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The ribonuclease H (RNH) activity of HIV-1 reverse transcriptase (RT) is essential for viral 

replication and can be a target for drug development. Yet, no RNH inhibitor to date has 

substantial antiviral activity to allow advancement into clinical development. Herein, we 

describe our characterization of the detailed binding mechanisms of RNH active-site 

inhibitors, YLC2-155 and ZW566, that bind to the RNH domain through divalent metal 

ions, using NMR, molecular docking and quantum mechanical calculations. In the presence 
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of Mg2+, NMR spectra of RNH exhibited split (two) resonances for some residues upon 

inhibitor binding, suggesting two binding modes, an observation consistent with the docking 

results. The relative populations of the two binding conformers were independent of 

inhibitor or Mg2+ concentration, with one conformation consistently more favored. In our 

docking study, one distinctive pose of ZW566 showed more interactions with surrounding 

residues of RNH compared to the analogous binding pose of YLC2-155. Inhibitor titration 

experiments revealed a lower dissociation constant for ZW566 compared to YLC2-155, in 

agreement with its higher inhibitory activity. Mg2+ titration data also indicated a stronger 

dependence on Mg2+ for the RNH interaction with ZW566 compared to YLC2-155. 

Combined docking and quantum mechanical calculation results suggest that stronger metal 

coordination as well as more protein-inhibitor interactions may account for the higher 

binding affinity of ZW566. These findings support the idea that strategies for the 

development of potent competitive active site RNH inhibitors should not only take into 

account metal-inhibitor coordination but also protein-inhibitor interaction and 

conformational selectivity.

Human immunodeficiency virus-1 (HIV-1) reverse transcriptase (RT) is a multi-functional 

protein, containing DNA polymerase activity and ribonuclease H (RNH) activity.1–5 RT 

comprises a 66 kDa subunit (p66) and a p66-derived 51 kDa subunit (p51), and both the 

polymerase and RNH active sites are located in the p66 subunit.6 Although over 10 

clinically approved polymerase inhibitors are available, the RNH domain remains the only 

HIV enzyme not targeted by approved drugs.7–14 Given that RNH activity is crucial for virus 

replication, RNH inhibitors have the potential to become applicable as an antiviral therapy. 

Considerable effort has been made to synthesize and test several different chemotypes of 

RNH inhibitors, including active-site inhibitors that interact with RNH through divalent 

metal ions.15–17 However, no RNH inhibitor characterized to date has substantial antiviral 

activity to allow advancement into clinical development. In contrast to the 20-plus years of 

study on the structures and binding mechanisms of polymerase inhibitors,18–27 structural 

information for RNH inhibitor interactions is scarce: only recently were crystal structures of 

RNH active-site inhibitors in complex with RT or isolated RNH domain published.28–33 In 

all these crystal structures, the inhibitors coordinate the two catalytic metal ions in a similar 

fashion, while hydrophobic or hydrogen-bonding interactions between the inhibitors and 

protein differ among the structures. The effects of these varied contacts on binding and 

inhibition potency are not well characterized.

Recently, we published crystal structures of RT in complex with a hydroxyisoquinoline-

dione (HID)-type active-site inhibitors, YLC2-155, showing that the inhibitor interacts with 

the RNH domain in two binding modes (Figure 1).34 Based on both crystal structure and 

molecular docking, we showed that the inhibitor chelates two Mn2+ ions through its 

hydroxyl and carbonyl groups, while the remainder of its chemical groups are positioned 

against RNH in two different configurations, one towards Q500 and the other towards H539 

(Figure 1).34 NMR experiments with the isolated RNH domain showed two sets of 

resonances for some RNH residues when bound to YLC2-155 in the presence of Mg2+.34 

However, the detailed mechanism of the molecular interaction was not studied. In addition to 

the chelating properties of RNH active-site inhibitors, specific interactions of the inhibitors 
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with conserved residues in RNH play an important role in inhibitory activity.13, 35, 36 It is 

important to investigate these factors to identify inhibitor-interaction mechanisms.

Herein, we report a comprehensive interaction study of the ternary complex comprising the 

RNH domain bound to Mg2+ and inhibitor, using NMR spectroscopy, differential scanning 

fluorimetry (DSF), molecular docking and quantum mechanical calculations. For NMR and 

DSF studies, we used an isolated RNH domain (residues 427 to 560), which is routinely 

used to investigate active-site inhibitor and metal interactions37, 38 but is inactive due to the 

absence of the RNH substrate-handle region.39–42 Mg2+ presumably acts as the integral 

cofactor for HIV-1 RNH activity.43, 44 However, under physiological conditions, RNH in RT 

is not expected to be fully Mg2+ saturated due to weak binding.45, 46 Thus, an understanding 

of inhibitor binding and whether it shifts the equilibrium between Mg2+-free and Mg2+-

bound states toward the Mg2+-bound state and eventually to the RNH-Mg2+-inhibitor 

ternary complex is important. To address this, we varied the Mg2+ concentration from 1 to 

20 mM, to generate differential populations of Mg2+-free and Mg2+-bound RNH.47–50 We 

also varied the inhibitor concentration in the presence of 20 mM Mg2+ to generate 

differential populations of the Mg2+-bound and the inhibitor-bound RNH, and monitored 

state changes by NMR.

NMR experiments were conducted on two different inhibitors with different inhibition 

activities, a HID-based active site RNH inhibitor, YLC2-155, and a hydroxypyrimidine-

dione (HPD)-type active-site inhibitor, ZW566. The IC50 of ZW566 against RNH activity, as 

determined with wild-type RT, is 0.011 ± 0.003 μM,51 over 50-fold lower than that of 

YLC2-155, 0.65 ± 0.25 μM.34, 52, 53 We found that inhibitor binding to RNH is Mg2+-

dependent while observation of two inhibitor-bound forms, assessed by the presence of split 

signals in NMR spectra, is independent of both Mg2+ and inhibitor concentration. Although 

analysis of inhibitor-titration data showed a 10-fold lower dissociation constant of ZW566 

compared to YLC2-155, titration profiles were similar, whereas ZW566 exhibited 

significantly stronger Mg2+-dependence, showing different Mg2+-titration profiles compared 

to those of YLC2-155. The thermal stability of RNH upon Mg2+ and inhibitor binding was 

greater for the ZW566 bound form, compared to the YLC2-155 bound form, as assessed by 

DSF. We also performed molecular docking and quantum mechanical calculations on both 

inhibitors to investigate the binding modes, protein-inhibitor interactions, and chelating 

properties. Both inhibitors bind RNH in two orientations, however, ZW566 exhibits more 

protein interactions and stronger metal chelating ability than YLC2-155. Overall, our 

findings provide valuable insights for RNH drug design.

RESULTS

Mg2+ interaction to RNH and Mg2+-dependent inhibitor binding to RNH.

The interaction of RNH with Mg2+ was previously studied using NMR, by us and other 

groups.47–49 Mg2+ binding produces gradual NMR chemical shift changes, due to fast 

exchange, and leads to significant chemical shift perturbations of many residues, particularly 

those near the metal binding site (previously published,47–49 and compare black-colored 

spectrum in Figure 2A with the red-colored spectrum in Figure 2C). In the present study, 
1H-15N HSQC spectra of RNH were recorded to characterize in detail the binding of 
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YLC2-155 and ZW566 to RNH. In the absence of metal ions, no change in the HSQC 

spectra could be observed, even after adding equimolar inhibitor, (Figures 2A, 2B, and S1), 

indicating no detectable interaction between RNH and inhibitor. In the presence of 20 mM 

Mg2+, new signals emerged when the inhibitors were added, and these signals were distinct 

from those observed in the spectrum of RNH in presence of Mg2+ alone, without inhibitor 

(Figures 2C, 2D, and S2). These results demonstrate that inhibitor binding is metal ion 

dependent. The observation of two sets of signals, one arising from the inhibitor-free form 

and the other from the inhibitor-bound form, is indicative of a slow-exchange phenomenon.

To better understand the binding mechanisms, we assigned the backbone amide resonances 

for inhibitor-free, YLC2-155-bound, and ZW566-bound RNH in the presence of 20 mM 

Mg2+, using traditional triple-resonance experiments. Both inhibitor-bound proteins 

exhibited a greater number of resonances than the inhibitor-free protein (Figure S3 and S4). 

This is because all protein formed tight ternary complexes in the presence of excess 

inhibitor, while, in the absence of inhibitor, some signals were broadened due to fast 

exchange between Mg2+-free and Mg2+-bound protein. Chemical shift analysis showed the 

largest perturbations on the C-terminal helix (residue 545 - 560) between the YLC2-155 and 

ZW566 bound proteins (Figure S4C), which may result from more contacts between the C-

terminal helix and ZW566 (see below).

Split signals suggest two inhibitor-binding modes.

Different from Mg2+-bound protein, two sets of resonances were observed for some residues 

in the inhibitor-bound proteins (Figure S3). Such splitting of signal indicates that there are 

two forms of inhibitor-bound protein, consistent with previous observations for YLC2-155 

binding.34 These residues were mapped onto the crystal structure of the RNH domain (Table 

S1 and Figure 3). Similar patterns were observed for the two inhibitors. Since signal splits 

are not detectable when the chemical shifts overlap (< 40 Hz), residues near the Mg2+ 

coordinating sites do not necessarily show the split. For the same reason, we could not 

determine the orientation of the two inhibitor-bound forms separately.

To investigate the reason for our observation of two binding forms for each inhibitor, we 

carried out two series of NMR titration experiments. Based on our previous crystal structure, 

we considered it likely that two different orientations of inhibitor resulted in the split signals. 

To investigate this, 1H-15N HSQC spectra of RNH were recorded to monitor the intensity 

changes of inhibitor-free and bound signals, when inhibitor was added at different molar 

ratios, relative to RNH, in the presence of 20 mM Mg2+. The high concentration of Mg2+ 

was used due to its known weak interaction with RNH (dissociation constant > 1 mM).47–50 

In addition, because Mg2+ interaction with RNH in solution can be explained with either a 

single Mg2+-binding model or a two Mg2+-binding model,45, 47, 48 different numbers of 

bound Mg2+ possibly influence the two binding modes. For this reason, Mg2+titration was 

also performed, in which Mg2+ was varied from 1 to 20 mM with a constant 1:1 

inhibitor:RNH ratio.

In all NMR titration experiments, peak splitting was always observed (Figures S5 and S6), 

for those residues shown in Figure 3 and Table S1, indicating that the two binding forms are 

not dependent on inhibitor or Mg2+ concentration, within the sensitivity of our experiments. 
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These findings demonstrate that split signals are not the result of unbound-bound 

equilibrium or different numbers of bound Mg2+ or inhibitor, but due to two binding 

orientations of inhibitor. It is worth noting that there was also no concentration dependence 

on the proportions of two inhibitor binding forms, which were almost constant for each 

residue in both inhibitor-bound forms, YLC2-155 or ZW566 (Figure 4, S7 and S8). For 

residue G444, the proportional difference between the two binding modes of ZW566 is 

larger than that of YLC2-155 (Figure 4). Unfortunately, due to some split signals 

overlapping with each other, no data of other residues could be used to directly compare 

binding of the two inhibitors so that we cannot conform the difference observed on G444. 

However, for both inhibitors, one binding mode is obviously more favored than the other.

NMR titration confirms higher ZW566 affinity for RNH than YLC2-155.

Upon addition of inhibitors to the RNH solution in the presence of 20 mM Mg2+, inhibitor-

bound signals increased in intensity while the inhibitor-free signals decreased (Figure S5). 

This observation indicates that inhibitor binding to RNH is in a slow exchange on NMR time 

scale, which is often observed for a ligand with high affinity. Since no interaction between 

RNH and inhibitor was detected in the absence of Mg2+ (Figure S1) and the proportion of 

the two binding forms is not concentration dependent, a two-step binding pathway was 

assumed for the determination of inhibitor dissociation constants (K2) (Equation 1 and 2). 

Here, the number of Mg2+ ions bound to RNH is assumed to be two, based on the previous 

divalent ion geometry of YLC2-155 binding34 and no concentration dependence of the split 

signals (Figure 4, S7 and S8). Amide resonances that did not exhibit overlap between the 

inhibitor-free and bound signals were chosen for this analysis (Table S2). Titration curve fits 

were obtained for 18 or 14 residues of RNH titrated with YLC2-155 or ZW566, respectively 

(Table S2). Representative titration curves and fits for residues F440 and T470 are shown in 

Figure 5A–5D. The averaged K2 for residues upon ZW566 titration, 1.9 ± 1.7 μM, is about 

10-fold lower than that for YLC2-155 titration, 17.9 ± 7.3 μM. This difference is in 

agreement with the 50-fold lower IC50 of ZW566 compared to YLC2-155.34, 52, 53

Mg2+ titration elucidates higher Mg2+ sensitivity of ZW566 than YLC2-155.

Similar to inhibitor titration, Mg2+ titration again exhibited a slow exchange regime on the 

NMR time scale for inhibitor binding, as signals of the RNH-2Mg2+-inhibitor complex 

increased in intensity (Figure S6). In addition, Mg2+-bound RNH signals shifted with the 

change of Mg2+ concentration, indicative of a weak interaction of Mg2+ with RNH, which is 

consistent with the previously reported dissociation constant.45, 47–50 We did a similar 

analysis with the Mg2+ titration data using the same two-step binding model. Titration 

curves for residues F440 and T470 are shown as examples (Figure 5E–5H). As illustrated in 

Figures 5E and 5F, passable fits were obtained for YLC2-155 binding, resulting in an 

averaged K2 of 15.4 ± 5.4 μM, which is similar to that calculated from inhibitor titration. In 

contrast, data for ZW566 binding could not be well-fitted (Figure 5G and 5H). Experimental 

data points showed that a high concentration of Mg2+ promoted binding of both inhibitors, 

however a plateau was not reached in the case of ZW566. Such observation demonstrates the 

deviation of the binding model from the two-step system (Equation 1–2): for example, a 

metal-inhibitor complex formation that is not directly included in the model, may become 

more significant in the ZW566 interaction with RNH at high Mg2+ concentrations.
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Thermal stability experiments indicate higher RNH stability of ZW566 bound form than 
YLC2-155.

DSF was utilized to determine thermal stability of RNH and the influence of Mg2+ and 

inhibitor binding. RNH exhibited a melting temperature (Tm) of 56.2 ± 0.2 °C, similar to a 

previous result determined using DSF but smaller than that determined using circular 

dichroism (CD), 60.8 ± 0.5 °C.50, 54 This difference in Tm may reflect differences in the 

melting of structural components: the CD experiments detected the secondary structure 

change, while DSF can also measure the unfolding of protein tertiary structure. As shown in 

Figure 6 and Table S3, Tm of RNH slightly increased with the increasing concentration of 

Mg2+, indicating that Mg2+ binding may promote the thermal stability of RNH (Figure 6A). 

In the absence of Mg2+, both inhibitors had little effect on RNH stability, in agreement with 

the NMR result of no interaction between RNH and inhibitor. Both YLC2-155 and ZW566 

binding to RNH in the presence of Mg2+ further increased the thermal stability (Figure 6B 

and 6C). However, ZW566 binding exhibited larger Tm value than YLC2-155 binding, over 

two standard deviation (i.e., over 95% confident level), suggesting tighter binding of ZW566 

(Figure 6B and 6C). Such observation of more significant Mg2+ contribution to ZW566 

interaction with RNH, than YLC2-155 interaction, is also consistent with the NMR 

observations.

Molecular docking calculations show two binding forms for both YLC2-155 and ZW566.

An advanced conformational search predicted 52 conformers for the ZW566 molecule. All 

conformers were docked using flexible ligand sampling protocol into the active center of the 

RNH domain, and for each conformer one docking pose was generated. An analysis to 

obtain the average structure for each orientation, as well as calculated RMSD docking pose-

to-average structure (Figure S9) allowed us to conclude that two distinctive binding modes 

occur for ZW566 (Figure 7). Binding mode 1, obtained from 44 poses (the lowest docking 

score was −8.09 kcal/mol among the 44 poses), binds to the RNH active site with 

fluorobenzene ring oriented toward opposite to the p66-p51 interface, whereas binding mode 

2, obtained from 8 poses (best docking score was −7.36 kcal/mol among the 8 poses) binds 

with the flourobenzene ring oriented toward p66-p51 interface (Fig. 7A and 7B). The 

position of ZW566 relative to several active site residues is different for the two binding 

modes, including those residues that exhibit split NMR signals and those located adjacent to 

the split-signal residues (Fig. 7C): in binding mode 1, ZW566 is closer to Ala445, Ala446, 

and Val552, while binding mode 2 places ZW566 close to Val536.

Molecular docking of YLC2-155 to RT was also performed using conditions identical to 

those applied for ZW566 docking, to directly compare the results for the two inhibitors. 

Docking poses obtained for YLC2-155 were the same as those published previously, 

showing two binding poses (Fig. S10).34 ZW566 binding modes 1 and 2 are distinctive from 

the two binding modes of YLC2-155 (Fig. 8A).34 In both YLC2-155 binding modes, a 

chelating triad lays in the same plane, approaching the metal cations at a similar angle. 

ZW566 binding mode 2 is similar to YLC2-155 binding, with the chelating triad overlapping 

with that of YLC2-155. As ligand interaction diagrams (LID) show, in both binding modes, 

ZW566 is surrounded by a greater number of residues in close proximity than is YLC2-155 

(Fig. 8B and 8C). In contrast, YLC2-155 interaction with RNH is mostly at or around the 
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hydroxyisoquinoline-dione core that chelates the metal ions (Fig. S10A and S10B).34 To 

understand the importance of ZW566 interactions with these surrounding amino acid 

residues, we superimposed ZW566 binding mode 1 with the chelating triad of binding mode 

2, simulating “YLC2-155-like” binding, when both binding modes chelate metal cations at 

the same angle (Fig. 8D). LID for this ZW566 superposition shows that binding of ZW566 

in a manner similar to YLC2-155 would result in much fewer amino acid contacts and 

complete exposure of the fluorinated ring and the aminoethyl group to solvent (Fig. 8E).

Molecular docking calculations demonstrate stronger ZW566 interaction to the Mg2+ 

bound RNH than YLC2-155.

The interaction energies contributing to the docking scores were calculated (Table 1). We 

found that metal binding, hydrophobic interactions, and van der Waals interactions are all 

noticeably stronger for ZW566 compared to YLC2-155 (Table 1), consistent with the 

observed higher affinity for ZW566 than YLC2-155 (Figures 5A–5D). The smaller energies 

for van der Waals and hydrophobic interactions for YLC2-155 could be explained by fewer 

residue contacts for YLC2-155 compared to ZW566. The energy of Coulombic interactions 

is comparable for both compounds which is predictable because both ZW566 and 

YLC2-155 are deprotonated and, despite differences in chemical structures of the two 

compounds, have very similar surroundings of amino acid residues with partial charges, thus 

calculated Coulombic energies are similar.

Quantum Mechanical Calculations suggest greater negative charges on ZW566 than 
YLC2-155.

Mg2+ binding to the RNH domain has a dissociation constant greater than 1 mM,45, 50 while 

the dissociation constants of ZW566 and YLC2-155 binding to RNH are determined as 1.9 

± 1.7 μM and 17.9 ± 7.3 μM, respectively, in the presence of Mg2+. Such observations 

indicate that the metal-inhibitor interaction could stabilize the ternary complex. In our 

docking study, we investigated the interaction of each inhibitor with the Mg2+-bound form 

of RNH. However, metal-ligand interaction energies cannot be correctly estimated by 

docking algorithms, including the program used in the present study, Glide. An accurate 

description of metal-ligand coordination involves consideration of the electron density 

distribution on ligand atoms and of the energy required to move an electron from a ligand 

molecular orbital to the metal orbitals. This information can only be obtained from quantum 

mechanical calculations which are not included in docking algorithms. Thus, to better 

understand metal coordination by ZW566 and YLC2-155, we performed high accuracy 

quantum mechanical calculations to estimate certain electronic structure properties including 

partial atomic charges, molecular orbital energies and compositions, and average local 

ionization energies.

Every charge calculation method has its limitation and care should be taken when 

interpreting results. Therefore, we calculated the atomic charges of the compounds, using 

three different methods, to obtain a pattern of charge distribution that is relatively 

independent of the method of calculation (Table 2). From an electrostatic point of view, 

when more negative electronic charge is located on the ligand atoms that coordinating the 

metal, the interaction between metal and ligand will be stronger. All three atomic charge 
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computing methods predicted a greater overall negative charge on the three chelating oxygen 

atoms of ZW566 compared to the charge on the chelating triad of YLC2-155, suggesting 

stronger metal interaction of ZW566 than YLC2-155.

We also carried out molecular orbital analysis for both compounds, to investigate the ease of 

electron delocalization from ligand orbitals to metal orbitals. Although no significant 

difference in the orbital energies of the lone oxygen pair orbitals of ZW566 and YLC2-155 

is observed (Table S4), the average calculated local ionization energy (ALIE) for ZW566, 

66.86 kcal/mol, is about 3.2 kcal/mol lower than that for YLC2-155 (ALIE = 70.09 kcal/

mol), suggesting that electrons are more delocalized from ZW566 compared to YLC2-155. 

The ALIE provides an energetic measure of how easy or difficult it is to remove electrons 

from regions of a molecule and describes how a molecule would respond to an electrophile, 

which in our case is a metal cation. The energy difference, 3.2 kcal/mol, profoundly impacts 

acid/base properties and thus pKa.57 Taken together, all these findings from quantum 

mechanical calculations suggest that ZW566 makes stronger dative bonds to metal cations 

than YLC2-155. Such observations may be consistent with the observed higher Mg2+-

sensitivity of ZW566 binding than YLC2-155 binding, as determined by NMR (Figure 5E–

5H).

DISCUSSION

This study aimed to understand the detailed binding mechanism of HIV-1 RNH active-site 

inhibitors by comparing two recently developed inhibitors, YLC2-155 and ZW566. We 

investigated the concentration-dependence of inhibitor and of Mg2+ on interactions with an 

isolated RNH using NMR spectroscopy. Although some RNH domain signals exhibited split 

peaks upon inhibitor binding, the relative intensities of the two peaks did not change with 

inhibitor or Mg2+ concentration. Thus, the split resonances are not due to differences in the 

number of bound Mg2+ ions or inhibitor but most likely reflect two binding conformations 

of inhibitor, based on our titration data. Molecular docking also revealed two poses for each 

inhibitor interaction. Although the docking was performed using full-length RT, i.e., p66/

p51, no interaction between inhibitor and other domains of RT was observed. Therefore, 

although we do not know that the two poses predicted by the two methods are the same, our 

combined NMR and molecular docking results consistently indicate two binding modes for 

both inhibitors.

Since the binding energies of the two poses calculated in the docking study are different 

from each other, our observation in NMR titrations, that the split signals are not sensitive to 

inhibitor or Mg2+ concentration, is somewhat unexpected. If the two forms observed by 

these two methods indicate the same forms, this observation may be due to an equilibrium 

between the two inhibitor binding modes that is established at a slow exchange rate (< 20 

ms, assessed from the chemical shift difference). In addition to such observation of two split 

signals, there are additional limitations in the data analysis: since Mg2+ is a weak binder to 

RNH, the exact stoichiometry on inhibitor-free RNH is unknown;45, 50 titration with 

YLC2-155, that has limited solubility, did not exhibit the saturation (Figure 5). Thus, we 

estimated the dissociation constant (K2 in Equation 4) of inhibitor binding using a ternary 

RNH-2Mg2+-inhibitor model (Equation 1 and 2), rather than testing multiple inhibitor 
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binding models. Even using the simple model, a lower K2 was observed for ZW566-RNH 

interaction than for YLC2-155, consistent with the higher inhibition activity of 

ZW566.34, 51–53

Molecular modeling studies have demonstrated that selective interactions of inhibitors with 

conserved residues in RNH could promote effective targeting and thus improve the 

inhibitory potency.13, 35, 36, 58 Our molecular docking results show multiple additional direct 

contacts between RNH and ZW566 compared to YLC2-155, including those with some 

highly conserved residues (Figure 8 and S10). These additional interactions could bring 

about higher thermal stability of RNH and higher binding affinity of inhibitor and make 

ZW566 a more potent inhibitor than YLC2-155. The relative populations of two binding 

forms in ZW566 binding are always the same (Figure 4); however, different interaction 

patterns with RNH residues were observed for the two binding orientations (Figure 7). 

Selection of one conformation might be a good starting point for further optimization.

Importantly, addition of excess inhibitor mostly shifted the free:bound equilibrium toward 

the inhibitor-bound form whereas the shift upon addition of excess Mg2+ was less (Figure 

5). The titration data also indicate that ZW566 binding is more sensitive to Mg2+ 

concentration than YLC2-155 binding. These findings motivated us to more thoroughly 

inspect metal coordination by each inhibitor. We utilized quantum mechanics calculations to 

accurately assess the charge distribution and molecular orbits of the two inhibitors. Larger 

overall negative charges on the metal chelating atoms of ZW566 and its lower ALIE suggest 

a stronger coordination of Mg2+ by ZW566 compared to YLC2-155. Collectively, these 

results suggest that the metal-inhibitor interaction, in addition to the RNH-inhibitor 

interaction, plays an important role in known RNH-metal-inhibitor interaction systems.

In summary, the current study, using NMR, molecular docking, and quantum mechanical 

calculations, investigated factors that affect the inhibitor interaction. Our data consistently 

indicate stronger binding of ZW566 than YLC2-155 to RNH, probably due to the higher 

metal chelating ability of ZW566 and its greater number of interactions with the protein, 

compared to YLC2-155. Both inhibitors bind RNH in two distinct binding modes, with one 

conformation more favorable than the other. In addition, one of the two binding modes of 

ZW566, when compared to the analogous binding mode of YLC2-155, shows a greater 

number of interactions with surrounding residues. A focus on improvements in both metal 

chelating strength and favorable protein-inhibitor binding modes could be a strategy for the 

development of more potent RNH active-site inhibitors.

MATERIALS AND METHODS

Protein preparation.

The isolated RNH domain (amino acids 427-560 of HIV-RT) was produced as described 

previously.54 Briefly, the coding sequence was inserted into pE-SUMO vector that coded for 

an N-terminal six histidine (His6) tag followed by a SUMO-fusion tag. Protein expression 

was induced using IPTG in Escherichia coli Rosetta 2 (DE3) cells. The His6-SUMO-fusion 

protein was purified from the clarified lysate using a HisTrap HP column (GE Healthcare), 

followed by gel filtration on a HiLoad Superdex 75 26/60 column (GE Healthcare). The 
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fusion protein was then incubated with histidine-tagged ubiquitin-like-protein specific 

protease (ULP1), and the uncleaved protein, as well as the ULP1, was separated from the 

cleaved protein with a second passage over the HisTrap HP column. The cleaved RNH 

domain was collected in flow-through fraction and further purified over the HiLoad 

Superdex 75 26/60 column. Monomer fractions were collected, concentrated, and stored at 

−80 °C.

Inhibitors.

YLC2-155 and ZW566 were synthesized as previously described.34, 51, 52 Inhibitors were 

dissolved in DMSO at a concentration of 50 mM for YLC2-155 and 25 mM for ZW566. The 

stock solutions were stored at −20 °C.

NMR samples.

All NMR samples were prepared in 20 mM Bis-Tris buffer (pH 7.0) containing 5% D2O. 

Since we previously found that nonspecific interactions of Mg2+ ions with RNH was 

affected by NaCl concentration,49 5 M NaCl and 320 mM MgCl2 stock solutions in 20 mM 

Bis-Tris buffer (pH 7.0) were used to make constant Cl- (50 mM) and various Mg2+ 

concentrations. All titration samples were made independently. For inhibitor titrations, 

inhibitor was added to 50 μM 15N-labeled RNH in the presence of 20 mM Mg2+. 1H-15N 

heteronuclear single quantum coherence (HSQC) spectra were recorded at 1:0, 1:0.5, 1:1, 

1:2, 1:4 RNH:YLC2-155 ratios, and 1:0.5, 1:1, 1:2, 1:3 RNH:ZW566 ratios. For Mg2+ 

titrations, 1H-15N HSQC data were collected for 50 μM 15N-labeled RNH in the presence of 

50 μM inhibitor and various concentrations of Mg2+ (0, 1, 5, 10, and 20 mM). 100 μM 13C, 
15N-labeled RNH samples in the presence of 20 mM Mg2+ were used for 3D data collection, 

and an excess of inhibitor was added to saturate the interaction for inhibitor bound samples.

NMR spectroscopy.

All NMR data were recorded at 293 K on Bruker Avance spectrometers, equipped with 

triple-resonance, z-axis gradient cryo-probes. Data for signal assignments were recorded on 

700 and 900 MHz spectrometers. 2D 1H-15N HSQC and 3D HNCA experiments were 

performed for backbone-assignments of inhibitor-free and bound 13C, 15N-labeled RNH 

samples in the presence of 20 mM Mg2+. To further confirm some of the assignments, 3D 

HNCACB data was collected for the ZW566-bound sample in the presence of 20 mM Mg2+, 

using non-uniform sampling to improve the resolution.59 All titration experiments were done 

on 800 MHz spectrometer. Spectra were processed using NMRPipe and istHMS, and 

analyzed with CcpNmr and Sparky.60–63 The chemical shifts of RNH in the YLC2-155 and 

ZW566 bound forms, in the presence of 20 mM Mg2+, have been deposited in the Biological 

Magnetic Resonance Data Bank with accession number 27825 and 27826.

Titration data analysis.

Relative intensities were normalized with respect to the inhibitor-free signals, and plotted as 

a function of Mg2+ concentration or inhibitor:RNH ratios. For both titrations, the decrease in 

intensity of inhibitor-free signals and the increase of inhibitor-bound signals were used to 

determine the apparent dissociation constant (K) of inhibitor binding at the RNH active site, 
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using Matlab software (Mathworks). The fit curves for titration data were derived on a two-

step pathway:

P+M PM (1)

PM + I PMI (2)

where P, M, and I stand for RNH, Mg2+, and inhibitor, and PM and PMI refer to Mg2+-

bound RNH and RNH-Mg2+-inhibitor ternary complex, respectively. Dissociation constants 

for the equilibria, K1 and K2, are defined by the following equations:

K1 = [P] · [M]
[PM] =

[P] · [M]total − 2 · [PM] − 2 · [PMI]
[PM]

(3)

K2 = [PM] · [I]
[PMI] =

[PM] · [I]total − [PMI]
[PMI]

(4)

Here, [M]total and [I]total stand for the total concentration of Mg2+ and inhibitor for each 

titration, respectively. Total RNH concentration [P]total, equal to [P]+[PM]+[PMI], is 

constant throughout the titrations. K1 of 3.2 mM was used for fitting, which was previously 

determined using isothermal titration calorimetry.50 As experimental [PMI] was obtained 

from the normalized intensity of inhibitor-bound signals, K2 was optimized by minimizing 

the differences between experimental and calculated [PMI] as well as between [P]total and 

calculated [P]+[PM]+[PMI].

Differential Scanning Fluorimetry (DSF).

Fluorescence measurements were performed using a microplate reader (FluoDia T70, 

Photon Technology International, Edison, NJ). Samples were prepared at a concentration of 

10 μM for RNH in 20 mM Bis-Tris buffer at pH 7.0, including 400 mM NaCl and 5× 

SYPRO Orange. Mg2+ was added to 1, 5, 10, and 20 mM to examine the influence of Mg2+ 

on the thermal stability of RNH. Inhibitors were added at different inhibitor:protein molar 

ratios, 0.5, 1, 2, and 4 for YLC2-155 and 0.5, 1, 2, 3 for ZW566, in the absence and presence 

of 20 mM Mg2+ to investigate the effect of inhibitor. 30 μl of sample was loaded to 96-well 

PCR plate (Bio-Rad, Hercules, CA). The excitation/emission wavelengths of 465 and 590 

nm, respectively, were set for SYPRO Orange to measure fluorescence intensity. The 

temperature was increased from 25 to 75 °C at an increment of 1 °C. All measurements were 

performed in triple. The melting temperature was calculated using a Boltzmann equation.

Computational Modeling.

Preparation of Structures.—2D structures of YLC2-155 and ZW566 compounds were 

energy minimized and converted to 3D structures employing LigPrep™ module of 

Schrodinger Small Molecule Discovery Suite.64 Ionization states populated at pH 7 were 

also calculated by Epik algorithm embedded in LigPrep™. Possible YLC2-155 and ZW566 

conformers were generated by advanced conformational search implemented in ConfiGen™ 

module. HIV-1 RT structure co-crystallized with YLC2-155 (PDB access code 5UV5) was 
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used as a protein receptor.34 To add hydrogen atoms, minimize energy, and create 

appropriate protonation states of amino acid side chains to 5UV5 pdb structure, the Protein 

Preparation Wizard ™ module was used. Manganese ions present in 5UV5 structure were 

replaced by magnesium ions, and the entire structure was energy minimized.

Docking Experiments.—All obtained conformers were docked into RNH active center 

using Glide™ algorithm with standard precision. Docking grid was centered on co-

crystallized YLC2-155 ligand. Metal coordination constrains were added upon grid 

preparation to enable metal-mediated ligand binding. Van der Waals radii of non-polar atoms 

were scaled by 0.8 scaling factor to account for some flexibility of protein backbone and 

amino acid side chains. Ligand Interaction Diagrams (LIDs) were automatically generated 

for selected docking poses using Maestro visualizing interface. Other protein graphics were 

generated using PyMol (The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, 

LLC).

Quantum Mechanical Calculations of the small molecules were carried out using Gaussian 

16W quantum chemical suite of programs.65 Density Functional Theory level of 

approximation was used with correlation-exchange B3LYP functional and 6-311G** basis 

set.66–70 For each compound, YLC2-155 and ZW566, geometry of one lowest energy 

conformer was optimized at B3LYP/6-311G** level of theory. Geometry optimization was 

followed by vibrational analysis to ensure that obtained geometries represent minima on 

potential energy surface. Then, partial atomic charges and molecular orbital analysis, were 

calculated at B3LYP/6-311G** theory level. Partial atomic charges were calculated by three 

different methods: Natural Charge Analysis, Electrostatic Potential, and Mulliken Population 

Analysis as a part of Natural Bonding Orbital analysis incorporated in Gaussian 16W.71 

Molecular orbital analysis were performed by computing orbital energies and populations of 

the small molecules. Obtained orbitals were used to calculate average local ionization energy 

(ALIE) which is a sum of orbital energies weighted by the orbital densities and provides an 

energetic measure of how easy or difficult it is to remove electrons from regions of the 

molecule.56, 72
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RT reverse transcriptase

RNH Ribonuclease H

HID hydroxyisoquinoline-dione

HPD hydroxypyrimidine-dione

DSF differential scanning fluorimetry

CD circular dichroism

HSQC heteronuclear single quantum coherence

LID Ligand Interaction Diagram

ALIE average local ionization energy
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Figure 1. 
View of the two binding modes of YLC2-155 to the RNH domain, observed in a crystal 

structure of the complex (5UV5). Mn2+ was used for crystal structure determination.34

Xi et al. Page 19

ACS Infect Dis. Author manuscript; available in PMC 2020 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Selected region of 1H-15N HSQC spectra of 50 μM 15N-labeled RNH in the absence (A and 

B, black) and presence of 20 mM Mg2+ (C and D, red). 50 μM YLC2-155 (green in A and 

cyan in C) or ZW566 (magenta in B and blue in D) was added. All spectra were recorded at 

293 K. Note, we selected a region that does not include split signals in panel C and D to 

simply explain spectral changes first. See Figure S1 and S2 for overall spectral changes.
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Figure 3. 
Structures of the RNH active-site inhibitors used in this study are shown in (A). Residues 

showing split resonances upon binding of (B) YLC2-155 or (C) ZW566 are mapped onto the 

crystal structure of the RNH domain (PDB 5UV5), and colored in red. Metal ions are shown 

as balls, and metal binding residues are displayed in stick representation.
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Figure 4. 
Analysis of proportions of two binding modes for residue G444 in the (left column) 

YLC2-155 bound form and (right column) ZW566 bound form. (A) Peak splitting of residue 

G444. Normalized peak intensities plotted as a function of (B) [inhibitor]/[RNH] molar 

ratios or (C) Mg2+ concentration.
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Figure 5. 
Inhibitor titration data points and the curve fits for residue F440 (A, C, E and G) and T470 

(B, D, F and H) in YLC2-155 (A, B, E and F) or ZW566 (C, D, G and H) titrations. Inhibitor 

titration was performed in the presence of 50 μM RNH and 20 mM Mg2+. Mg2+ titration 

was performed in the presence of 50 μM RNH and 50 μM inhibitor. The titration data were 

analyzed assuming three species: free RNH, RNH-2Mg2+, and RNH-2Mg2+-inhibitor. 

Normalized peak intensities are plotted as a function of total [inhibitor]/[RNH] molar ratios 

or Mg2+ concentration. Plots for fitting fractions of RNH, RNH-2Mg2+, and RNH-2Mg2+-

Inhibitor are shown as solid gray, dashed black, and solid black line, respectively. 

Determination of inhibitor dissociation constants (K2) were performed by assuming a two-

step mechanism (Equation 1 and 2).
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Figure 6. 
Analysis of RNH thermal stability upon Mg2+ and inhibitor binding. Tm values are plotted 

against (A) Mg2+ concentration, (B) molar ratio of [YLC2-155]/[RNH], and (C) molar ratio 

of [ZW566]/[RNH].
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Figure 7. 
Docking simulations show two binding modes for ZW566. (A) Overview of ZW566 binding 

in the RNH active site. In binding mode 1 (−8.09 kcal/mol, cyan structure), the fluorinated 

benzene ring of ZW566 points toward the upper part of p66 subunit. In binding mode 2 

(−7.36 kcal/mol, orange structure), the fluorinated benzene ring of ZW566 points toward the 

p66/p51 interface. (B) A close view of the two ZW566 binding modes with surrounding 

residues that show split NMR signals. (C) Distances from each of the indicated residues to 

the nearest proximity of ZW566 in mode 1 (cyan columns) and in mode 2 (orange columns). 

Residues circled with a solid line show split NMR signals; residues circled with a dashed 

line are adjacent to residues showing split NMR signals.
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Figure 8. 
The two binding modes of ZW566 are distinctive from the two-mode binding modes of 

YLC2-155. A) Overlap of ZW566 (cyan and orange structures) and YLC2-155 (yellow and 

green structures) binding modes. B) Ligand interaction diagram (LID) for ZW566 binding 

mode 1. C) LID for ZW566 binding mode 2. D) ZW566 binding mode 1 (cyan structure), 

mode 2 (orange structure) and a simulated “YLC-2155-like binding mode” for ZW566 

(purple structure) obtain by superposition of the ZW566 chelating ring in binding mode 1 

with the ZW566 chelating ring in binding Mode 2. Structures are shown on the RNH active 
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site surface. E) LID for ZW566 superimposed to simulate YLC2-155 binding mode. Such a 

binding mode would result in fewer interactions with amino acid residues and greater 

exposure to solvent. In LID, negatively charged residues are shown in red, positively charged 

residues are shown in blue, hydrophobic residues are shown in green, polar residues are 

shown in cyan, and glycine is shown in white. Note, in the LID presentation, residue 

numbers were embedded into the original graphics. In panel C, dashed residue number 

indicates that from p51 subunit in RT.
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Table 1.

Calculated docking scores and major docking score components (in kcal/mol) calculated for ZW566 and 

YLC2-155 lowest docking poses

Compound Mode Gscore
a

Interaction Energies
b

EMB Ehphob EvdW
c

ECoul
c

ZW566 1 −8.09 −2.88 −1.23 −14.34 −15.85

2 −7.36 −2.57 −1.41 −14.86 −13.99

YLC2-155 1 −7.52 −2.30 −0.74 −9.41 −14.31

2 −7.12 −1.97 −0.50 −8.17 −15.45

a
Gscore –docking score calculated by Glide.

b
Energy terms: EMB – energy of metal binding; Ehphob – energy of hydrophobic interactions; EvdW – energy of van der Waals interactions; 

ECoul – energy of Coulombic interactions calculated by ChemScore empirical scoring function,55 embedded in Glide.

c
Note that docking scores are significantly smaller in absolute values than individual vdW and Coulombic interaction energies since weighted vdW 

and Coulombic interaction energies are used in calculation of docking scores.56
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Table 2

Partial charges (in atomic units) on selected YLC2-155 and ZW566 atoms calculated by different charge 

estimation methods at B3LYP/6-311G** level of theory

YLC2-155 ZW566

Natural Charges O(10) -0.62 O(11) -0.65

O(13) -0.59 O(9) -0.61

O(12) -0.61 O(10) -0.69

Total charge on three oxygen atoms −1.82 −1.95

Atomic Charges from Electrostatic Potential

O(10) -0.53 O(11) -0.60

O(13) -0.56 O(9) -0.57

O(12) -0.57 O(10) -0.62

Total charge on three oxygen atoms −1.66 −1.79

Atomic charges from Mulliken population analysis O(10) -0.38 O(11) -0.4

O(13) -0.38 O(9) -0.51

O(12) -0.49 O(10) -0.44

Total charge on three oxygen atoms −1.25 −1.35
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