, and head and neck cancers16–21.
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Prior studies have established that some radiomic features are sensitive to tumor 

segmentation and/or image acquisition hence unstable and non-reproducible22–24, where 

stability is defined as the consistency of a feature across different segmentations and 

reproducibility is defined as the consistency of a feature across image acquisition parameters 

such as patient position and respiration phase. Identifying stable and reproducible features is 

an important precursor prior to conducting analyses of radiomic data since features with 

low-fidelity will likely lead to spurious findings and unrepeatable models. Though 

aforementioned studies have characterized the stability22 and reproducibility23,24 of 

intratumoral radiomics, no such study to date has been conducted on peritumoral radiomic 

features.

To address the gap in this domain, we conducted a study to assess the stability and 

reproducibility of peritumoral radiomic features of lung lesions captured by thoracic 

computed tomography (CT) scans. This study is also different from prior work conducted on 

intratumoral radiomics in that the majority of the radiomic features that were evaluated in 

this study were standardized through algorithms defined by Image Biomarker 

Standardization Initiative25 (IBSI). To measure stability we utilized the “Moist run” 

dataset26 from The Cancer Imaging Archive and to measure reproducibility we utilized the 

Reference Image Database to Evaluate Therapy Response (RIDER) dataset that consists of 

test-retest data27. Peritumoral ROIs with incremental distances of 3 mm to 12 mm from the 

tumor boundary were generated by applying morphological image processing operations on 

tumor segmentation masks. The clinical utility of stable and reproducible peritumoral 

features was tested on three previously published lung cancer datasets using overall survival 

(OS) as the endpoint. The stable and reproducible features identified in this study could be 

applied to a feature selection pipeline for future CT radiomic analyses.

Materials and Methods

Moist run dataset

The “Moist run” dataset was utilized to measure radiomic feature stability. This dataset was 

constructed by the Quantitative Imaging Network as a lung segmentation challenge26 and 

consists of 40 CT images of 40 NSCLC patients from five collections of Digital Imaging and 

Communications Medicine series and one thoracic phantom. Each patient in the dataset had 

one lesion of interest and the phantom scan had 12 lesions of interest which totals to 52 

lesions of interests. The images on this dataset were previously de-identified.

RIDER test-retest dataset

To measure reproducibility of radiomic features, the RIDER test-retest dataset was 

utilized27. This National Cancer Institute (NCI) dataset was developed to generate an initial 

consensus on how to harmonize data collection and analysis for quantitative imaging 

methods. This dataset consisted of 32 NSCLC patients who had two separate non-contrast 

chest CT scans that were acquired within 15 minutes of each other using the same scanner, 

acquisition and processing parameters. As such, the only variability between the test and re-

test scans would be attributed to patient orientation, respiration, and movement. The images 

on this dataset were previously de-identified.
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Prognostic lung cancer datasets

To test the applied utility of stable and reproducible peritumoral features, three previously 

published datasets were utilized. One dataset was used for training and two datasets for 

validation. The training dataset included 62 surgically resected lung adenocarcinoma 

patients from the H. Lee Moffitt Cancer Center & Research Institute who had CTs two 

months prior to surgery17,28. The first validation cohort included 47 lung adenocarcinoma 

patients from the Maastricht Radiation Oncology Clinic (MAASTRO), Maastricht, 

Netherlands17,28 and the second validation cohort included 103 adenocarcinoma patients 

who had pre-surgery CTs for radio-genomic analysis29.

Segmentation algorithms

The lesions on the Moist run dataset were previously segmented using 3 different semi-

automatic segmentation algorithms. Each segmentation algorithm was implemented using 

three different initial parameters (i.e., seed point or bounding circle, Supplementary Fig. S1) 

hence; 9 segmentations per lesion were acquired. Algorithm 1 uses marker-controlled 

watersheds, geometric active contours and Markov random fields inside a user drawn 

bounding circle ROI surrounding the lesion. Algorithm 2 requires a single-click inside the 

lesion as an initial parameter which then automatically generates multiple seed points inside 

the tumor. Subsequently, a click and grow algorithm was used to generate multiple 

segmentations that are combined to generate a consensus segmentation. Algorithm 3 uses a 

“seed circle” as an initial parameter and applies a two-dimensional region growing technique 

followed by automatic removal of blood vessels and lung parenchyma. Further details of the 

segmentation algorithms were previously described elsewhere26.

The lesions on the RIDER dataset were previously segmented using a semi-automatic 

single-click ensemble region growing segmentation algorithm on the Lung Tumor Analysis 

software program platform (Definiens Developer XD©, Munich, Germany)30. The 

segmentation workflow contained 4 steps: 1) Pre-processing of automatic organ 

segmentation; 2) Semi-automated correction of pulmonary boundary; 3) Click and Grow 

execution; 4) A manual refinement by an expert if needed. Further details of the 

segmentation algorithms were previously published elsewhere23.

Peritumoral masks

Peritumoral masks were generated as a natural extension of the tumor segmentations by 

using morphological image processing operations. A disk-shaped structural element with a 

radius of intended peritumoral distance was used for morphological dilation on tumor 

segmentations, followed by removal of the tumor region to create “doughnut-shaped” 

peritumoral masks. Intervals of 3, 6, 9 and 12 mm outside the tumor region created the 

peritumoral masks. For the first analysis, the peritumoral regions were bounded by the lung 

parenchyma and for the second analysis the peritumoral regions were not bounded by lung 

parenchyma (i.e., peritumoral regions were allowed to extend outside of lung parenchyma, 

Fig. 1). The MATLAB® (version 2018a) scripts to create peritumoral masks from 

intratumoral masks are available at https://github.com/TunaliIlke/peritumoral_regions/.
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Radiomic features

All images were linearly resampled to a single voxel spacing of 1mm × 1mm × 1mm to 

standardize spacing across all images. A total of 264 statistical, histogram and texture 

radiomic features (Supplementary Table 1A) were extracted from the selected peritumoral 

and intratumoral ROIs using in-house toolboxes created in C++ (https://isocpp.org). Texture 

features included gray-level co-occurrence matrix (GLCM), gray level run-length matrix 

(GLRLM), gray level size zone matrix (GLSZM) and neighboring gray tone difference 

matrix (NGTDM), 3D Laws and wavelet features. All features (except wavelet texture 

features are defined elsewhere31) were extracted using standardized algorithms defined by 

the IBSI v525. Histogram, GLCM, GLRLM, GLSZM and NGTDM texture features were 

extracted using a common bin width of 25 Hounsfield units (HU). Additionally, 41 IBSI 

standardized shape and size features were extracted from intratumoral masks 

(Supplementary Table 1B).

Statistical analyses

Statistical analyses were performed using Intercooled Stata/MP 14.2 (StataCorp LP, College 

Station, TX) and R Project for Statistical Computing version 2.13.1 (http://www.r-

project.org). Stability and reproducibility of features were assessed using concordance 

correlation coefficient (CCC)32. For each feature, CCCs were calculated between different 

segmentation algorithms, initial parameters and test-retest scans. The CCC values range 

from 1 to −1, where 1 indicates a perfect correlation between two variables. Similarity 

between different segmentation approaches were computed using the Jaccard index:

J Seg1, Seg2 =
Seg1 ∩ Seg2
Seg1 ∪ Seg2

(1)

where Seg1 and Seg2 are the two segmentation masks being compared. Differences between 

initial parameters and algorithms by varying distances were tested using Fisher’s exact tests.

Details of the survival analysis are described in the Supplemental Methods. Briefly, survival 

analyses were performed using Kaplan-Meier survival estimates and the log-rank test33. 

Overall survival (OS) was the main endpoint for these analyses and an event was defined as 

date of death. OS was assessed from date of first treatment (e.g., surgery) to the date of death 

or date of last follow-up. The survival data were right censored at 60-months. All P-values 

were 2-sided and a P-value less than or equally to 0.05 was deemed statistically significant.

Results

Table 1 presents the similarities between segmentations using Jaccard indices between 

different initial parameters and algorithms being used. The results demonstrate high 

similarities (Jaccard index > 0.90) between segmentations that were computed using 

different initial parameters. On the other hand, moderate similarities (Jaccard index > 0.80) 

were observed between segmentations that were computed using different segmentation 

algorithms.
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Peritumoral features

Figure 2 presents CCC groups (high, moderate, low) of peritumoral radiomic features with 

respect to different algorithms and different initial parameters. The green boxes represent 

high (CCC > 0.95), yellow boxes represent moderate (CCC ≥ 0.75 & CCC ≤ 0.95) and red 

boxes represent low (CCC < 0.75) CCCs. A high CCC indicates that the radiomic feature is 

not sensitive to variation in segmentations, whereas a low CCC indicates that radiomic 

feature is sensitive to the difference in segmentations. As the peritumoral distance increased, 

there were significantly higher numbers of moderate or highly stable features (Table 2). The 

statistical, histogram, and a subset of texture features (GLCM, GLRLM, GLSZM and 

NGTDM) were found stable (Supplementary Table 2a–c) and reproducible (Table 3) for 

different initial parameters however, 3D Laws and wavelet texture features (Supplementary 

Table 2d–e) were found to be significantly less stable and reproducible. Overall, the inter-

stability (i.e., stability of features across different segmentation algorithms) was observed to 

be significantly lower than the intra-stability (i.e., stability of features across different initial 

parameters using same segmentation algorithms). The overall reproducibility of features 

were not significantly different as peritumoral distances changed; although a subset of 

texture features (GLCM, GLRLM, GLSZM and NGTDM) were slightly more reproducible 

for peritumoral distances above 3 mm (Table 3).

All aforementioned analyses were performed for features extracted from peritumoral regions 

that were bounded by a lung parenchyma mask (Supplementary Fig. S2). The stability of 

features where a lung parenchyma mask was not used to bound the peritumoral region was 

consistent with the analysis where a lung parenchyma mask was used (Supplementary Table 

3a–f). However, peritumoral features were significantly more reproducible with the 

increasing peritumoral distances when lung parenchyma mask was not used (Supplementary 

Table 4). The exact CCC values of features are provided in Supplementary Table 1a.

Intratumoral features

Figure 3 presents CCC groups of intratumoral radiomic features with respect to different 

algorithms and different initial parameters. The majority of the features had low inter-

stability (CCC < 0.75) while intra-stability of features were more frequently moderate or 

high (Supplementary Table 5a). Most size and shape features were found to be highly stable 

for different initial parameters (Supplementary Table 5g–h). Intensity, size, shape and a 

subset of a texture features (GLCM, GLRLM, GLSZM and NGTDM), features were at 

moderately or highly reproducible, while 3D Laws and wavelet texture features were less 

reproducible (Supplementary Table 6). For all feature categories, intratumoral features had 

lower median CCC values than their corresponding peritumoral features for both 

reproducibility (Fig. 4a) and stability (Fig. 4b) assessments. The exact CCC values of 

features are provided in Supplementary Table 1B.

Survival analysis of peritumoral features

Utilizing the training cohort, univariable Cox regression analyses were conducted using only 

stable and reproducible peritumoral features (0–3 mm, not bounded by a lung mask, n = 63) 

and the top performing features (n = 5, p < 0.05) were selected for multivariable analysis. 

These remaining features were included in a stepwise backward elimination Cox regression 
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model and one feature (F300:3D_Wavelet_P2_L2_C11) remained in the final model. The 

classification and regression tree analysis identified the optimal cut-point (>= 1.18 × 10−4) 

that discriminated by OS in the training dataset and found that patients categorized in high 

cut-point had significantly worse OS. Applying the novel cut-off point to two independent 

cohorts showed that F300:3D_Wavelet_P2_L2_C11 was prognostic in all three cohorts 

(Supplementary Fig. S3).

Discussion

Radiomics are powerful image-based biomarkers that have been successfully applied for 

cancer detection, diagnosis, prognosis, prediction of response to treatment, and monitoring 

of disease status by converting standard-of-care medical images into quantitative data3–7. 

Because the surrounding peripheral areas of the tumors represent the tumor 

microenvironment, emerging studies have considered the clinical utility of peritumoral 

radiomic features16–21. Overall, we found a subset of peritumoral features were stable and 

reproducible. Features found to be stable regardless of the peritumoral distances included 

statistical and histogram and a subset of texture features (GLCM, GLRLM, GLSZM and 

NGTDM). This suggests these features are less affected by changes in the ROIs. We also 

found that the stability and reproducibility of most 3D Laws and wavelet texture features 

were inconsistent across the peritumoral regions which have been shown in other studies of 

intratumoral radiomics23,31. As such, the inclusion of a subset of 3D Laws and wavelet 

texture features may result in spurious and irreproducible findings. Also, when we assessed 

the clinical utility of stable and reproducible peritumoral radiomic features in relation to 

lung cancer survival, we found that stable and reproducible were more likely to be validated 

than unstable and non-reproducible. Specifically, we found that the top performing stable 

and reproducible peritumoral feature was prognostic in three previously published 

datasets17,28,29 (Supplementary Fig. S3).

Although prior studies have been conducted to assess for stability22 and reproduciblity23,24 

of intratumoral radiomic features, this is the first study conducted on peritumoral radiomic 

features and the first study assessing the stability and reproducibility using IBSI radiomic 

features25. Kalpathy-Cramer et al.22 found that intratumoral size-based CT features were 

highly stable and shape-based features were less stable. Also, they showed that texture-based 

features were less stable which is consistent with our findings for peritumoral texture-based 

features. On the other hand, size and shape-based peritumoral features were not extracted in 

our study because these feature classes explicitly describe the intratumoral ROI. 

Balagurunathan et al.23 found that most intratumoral features were reproducible utilizing a 

semi-automatic segmentation method on test-retest CT imaging which was also consistent 

with our findings however, we also observed that 3D Laws texture features were less 

reproducible than the rest of the feature groups. A separate study from Balagurunathan et al.
24 assessed lung tumor volumes across different segmentation algorithms and found that 

larger nodules (≥ 8 mm) were more reproducible. However, volumetric analyses of the 

peritumoral regions were not conducted in this study.

Because peritumoral masks are natural extensions of the intratumoral masks, the radiomic 

features extracted from the peritumoral and intratumoral regions could be expected to yield 
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similar stability and reproducibility. Interestingly, the majority of the intratumoral features 

were unstable, especially when extracted using different segmentation algorithms (Fig. 3). 

However, peritumoral features were found to be more stable and reproducible than their 

corresponding intratumoral features. We also showed that peritumoral features further away 

from the intratumoral region were increasingly more stable. This finding might be related to 

the existence of homogenous lung parenchyma in distal peritumoral regions compared to 

intratumoral regions or peritumoral regions proximal to the tumor.

Our analyses also revealed that subsets of features were consistently stable irrespective of 

the initial parameter (e.g., seed point) for a given segmentation algorithm. These findings are 

important since there is no ground truth for initial parameters for any segmentation 

algorithm and it is essential that features are consistent across different users. On the other 

hand, some of these features were not stable when they were extracted using different 

segmentation algorithms. These results demonstrate the importance of using the same 

segmentation algorithm when conducting radiomics research especially when attempting to 

train, test, and validate findings.

We found no significant differences in stability for features that were extracted from ROIs 

bounded by a lung parenchyma mask versus ROIs that were not bounded by a lung 

parenchyma mask. Although peritumoral features of lung tumors near the mediastinum or 

chest wall may be attenuated, our data suggests that these features were still stable. The 

clinical utility of including outside of the lung parenchyma to the ROI is currently unknown. 

Notably, pleural invasion by lung tumors is associated with a poor prognosis34 and 

peritumoral features extracted from ROIs bounded by lung parenchyma may not accurately 

capture such a trait. Additionally, the lung parenchyma masks are not always available or are 

not included in software algorithms.

In 2017 a comprehensive review on the process and developments in radiomics by Lambin et 

al.35 stated, “…optimal reproducibility and stability enable multicenter studies to maximize 

the likelihood of a validated radiomic signature being fit-for-purpose in routine clinical use.” 

To meet this goal, assessing the reproducibility and stability using the framework presented 

here and by others22,23 provide groundwork to ensure generalizable studies across datasets 

and institutions. Because the peritumoral region has unique clinical and biological 

significance, capturing this information using radiomic analyses has tremendous 

translational utility as demonstrated from previous studies and this study16–21.

Conclusions

In summary, this study identified a subset of stable and reproducible CT radiomic features 

from the peritumoral region of lung lesions. Because recent studies have shown evidence 

that peritumoral features have clinical significance16–21, identifying stable and reproducible 

features is crucial to minimize spurious and non-repeatable results. The stable and 

reproducible features identified in this study can be used to guide a feature selection pipeline 

for assessing the clinical utility of peritumoral CT radiomic features.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Peritumoral masks.
Image on the left shows a CT scan ROI. Image on the middle image shows a peritumoral 

region that is not bounded by the lung parenchyma mask. Image on the right shows 

peritumoral region bounded by the lung parenchyma mask. Red region is removed from the 

peritumoral region as it lies outside the lung parenchyma.
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Figure 2. Concordance correlation coefficient groups of peritumoral features bounded by lung 
parenchyma.
The green boxes represent higher (CCC > 0.95), yellow boxes represent moderate (CCC ≥ 

0.75 & CCC ≤ 0.95) and red boxes represent lower (CCC < 0.75) CCCs.
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Figure 3. Concordance correlation coefficient groups of intratumoral features.
The green boxes represent higher (CCC > 0.95), yellow boxes represent moderate (CCC ≥ 

0.75 & CCC ≤ 0.95) and red boxes represent lower (CCC < 0.75) CCCs.
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Figure 4. Whisker-box plots of CCCs by feature categories. A)
CCCs of features extracted from test-retest dataset (RIDER) from intratumoral ROI and 

peritumoral ROIs. B) CCCs of features extracted from Moist-run dataset using Algorithm 1 

and Algorithm 2 from intratumoral ROI and 3mm peritumoral ROI.
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Table 1.

Initial parameter and algorithm comparison by Jaccard index scores.

Initial parameter comparisons Jaccard index

Algorithm 1-Initial parameter 1 vs Initial parameter 2 0.973

Algorithm 1-Initial parameter 1 vs Initial parameter 3 0.969

Algorithm 1-Initial parameter 2 vs Initial parameter 3 0.979

Algorithm 2-Initial parameter 1 vs Initial parameter 2 0.948

Algorithm 2-Initial parameter 1 vs Initial parameter 3 0.955

Algorithm 2-Initial parameter 2 vs Initial parameter 3 0.962

Algorithm 3-Initial parameter 1 vs Initial parameter 2 0.943

Algorithm 3-Initial parameter 1 vs Initial parameter 3 0.955

Algorithm 3-Initial parameter 2 vs Initial parameter 3 0.942

Algorithm comparisons
1

Algorithm 1 vs Algorithm 2 0.810

Algorithm 1 vs Algorithm 3 0.827

Algorithm 2 vs Algorithm 3 0.805

1
Algorithms were compared using segmentations created by random selections of initial parameters (1, 2 or 3) for each lesion.
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Table 2.

Distribution of stability groups of all peritumoral radiomic features extracted from region-of-interests that are 

bounded by a lung mask.

Distance
a

0 – 3 mm 0 – 6 mm 0 – 9 mm 0 – 12 mm P- Value
b

Algorithm 1-initial parameter 1 vs initial parameter 2

CCC < 0.75 (Red) 30 (11.4) 0 (0) 10 (3.8) 21 (8.0)

CCC ≥ 0.75 & CCC ≤ 0.95 (Yellow) 63 (23.9) 9 (3.4) 26 (9.9) 8 (3.0)

CCC > 0.95 (Green) 171 (64.7) 255 (96.6) 228 (86.3) 235 (89.0) <0.001

P-value <0.001 <0.001 0.001

Algorithm 1-initial parameter 1 vs initial parameter 3

CCC < 0.75 (Red) 14 (5.3) 1 (0.4) 9 (3.4) 29 (11.0)

CCC ≥ 0.75 & CCC ≤ 0.95 (Yellow) 55 (20.8) 32 (12.1) 63 (23.9) 8 (3.0)

CCC > 0.95 (Green) 195 (73.9) 231 (87.5) 192 (72.7) 227 (86.0) <0.001

P-value <0.001 <0.001 <0.001

Algorithm 1-initial parameter 2 vs initial parameter 3

CCC < 0.75 (Red) 33 (12.5) 2 (0.8) 8 (3.0) 10 (7.6)

CCC ≥ 0.75 & CCC ≤ 0.95 (Yellow) 34 (12.9) 24 (9.1) 38 (14.4) 0 (0)

CCC > 0.95 (Green) 197 (74.6) 238 (90.1) 218 (85.6) 244 (92.4) <0.001

P-value <0.001 0.022 <0.001

Algorithm 2-initial parameter 1 vs initial parameter 2

CCC < 0.75 (Red) 57 (21.6) 36 (13.6) 44 (16.7) 44 (16.7)

CCC ≥ 0.75 & CCC ≤ 0.95 (Yellow) 122 (46.2) 86 (32.6) 52 (19.7) 11 (4.2)

CCC > 0.95 (Green) 85 (32.2) 142 (53.8) 168 (63.6) 209 (79.1) <0.001

P-value <0.001 0.004 <0.001

Algorithm 2-initial parameter 1 vs initial parameter 3

CCC < 0.75 (Red) 40 (15.2) 22 (8.3) 37 (14.0) 45 (17.1)

CCC ≥ 0.75 & CCC ≤ 0.95 (Yellow) 124 (47.0) 76 (28.8) 39 (14.8) 10 (3.8)

CCC > 0.95 (Green) 100 (37.8) 166 (62.9) 188 (71.2) 209 (79.1) <0.001

P-value <0.001 <0.001 <0.001

Algorithm 2-initial parameter 2 vs initial parameter 3

CCC < 0.75 (Red) 55 (20.8) 6 (2.3) 8 (3.0) 45 (17.1)

CCC ≥ 0.75 & CCC ≤ 0.95 (Yellow) 95 (36.0) 74 (28.0) 23 (8.7) 10 (3.8)

CCC > 0.95 (Green) 114 (43.2) 184 (69.7) 233 (88.3) 209 (79.1) <0.001

P-value <0.001 <0.001 <0.001

Algorithm 3-initial parameter 1 vs initial parameter 2

CCC < 0.75 (Red) 182 (68.9) 146 (55.3) 121 (45.8) 97 (36.7)

CCC ≥ 0.75 & CCC ≤ 0.95 (Yellow) 78 (29.6) 99 (37.5) 108 (40.9) 122 (46.2)

CCC > 0.95 (Green) 4 (1.5) 19 (7.2) 35 (13.3) 45 (17.1) <0.001

P-value <0.001 0.023 0.096

Algorithm 3-initial parameter 1 vs initial parameter 3
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Distance
a

0 – 3 mm 0 – 6 mm 0 – 9 mm 0 – 12 mm P- Value
b

CCC < 0.75 (Red) 41 (15.5) 33 (12.5) 19 (7.2) 11 (4.2)

CCC ≥ 0.75 & CCC ≤ 0.95 (Yellow) 133 (50.4) 103 (39.0) 42 (15.9) 45 (17.1)

CCC > 0.95 (Green) 90 (34.1) 128 (48.5) 203 (76.9) 208 (78.7) <0.001

P-value 0.004 <0.001 0.335

Algorithm 3-initial parameter 2 vs initial parameter 3

CCC < 0.75 (Red) 49 (18.6) 48 (18.2) 30 (11.4) 12 (4.5)

CCC ≥ 0.75 & CCC ≤ 0.95 (Yellow) 156 (59.1) 112 (42.4) 66 (25.0) 49 (18.6)

CCC > 0.95 (Green) 59 (22.3) 104 (39.4) 168 (63.6) 203 (76.9) <0.001

P-value <0.001 <0.001 0.001

Algorithm 1 vs Algorithm 2

CCC < 0.75 (Red) 148 (56.1) 102 (38.6) 69 (26.1) 73 (27.6)

CCC ≥ 0.75 & CCC ≤ 0.95 (Yellow) 108 (40.9) 140 (53.0) 151 (57.2) 142 (53.8)

CCC > 0.95 (Green) 8 (3.0) 22 (8.4) 44 (16.7) 49 (18.6) <0.001

P-value 0.001 <0.001 0.722

Algorithm 1 vs Algorithm 3

CCC < 0.75 (Red) 165 (62.5) 139 (52.6) 118 (44.7) 81 (30.7)

CCC ≥ 0.75 & CCC ≤ 0.95 (Yellow) 84 (31.8) 90 (34.1) 76 (28.8) 121 (45.8)

CCC > 0.95 (Green) 15 (5.7) 35 (13.3) 70 (26.5) 62 (23.5) <0.001

P-value 0.005 0.001 <0.001

Algorithm 2 vs Algorithm 3

CCC < 0.75 (Red) 180 (68.2) 147 (55.7) 128 (48.5) 84 (31.8)

CCC ≥ 0.75 & CCC ≤ 0.95 (Yellow) 77 (29.2) 96 (36.4) 105 (39.8) 139 (52.7)

CCC > 0.95 (Green) 7 (2.6) 21 (7.9) 31 (11.7) 41 (15.5) <0.001

P-value 0.002 0.158 <0.001

Numbers inside parenthesis are the percentage values.

a
P-values were generated using Fisher’s Exact test comparing 0–3 mm vs. 0–6 mm, 0–6 mm vs. 0–9 mm, and 0–9 mm vs. 0–12 mm, respectively.

b
P-value was generated using Fisher’s Exact test for the overall distributions of the four peritumoral distances (3 × 4 contingency table).
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Table 3.

Distribution of reproducibility groups of peritumoral radiomic features extracted from region-of-interests that 

are bounded by a lung mask.

Distance
a

0 – 3 mm 0 – 6 mm 0 – 9 mm 0 – 12 mm P- Value
b

All features

CCC < 0.75 (Red) 68 (25.8) 55 (20.8) 71 (26.9) 80 (30.3)

CCC ≥ 0.75 & CCC ≤ 0.95 (Yellow) 121 (45.8) 148 (56.1) 138 (52.3) 113 (42.8)

CCC > 0.95 (Green) 75 (28.4) 61 (23.1) 55 (20.8) 71 (26.9) <0.001

P-Value 0.068 0.263 0.081

Statistical features

CCC < 0.75 (Red) 3 (15.8) 2 (10.5) 3 (15.8) 3 (15.8)

CCC ≥ 0.75 & CCC ≤ 0.95 (Yellow) 1 (5.3) 5 (26.3) 4 (21.0) 4 (21.0)

CCC > 0.95 (Green) 15 (78.9) 12 (63.2) 12 (63.2) 12 (63.2) 0.731

P-Value 0.272 1.000 1.000

Histogram features

CCC < 0.75 (Red) 5 (17.9) 2 (7.1) 4 (14.3) 4 (14.3)

CCC ≥ 0.75 & CCC ≤ 0.95 (Yellow) 7 (25.0) 15 (53.6) 10 (35.7) 10 (35.7)

CCC > 0.95 (Green) 16 (57.1) 11 (39.3) 14 (50.0) 14 (50.0) 0.512

P-Value 0.086 0.467 1.000

Texture
c
 features

CCC < 0.75 (Red) 3 (4.8) 0 (0) 0 (0) 1 (1.6)

CCC ≥ 0.75 & CCC ≤ 0.95 (Yellow) 28 (45.2) 39 (62.9) 33 (53.2) 31 (50.0)

CCC > 0.95 (Green) 31 (50.0) 23 (37.1) 29 (46.8) 30 (48.4) 0.198

P-Value 0.038 0.363 0.857

3D Laws features

CCC < 0.75 (Red) 44 (35.2) 44 (35.2) 44 (35.2) 68 (54.4)

CCC ≥ 0.75 & CCC ≤ 0.95 (Yellow) 79 (63.2) 81 (64.8) 81 (64.8) 57 (45.6)

CCC > 0.95 (Green) 2 (1.6) 0 (0) 0 (0) 0 (0) 0.002

P-Value 0.615 1.000 0.003

Wavelet features

CCC < 0.75 (Red) 13 (43.3) 7 (23.3) 20 (66.7) 4 (13.3)

CCC ≥ 0.75 & CCC ≤ 0.95 (Yellow) 6 (20.0) 8 (26.7) 10 (33.3) 11 (36.7)

CCC > 0.95 (Green) 11 (36.7) 15 (50.0) 0 (0) 15 (50.0) <0.001

P-Value 0.305 <0.001 <0.001

Numbers inside parenthesis are the percentage values.

a
P-values were generated using Fisher’s Exact test comparing 0–3 mm vs. 0–6 mm, 0–6mm vs. 0–9 mm, and 0–9 mm vs. 0–12 mm, respectively.

b
P-value was generated using Fisher’s Exact test for the overall distributions of the four peritumoral distance (3 × 4 contingency table).

c
Features consist GLCM, GLRLM, GLSZM and NGTDM texture features.
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