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Summary

As primarily visual creatures, the extent to which body-based cues, such as vestibular, 

somatosensory, and motoric cues, are necessary for the normal expression of spatial 

representations remains unclear. Recent breakthroughs in immersive virtual reality technology 

allowed us to test how body-based cues influence spatial representations of large-scale 

environments in humans. Specifically, we manipulated the availability of body-based cues during 

navigation using an omnidirectional treadmill and a head-mounted display, investigating brain 

differences in levels of activation (i.e., univariate analysis), patterns of activity (i.e., multivariate 

pattern analysis), and putative network interactions between spatial retrieval tasks using functional 

magnetic resonance imaging (fMRI). Our behavioral and neuroimaging results support the idea 

that there is a core, modality-independent network supporting spatial memory retrieval in the 

human brain. Thus, for well-learned spatial environments, at least in humans, primarily visual 

input may be sufficient for the expression of complex representations of spatial environments.

eTOC Blurb

Is movement of our body in space required for normal learning during navigation? By comparing 

navigation in virtual reality under different levels of immersion, Huffman & Ekstrom found that 

body movements are not necessary and that visual input is sufficient.
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Introduction

When we navigate a new environment and remember it later, recalling the head, body turns, 

and steps we made previously can aid in our recall of where things are located. Such body-

based cues, which include vestibular input about head turns and acceleration, as well as 

motoric and somatosensory cues related to moving our feet and bodies, provide ecologically 

relevant information regarding where we have been. In fact, several behavioral studies 

suggest that body-based cues enhance our spatial representations, aiding in the encoding and 

retrieval of spatial environments (Chance et al., 1998; Klatzky et al., 1998; Waller et al., 

2003; Ruddle and Lessels, 2006; Ruddle et al., 2011a, b; Chrastil and Warren, 2013). Based 

on neural findings in the rodent, some have argued that body-based cues fundamentally 

influence spatial representations. For example, conditions of passive movement compared to 

active movement, as well as visual input lacking body-based cues, reduce place cell activity 

(Foster et al., 1989; Terrazas et al., 2005; Chen et al., 2013) and head direction cell activity 

(Stackman et al., 2003). Additionally, impaired vestibular input alters neural spatial codes 

related to place cells, head direction cells, and spatial memory more generally (Stackman 

and Taube, 1997; Russell et al., 2003a, b; Brandt et al., 2005). This, in turn, has led some to 

question the validity of conducting navigation studies using desktop virtual reality because 

participants do not have access to body-based cues other than those provided by vision (e.g., 

optic flow; Taube et al., 2013). We term the idea that the encoding modality fundamentally 

alters neural codes for spatial environments the modality-dependent spatial coding 

hypothesis.

Notably, many of the studies cited above investigated situations involving physically 

navigating, when vestibular, motoric, and somatosensory cues might be particularly critical, 

for example, for programming head turns, walking speed, or the direction and distance from 

a goal location. Some theoretical models and empirical work suggest that configural spatial 

representations, and their neural underpinnings, in contrast, should be largely modality-

independent, particularly when representations are abstract, complex, or there is sufficient 

experience with and exposure to the different modality. In other words, regardless of how we 

learned a spatial layout and navigated it in the first place, all forms of input, including 

experiencing the environment somatosensorily or reading about it (rather than directly 

navigating it), should distill to the same fundamental spatial representations, although the 

rate of such learning may or may not differ between such conditions (Taylor and Tversky, 

1992; Bryant, 1997; Loomis et al., 2002; Avraamides et al., 2004; Giudice et al., 2011). In 

support of this idea, some of the same brain regions are activated in blind and sighted 

individuals during imagined walking (Deutschländer et al., 2009) and touching and seeing 

complex scenes (vs. objects) elicited similar patterns of activation in retrosplenial cortex and 

parahippocampal place area (Wolbers et al., 2011). This hypothesis, often termed the 

modality-independent (Wolbers et al., 2011) or amodal (Bryant, 1997; Loomis et al., 2002; 

Avraamides et al., 2004) spatial coding hypothesis, argues that the representations involved 

in configural spatial knowledge, such as judging the relative distance or direction between 

objects, should not be significantly altered by how this information was encoded.

Due to technological limitations, little is known about the role that body based-cues play in 

the representation of spatial information in the human brain. Recent breakthroughs in virtual 
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reality (VR) technology created the opportunity to study human spatial memory in an 

immersive, highly realistic environment, thus better approximating real-world navigation. 

Using this technology, participants can freely turn both their heads and bodies and walk on 

an omnidirectional treadmill while wearing a head-mounted display, experiencing a rich 

repertoire of visual, vestibular, motoric, and somatosensory cues related to free ambulation. 

Accordingly, we were able to directly pit the modality-dependent and modality-independent 

hypotheses against each other. Critically, by having participants learn the environments to 

comparable levels of performance but with different availability of body-based cues, we 

controlled for the possibility that task difficulty or retrieval performance, rather than the 

availability of body-based cues per se, could be driving differences in the brain. Participants 

subsequently retrieved this information by making judgments about the relative directions of 

objects in a virtual environment while undergoing whole-brain functional magnetic 

resonance imaging (fMRI). Specifically, we used the judgments of relative directions (JRD) 

task (see Figure S1B), in which participants answered questions of the following form: 

“Imagine you’re standing at A, facing B. Please point to C.” Previous research suggested 

that the JRD task would provide a reasonable measure of participants’ configural 

representation of the environment. For example, in a desktop-based navigation experiment of 

a large-scale environment, we found a strong correlation between the pattern of errors on the 

JRD task and a map-drawing task (Huffman and Ekstrom, 2019).

By comparing activation patterns and functional connectivity patterns during the JRD task, 

and additionally employing two positive controls involving an active and passive baseline 

task, we were able to directly compare whether individual brain regions and networks of 

brain regions differ as a function of encoding modality. Specifically, the modality-dependent 

spatial coding hypothesis predicts that there should be differences both in behavior and in 

the brain as a function of the availability of body-based cues. Alternatively, the modality-

independent spatial coding hypothesis predicts that we should observe strong evidence in 

favor of the null hypothesis of no differences in behavior or in the brain networks or regions 

involved in spatial memory retrieval, which we assessed within a Bayesian framework. In 

addition, the modality-independent hypothesis predicts that neural codes from one modality 

(navigating with vision only) should be sufficient to decode behavior in a different modality 

(navigating with vision and body-based cues). We employed the method of converging 

operations to bolster our confidence in our results (McNamara, 1991). Our results support 

the notion that there is a core, modality-independent network underlying spatial memory 

retrieval in the human brain.

Results

The rate of spatial learning does not differ as a function of body-based cues

We first tested the hypothesis that differences in the availability of body-based cues would 

fundamentally influence spatial representations in the human brain by investigating whether 

there were differences in the rate of spatial learning. Participants learned three virtual 

environments under three body-based cues conditions: 1) enriched (translation by taking 

steps on the omnidirectional treadmill, rotations via physical head and body rotations), 2) 

limited (translation via joystick, rotations via physical head and body rotations), 3) 
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impoverished (all movements controlled via joystick while standing on the treadmill wearing 

the head-mounted display; see Figure 1). Behaviorally, the modality-dependent hypothesis 

predicts that the rate of spatial learning of novel environments should differ as a function of 

body-based cues. To test this hypothesis, we employed a linear mixed model (see STAR 

Methods) to determine whether spatial memory performance—assessed by pointing error on 

the judgments of relative directions (JRD) pointing task (see Figure S1)—differed between 

body-based cues conditions after a single round of navigation.

The results of this analysis revealed evidence in favor of the null hypothesis of no difference 

in pointing accuracy after a single round of navigation as a function of body-based cues (β = 

−0.90, Bayes factor in favor of the null [ BF01 ] = 3.7, null model AIC = 571.6, full model 

AIC = 573.3, X2 (1, N = 23) = 0.2, p = 0.65; see Figure 1). Nonetheless, participants 

performed better than chance on the first block of the JRD task for all conditions (all two-

tailed group-level permutation p < 0.0001; group-level means of median absolute pointing 

error: enriched = 19.9 degrees, limited = 27.2 degrees, impoverished = 18.1 degrees). Given 

that the modality-dependent hypothesis would predict the largest difference between the 

enriched and impoverished conditions and because the errors were the most variable for the 

limited condition, we also compared the enriched and impoverished conditions and again 

observed evidence in favor of the null hypothesis of no difference in pointing error between 

these conditions (BF01 = 3.4; t22 = 0.80, p = 0.43). Similarly, we did not find differences in 

either the number of blocks required to reach criterion (Friedman X2 (2, N = 23) = 0.14, p = 

0.93) or path accuracy as a function of body-based cues during navigation (see Figure S2A), 

again suggesting that the presence body-based cues did not significantly enhance how 

participants learned the environments.

Additional analyses suggested that participants used similar strategies across conditions. 

Boundary-alignment effects, in which participants exhibit better pointing performance on 

the JRD task when the imagined heading is aligned with the salient axes of the environment, 

are well established and have been taken as evidence of configural spatial knowledge 

(Shelton and McNamara, 2001; Kelly et al., 2007; Mou et al., 2007; Manning et al., 2014). 

Our previous research suggested that alignment effects emerge over blocks of training for 

large-scale environments (Starrett et al., 2019); thus, we tested the hypothesis that 

participants would exhibit an effect of boundary alignment after they learned each city to 

criterion. Consistent with our hypothesis, we observed a significant main effect of boundary 

alignment (β = 0.32, null model AIC = 28, 300, full model AIC = 28, 283, X2 (1, N = 23) 

=19.5, p < 0.0001). The interaction between alignment and body-based cues did not reach 

significance (alignment model AIC = 28, 283, alignment × cues interaction model AIC = 28, 

286, X2 (4, N = 23) = 5.1, p = 0.27), and the alignment effects were stable across body-

based cues conditions (enriched: β = 0.33, null model AIC = 9, 526.1, full model AIC = 9, 

518.8, X2 (1, N = 23) = 9.4, p = 0.0022; limited: β = 0.32, null model AIC = 9, 311.8, full 

model AIC = 9, 305.9, X2 (1, N = 23) = 7.9, p = 0.005; impoverished: β = 0.33, null model 

AIC = 9, 496.1, full model AIC = 9, 490.0, X2 (1, N = 23) = 8.1, p = 0.0044; see Figure 

S2C). Moreover, in a post-session questionnaire, none of our participants reported using a 

different strategy across conditions. Altogether, these findings suggest that body-based cues 

neither enhanced the rate of spatial learning nor changed the strategies employed by our 

participants. These results are inconsistent with the modality-dependent hypothesis; 
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however, we note that the modality-independent hypothesis does not necessarily make 

strong claims about the speed of learning, but rather suggests that the resultant spatial 

representations will be similar once the environments are well learned (Taylor and Tversky, 

1992; Bryant, 1997; Loomis et al., 2002; Avraamides et al., 2004; Giudice et al., 2011), 

which we more directly tested in our fMRI analyses.

Our training paradigm resulted in similar spatial memory performance between body-
based cues conditions during fMRI scanning

Our training paradigm had two main goals (see the Session 2 panel of Figure S1A). First, we 

aimed to ensure that performance during the fMRI retrieval phase was better than chance for 

all three cities. Our results revealed that this goal was realized—all 23 participants 

performed better than chance for each city during the fMRI retrieval phase, as determined by 

a permutation test (all p < 0.005). Second, by the end of training, we aimed to find no 

difference in pointing performance as a function of body-based cues. This was to ensure that 

our fMRI findings were in no way contaminated by differences in performance based on 

body-based encoding. Our results demonstrate that this condition was also met—a one-way 

repeated-measures ANOVA revealed that pointing performance during the fMRI retrieval 

task did not significantly differ as a function of based body-based cues (BF01 = 5.1, F2,44 = 

0.63, p = 0.54; see Figure 1). These results are important because they suggest that the 

investigation of brain differences across these conditions is not confounded by differences in 

behavioral performance.

Neural interactions amongst brain regions differ between control and baseline tasks but 
do not differ as a function of body-based cues during encoding

Next, we combined resting state and task-based functional connectivity, which we refer to as 

functional correlativity, and a classification analysis based on these functional correlativity 

patterns to test whether interactions between brain regions could be dissociated as a function 

of the task that participants were performing. We hypothesized that if neural interactions are 

modulated specifically by condition, then we should observe significant classification 

accuracy specific to a task state as different from the others. Conversely, if tasks recruit 

similar cognitive and neural processes, then we should fail to observe significant 

classification accuracy between such tasks. Our first analysis focused on functional 

correlativity differences between different tasks—the JRD pointing task broadly (without 

consideration of body-based encoding), a visually matched active baseline task in which 

participants were asked to make math judgments (see Figure S1C), and the resting state 

condition (see Figure S1D). To ensure that differences in functional correlativity reflect 

putative differences in network interactions, as opposed to task-based co-activations, we 

performed this classification analysis using a “background” functional correlativity analysis 

(Norman-Haignere et al., 2012).

The classification analysis revealed that the resting state could be readily distinguished from 

all other task states (two-tailed permutation test; active baseline task: 93%, p < 0.0001; JRD-

enriched: 90%, p < 0.0001; JRD-limited: 94%, p < 0.0001; JRD-impoverished: 88%, p = 

0.0007). The classification analysis also readily distinguished the baseline task (i.e., the 

visually matched math judgments task; see STAR Methods and Figure S1C) relative to the 
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JRD retrieval tasks (JRD-enriched: 75%, p < 0.0001; JRD-limited: 70%, p = 0.0006; JRD-

impoverished: 64%, p = 0.019; Figure 2A). Conversely, however, when comparing 

classification between JRD task blocks involving different levels of body-based cues, 

classification accuracy was at chance (enriched vs. limited: 54%, p = 0.49; enriched vs. 

impoverished: 57%, p = 0.15; limited vs. impoverished: 49%, p = 0.80; Figure 2A). We also 

ran our classification analysis without regressing out task-based activation because such 

activations undoubtedly contain task-relevant information, thus this approach could 

potentially increase the sensitivity of discriminating between task conditions (e.g., between 

the different JRD task blocks). The pattern of classification results, however, was identical 

(see Figure S3B).

The results above suggest that there are not discriminable differences in the patterns of task-

based functional correlativity as a function of body-based cues. An important additional test, 

which we performed as a positive control, is whether the classifier can generalize from one 

form of body-based cues condition to another. Specifically, if tasks recruit similar networks, 

then a classifier that has been trained to discriminate between two task conditions (e.g., 

JRD-enriched vs. resting state) should exhibit a high degree of classification accuracy when 

tested on a new task condition (i.e., good generalization performance; e.g., JRD-limited vs. 

resting state). Thus, we trained and tested a classifier using the same approach as our main 

analysis but instead of testing the same conditions on the held-out participant, we tested 

them on a complementary pair of conditions. This between-condition generalization test 

revealed significant classification accuracy between all three JRD task conditions for 

comparisons to both the active baseline task and the resting state (all p ≤ 0.017). Importantly, 

classification accuracy was similar to that of our main analysis (compare the main diagonal 

to the off diagonal classification accuracy in Figure 2B). These results provide an important 

positive control by suggesting that the patterns of functional correlativity for the JRD task 

are shared across body-based cues conditions.

The retrosplenial cortex, parahippocampal cortex, and hippocampus are activated by 
judgments of relative direction in a modality-independent manner

One possibility is that, instead of functional correlativity patterns, focal activation patterns 

would differentiate different levels of body-based encoding. For example, there is evidence 

that place cell (Foster et al., 1989; Terrazas et al., 2005; Chen et al., 2013) and head 

direction cell (Stackman et al., 2003) activity is diminished under conditions of passive 

movement relative to active movement, thus suggesting that activation levels would differ 

between body-based cues conditions. We therefore conducted a regions of interest (ROI) 

analysis to test the hypothesis that brain regions known to play a key role in human spatial 

cognition would be activated by spatial memory retrieval. We observed greater BOLD 

activation for the JRD task compared to the active baseline task in retrosplenial cortex (BA 

29/30), parahippocampal cortex (PHC), and the hippocampus (see Figure 3). Specifically, 

the peak BOLD response, defined here as the sum of the beta weights from 4 to 8 seconds 

following stimulus onset, was significantly greater than zero in BA 29/30 (Enriched: BF10 = 

268, 293, 392, t20 =13.00, p < 0.0001, Limited: BF10 = 2,158, 262, 776, t20 =14.69, p < 

0.0001, Impoverished: BF10 =118, 429, 200, t20 =12.39, p < 0.0001), PHC (Enriched: BF10 

=1, 073, 034, t20 = 9.23, p < 0.0001, Limited: BF10 = 5, 238, 711, t20 =10.22, p < 0.0001, 
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Impoverished: BF10 = 22, 217, 500, t20 =11.19, p < 0.0001), and the hippocampus 

(Enriched: BF10 = 219, t20 = 4.72, p = 0.00013, Limited: BF10 = 65, t20 = 4.14, p = 0.00051, 

Impoverished: BF10 = 847, t20 = 5.4, p < 0.0001). A whole-brain contrast between the JRD 

task and the active baseline task demonstrated a similar pattern of activations, including 

retrosplenial cortex, retrosplenial complex (RS-Complex; note, this region is functionally 

defined and is typically anatomically distinct from retrosplenial complex, see Epstein, 2008), 

PHC, the hippocampus, lateral parietal cortex, and posterior parietal cortex (voxel-wise p < 

0.001, cluster-corrected threshold p < 0.01; the voxel-wise threshold corresponds to an FDR 

q < 0.0196; see Figure 4A). These findings suggest that spatial retrieval activates a core set 

of brain regions that include the retrosplenial cortex, hippocampus, and parahippocampal 

cortex (Ekstrom et al., 2017; Epstein et al., 2017).

We next tested whether task-based activations between the JRD task and the active baseline 

task differed in these regions as a result of the body-based cues available during encoding. 

Our results revealed no detectable evidence of a difference based on encoding condition. In 

fact, a Bayes factor ANOVA revealed evidence in favor of the null hypothesis of no 

difference between the peak responses based on encoding condition in BA 29/30 (BF01 = 

5.1, F2,40 = 0.56, p = 0.58), PHC (BF01 = 3.6, F2,40 =1.04, p = 0.36), and the hippocampus 

(BF01 = 3.4, F2,40 =1.14, p = 0.33). These findings again suggest that differences in body-

based input do not result in different levels of activation during spatial retrieval in these 

regions, thus supporting the modality-independent hypothesis.

Whole-brain analysis of different levels of body-based encoding: No brain areas showed 
differences based on the availability of body-based cues

It could be the case that brain regions outside of areas typically associated with navigation 

showed differences as a function of body-based immersion. To address this issue, we 

conducted a whole-brain ANOVA to determine whether there were brain regions that 

exhibited differences in task-based activation for the JRD task vs. the active baseline task as 

a function of body-based cues. The results revealed no significant clusters anywhere in the 

brain (voxel-wise p < 0.001, cluster-corrected threshold p < 0.01) and the minimum FDR q 
throughout the whole brain was q = 0.53. Indeed, the (unthresholded) activation maps were 

similar and the clusters observed across body-based cues conditions were overlapping 

(enriched vs. limited r = 0.90, dice overlap = 0.71; enriched vs. impoverished: r = 0.90, dice 

overlap = 0.71; limited vs. impoverished: r = 0.89, dice overlap = 0.69; see Figure S4). 

Importantly, a control analysis in which we compared activation between the JRD task 

versus blocks of the active baseline task (i.e., we ran the same analysis with “sham” 

regressors for the baseline task) revealed that the activation maps and the observed clusters 

were similar to the within-blocks analysis of the JRD task to the baseline task (enriched: r = 

0.93, dice overlap = 0.73; limited: r = 0.93, dice overlap = 0.74; impoverished: r = 0.93, dice 

overlap = 0.72). In contrast, the activation maps and the observed clusters were not similar 

between the JRD task and the baseline task analysis (enriched: r = −0.16, dice overlap = 

0.02; limited: r = −0.16, dice overlap = 0.02; impoverished: r = −0.17, dice overlap = 0.02).

To further interrogate whether the data were more consistent with the hypothesis of no 

difference in task-based activation as a function of body-based cues, we implemented a 
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whole-brain Bayes factor ANOVA. We found that the vast majority of voxels throughout the 

brain were more consistent with the null hypothesis (thresholding at BF01 >1 accounted for 

92.5% of the voxels; thresholding at BF01 > 3 accounted for 69.9% of the voxels; see Figure 

4B). Together, our activation analysis suggests that judgments of relative direction activate a 

core set of brain regions involved in spatial cognition. Overall, we found strong evidence in 

favor of the modality-independent hypothesis that body-based cues exert little to no selective 

influence on the brain regions that are activated, as measured by fMRI, during the retrieval 

of configural spatial knowledge.

Single-trial patterns of activity differ between control and baseline tasks but do not differ 
as a function of body-based cues during encoding

It could be the case that differences between body-based cues manifest in a participant-

specific manner; in other words, individual differences in retrieval of body-based cues could 

be masked by our group-based approach employed so far. Also, it could be that multivariate 

patterns of activation, rather than focal univariate activation, contained information about 

body-based cues during retrieval (Norman et al., 2006; Kriegeskorte and Bandettini, 2007). 

To address this possibility, we performed a within-subject single-trial classification analysis 

using patterns of activity within regions of interest (BA 29/30, PHC, hippocampus) and at 

the whole-brain level1. The results of our analysis were consistent with our previous 

classification analysis of functional correlativity patterns—specifically, we observed 

significant classification accuracy between spatial memory retrieval and both the active 

baseline task and the resting state, but we observed chance-level classification accuracy 

between body-based cues conditions (see Figure 5). Moreover, we observed significant 

generalization accuracy when we trained and tested the classifier on different body-based 

cues conditions, and the generalization accuracy was similar to that of the main analysis 

(compare the main diagonal to the off diagonal classification accuracy for the between-

condition generalization testing in Figure 5). Additionally, classification accuracy between 

body-based cues conditions was consistently in favor of the null hypothesis (i.e., BF01 > 3) 

for the one-tailed comparison between 50% chance classification accuracy vs. classification 

accuracy greater than 50% (see STAR Methods). Altogether, these results accord with our 

between-subjects classification analysis and with our activation analyses, suggesting that 

patterns of activity differ between spatial memory retrieval and both the active baseline task 

and the resting state but that patterns of activity are similar between body-based cues 

conditions.

Task-specific distance-related coding in retrosplenial cortex, parahippocampal cortex, and 
hippocampus which does not differ between body-based cues conditions

Previous research suggested that pattern similarity (i.e., correlations between patterns of 

activity across voxels in the brain) in the navigation network is related to the distance 

between positions within a virtual environment (Sulpizio et al., 2014) and the real world 

(Nielson et al., 2015). Therefore, as an exploratory analysis2, we employed a linear mixed-

model to investigate whether there was a relationship between pattern similarity and the 

1We thank anonymous reviewers for suggesting this analysis.
2This analysis was conducted in response to comments from reviewers.

Huffman and Ekstrom Page 8

Neuron. Author manuscript; available in PMC 2020 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



distance between landmarks (see STAR Methods). If a region carries information regarding 

the locations and distances between landmarks, then we would expect to observe a negative 

relationship between pattern similarity and the distance between landmarks (i.e., lower 

pattern similarity for landmarks that are further apart). Further, if a region’s involvement in 

distance-related coding is dependent on body-based cues, then we would expect to observe a 

significant interaction between distance and body-based cues. We found a significant main 

effect of distance on pattern similarity in BA 29/30 (β = −0.000075, null model AIC = −9, 

355.1, full model AIC = −9, 358.3, X2 (1, N = 21) = 5.14, p = 0.023), PHC (β = −0.000042, 

null model AIC = −22, 338, full model AIC = −22, 341, X2 (1, N = 21) = 4.57, p = 0.032), 
and a functionally defined hippocampal region of interest (β = −0.000040, null model AIC = 

−22, 576, full model AIC = −22, 578, X2 (1, N = 21) = 4.35, p = 0.037; see Figure S5), 

consistent with Sulpizio et al. (2014). However, the interaction between distance and body-

based cues was not significant (i.e., the distance × cues interaction model did not fit the data 

significantly better than the distance model) in BA 29/30 (distance model AIC = −9, 358.3, 

distance × cues interaction model AIC = −9, 356.4, X2 (4, N = 21) = 6.14, p = 0.19), PHC 

(distance model AIC = −22, 341, distance × cues interaction model AIC = −22, 336, X2 (4, 

N = 21) = 2.57, p = 0.63), and our functionally defined hippocampal region of interest 

(distance model AIC = −22, 578, distance × cues interaction model AIC = −22, 573, X2 (4, 

N = 21) = 3.20, p = 0.52). While we approach these analyses with some caution (as they 

were exploratory), we note that they are consistent with the results of our other analyses, all 

of which provide evidence of differences as a function of spatial information but no 

significant effect of the body-based cues conditions.

Discussion

The influence of body-based cues on human spatial representations might depend on the 
nature of the task

Our behavioral results suggest that body-based cues did not significantly influence the rate 

of acquisition of configural spatial knowledge for large-scale environments in our task. 

Previous studies have revealed similar results for related tasks (e.g., map drawing; Waller et 

al., 2004; Waller and Greenauer, 2007; Ruddle et al., 2011b). Notably, there is also 

substantial evidence to support the idea that body-based cues facilitate performance on 

spatial tasks, although such experiments have used tasks which likely placed stronger 

demands on the navigator to actively maintain their orientation relative to landmarks in the 

environment (e.g., pointing to landmarks relative to their current position and heading; 

Chance et al., 1998; Klatzky et al., 1998; Waller et al., 2004; Ruddle and Lessels, 2006; 

Ruddle et al., 2011b; but see Waller et al., 2003). Thus, a potential explanation for the 

equivocal results from human behavioral studies that have manipulated body-based cues is 

that there might be different effects based on whether the task places stronger demands on 

configural spatial knowledge vs. actively maintaining orientation of oneself relative to 

landmarks in the environment. Waller et al. (2004) raise similar points, suggesting that “the 

effect of body-based information on developing complex configural knowledge of spatial 

layout (as opposed to knowledge of self-to-object relations) may be minimal.” Additionally, 

Waller and Greenauer (2007) suggested that “in contrast to the transient, egocentric nature of 

body-based information, the relative permanence of the external environment makes visual 
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information about it more stable and thus likely more suitable for storing an enduring (and 

abstract) representation.” While configural and self-to-object representations likely exist 

along a continuum (Wolbers and Wiener, 2014; Ekstrom et al., 2014, 2017; Wang, 2017), 

our findings also involved spatial knowledge acquired from large-scale environments. This is 

precisely a situation in which path integration knowledge would likely be less reliable 

(Loomis et al., 1993; Foo et al., 2005; Chrastil and Warren, 2014; Warren et al., 2017), and 

together, our findings therefore provide important boundary conditions of when we might 

expect body-based cues to influence subsequent spatial retrieval.

A modality-independent network underlies human spatial retrieval

While our behavioral findings are not consistent with the modality-dependent hypothesis 

regarding the importance of body-based cues to navigation, we note that the modality-

independent hypothesis does not necessarily make a strong prediction about the rate of 

spatial learning, but rather hypothesizes that the nature of spatial knowledge will be 

qualitatively similar once it is well learned (Taylor and Tversky, 1992; Bryant, 1997; Loomis 

et al., 2002; Avraamides et al., 2004; Giudice et al., 2011). Thus, our fMRI results provide a 

more direct test of the modality-dependent hypothesis vs. the modality-independent 

hypothesis. The results of our between-task (i.e., JRD task vs. active baseline task vs. resting 

state) functional correlativity analysis suggest that there are differences in network 

interactions between different tasks, supporting previous network results from decoding 

(Shirer et al., 2012) and graph theory analysis (Krienen et al., 2014; Braun et al., 2015; 

Spadone et al., 2015; Cohen and D’Esposito, 2016). Our results also revealed five pieces of 

neural evidence to suggest that the network underlying the retrieval of configural spatial 

knowledge for large-scale environments is modality independent. First, a classification 

analysis suggested that network interactions were similar across body-based cues conditions 

during performance of the JRD task. Specifically, we observed evidence of nearly equivalent 

generalization performance when the classifiers were trained and tested on functional 

correlativity patterns from the same body-based cues condition and when trained and tested 

on different conditions. Thus, in addition to the null classification between JRD tasks as a 

function of body-based cues, these results provide positive evidence to support the similarity 

of these conditions. Second, we observed a similar pattern of activations for the JRD task vs. 

active baseline in our ROI analysis (retrosplenial cortex, parahippocampal cortex, and the 

hippocampus) and in our whole-brain analysis. Third, a Bayes factor analysis revealed 

evidence in favor of the null hypothesis of no difference between task-based activations in 

both our ROI and whole-brain analyses. Fourth, single-trial classification analysis in regions 

of interest and at the whole-brain level revealed a similar pattern of results to the analysis of 

functional correlativity patterns. Fifth, an exploratory pattern similarity analysis revealed 

evidence of distance-related coding, but no significant effect of body-based cues conditions. 

Taken together, our results are consistent with the theory that aspects of human spatial 

cognition are supported by network interactions (Ekstrom et al., 2017), and further suggest 

that such interactions are stable across body-based cues conditions.

Our training paradigm sought to match performance across the body-based cues conditions 

during the final retrieval task, and we suggest that this type of training paradigm will be 

important for future studies regarding the nature of spatial representation in humans and in 
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the rodent. We note that several studies that have shown effects of body-based cues have also 

observed differences in performance as a function of body-based encoding (Chance et al., 

1998; Klatzky et al., 1998; Waller et al., 2003; Ruddle and Lessels, 2006; Ruddle et al., 

2011a, b; Chrastil and Warren, 2013), but these same studies also involved situations in 

which matching the perceptual-vestibular details would generally be advantageous during 

retrieval (Tulving and Thomson, 1973). Our motivation here was to attempt to match task 

difficulty (i.e., during fMRI scanning) in addition to task engagement and other demands 

during the navigation task. For example, if a navigator does not have an understanding of 

where they are or how they are moving through an environment, then the spatial neural 

codes for that environment should be disrupted. While such a result is interesting in its own 

right, we argue that it is important to match behavioral performance across conditions to 

deconfound potential differences in task performance (e.g., the navigator’s knowledge of its 

location and heading) from the influence of body-based cues per se (i.e., the mode of 

transport). Previous research has also suggested that task demands can influence behavioral 

performance (and thus potentially the underlying neural processes) to be similar across 

visual and proprioceptive conditions (e.g., Experiment 3 of Avraamides et al., 2004), thus 

suggesting that task demands can shape cognitive representations to be more modality 

independent. Finally, it is worth noting that all three of our navigation conditions were active 

in the sense that participants were controlling their movements through the environment (cf. 

Chrastil and Warren, 2012).

Caveats and directions for future research

While our results are inconsistent with the modality-dependent hypothesis that body-based 

cues fundamentally influence the nature of spatial representations supporting spatial 

memory retrieval for large-scale environments, at least as assessed by the JRD task, there are 

several caveats to the interpretation of our results. First, as discussed above, different tasks 

or techniques might be required to elucidate differences as a function of body-based cues, 

for example, those placing more of an emphasis on active navigation and orientation during 

retrieval. Second, although each environment in our experiment involved different stores in 

different locations, and environment-type was counterbalanced across participants, it is 

possible that different environments could be learned in different ways dependent on body-

based cues. For example, error accumulates in the (human) path integration system over 

longer distances (e.g., Loomis et al., 1993; Kim et al., 2013; cf. Eichenbaum, 2017) and 

because the environments we employed were large scale, on the order of a city 

neighborhood (i.e., “environmental space”; Montello, 1993), body-based cues (and body-

rotation information in particular) might be of less importance for environments of this size 

compared to smaller-scale environments (e.g., room-sized environments; cf. Ruddle et al., 

2011a). Consistent with this argument, past studies have suggested that participants may rely 

on visual input in such situations when path integration cues are unreliable (Foo et al., 2005; 

Chrastil and Warren, 2014; Warren et al., 2017). More generally, the cognitive and neural 

processes supporting spatial representations have been hypothesized to differ with the scale 

of space (e.g., Montello, 1993; Wolbers and Wiener, 2014), and it will be interesting for 

future studies to consider potential differences in the cues that are important at these 

different scales. Third, it is possible that different results would be obtained during real-

world navigation, which involves aspects that are difficult to capture even during immersive 
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virtual reality. We note, however, that the devices we employed (omnidirectional treadmill 

and head-mounted display), which have been used in other contexts to study human spatial 

navigation (Starrett et al., 2019; Liang et al., 2018), allowed us to carefully control body-

based cues conditions and pre-exposure to the environments. Differences compared to real-

world navigation could manifest for other reasons unrelated to body-based input, and thus 

using immersive VR was advantageous in this context for carefully controlling body-based 

cues. Moreover, if body-based cues exist along a spectrum, then our results suggest, at least 

for the spectrum considered here, that body-based cues do not fundamentally change the 

nature of spatial representations. Taken together, our results should be considered an 

important first step toward understanding the role of body-based cues on human neural 

representations of space, and future studies should address behavioral and neural differences 

between tasks that vary across these areas.

STAR Methods

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Arne Ekstrom (adekstrom@email.arizona.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants—Participants were recruited from the local community and consented to 

participation according to the Institutional Review Board at the University of California, 

Davis. Participants were offered the option of receiving either course credit or monetary 

compensation ($10 per hour) for their participation. The experiment consisted of a total of 

approximately 7.5 hours of participation spread over two different days (note, there was 

variability in the length of time spent participating based on how quickly participants learned 

the cities in the treadmill portions of the experiment). Our analysis was conducted on the 

behavioral data from 23 healthy young adults (12 male, 11 female) between 18 and 27 years 

of age (mean = 20). Two participants (1 male, 1 female) were excluded from our fMRI 

analysis—the first was excluded due to scanner reconstruction errors that resulted in an 

incomplete fMRI dataset and the other was excluded due to excessive head motion, thus 

analysis was conducted on the fMRI data from 21 participants. Note, two additional 

participants (both female) participated in a portion of Session 2 but they were excluded 

because one failed to reach criterion after four rounds of navigation (see Pre-fMRI task) and 

one requested withdrawing because they were experiencing discomfort with the virtual 

environments (e.g., minor dizziness).

METHOD DETAILS

Pre-fMRI task—We designed our behavioral tasks using Unity 3D (https://unity3d.com). 

The experiment consisted of two sessions that took place on different days (Session 1: 

participants were trained to walk on the omnidirectional treadmill and we established a 

subject-specific criterion based on performance in this session; Session 2: participants 

performed behavioral tasks and underwent fMRI scanning [note, all of the data reported here 

are from this session]; see Figure S1A). In the first session, participants were trained to walk 

on an omnidirectional treadmill (Cyberith Virtualizer) while wearing an HTC Vive head-
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mounted display (see Figure 1). Previous VR research in the rodent found the full 

complement of spatial cells (e.g., place cells, grid cells, head direction cells, border cells) 

using a comparable omnidirectional treadmill (Aronov and Tank, 2014). Participants also 

performed a practice version of the main task, in which they navigated to five stores in a 

virtual city using the treadmill (note, all movements were controlled via movements on the 

treadmill). Participants performed four rounds of navigation and a judgments of relative 

directions (JRD) pointing task in which they were tested for their memory of the city. In the 

JRD task, participants were instructed to imagine that they are standing at one store, facing a 

second store, and to point in the direction of a third store (from the imagined location and 

orientation; see Figure S1B). Previous research suggested that the JRD task would provide a 

reasonable measure of participants’ configural representation of the environment. For 

example, in a desktop-based navigation experiment of a large-scale environment, we found a 

strong correlation between the pattern of errors on the JRD task and a map-drawing task, 

thus suggesting that the JRD task provides information about holistic, abstract, configural 

spatial representations of large-scale environments (Huffman and Ekstrom, 2019). At the 

end of the first session, we assessed whether the participant’s performance qualified for 

inclusion in the second session; inclusion criteria: 1) mean absolute angular error less than 

30 degrees by the third block of the JRD task, 2) no sign of cybersickness (via questionnaire; 

Kennedy et al., 1993; March 2013 version).

During the second session, participants learned the layout of three virtual cities by 

performing the navigation task interspersed with the JRD task. Each city was large-scale 

(185 by 135 virtual meters) and contained five target stores, several non-target buildings, and 

other environmental stimuli that prevented participants from readily seeing stores from one 

another (see Figure 1). Thus, our environments were not “vista-spaces”, in which all 

landmarks can be viewed from one or a small number of locations, and instead required 

participants to actively navigate and integrate spatial knowledge to learn about the relative 

locations of the stores (Wolbers and Wiener, 2014). Accordingly, our cities can be 

considered “environmental scale” (Montello, 1993). We also note that the landmarks could 

occur at any position within a city block and were not arranged in a regular grid layout. In an 

attempt to match the difficulty of the cities, we matched the following between the three 

cities: 1) the distribution of imagined heading angles relative to the cardinal axes of the 

environment (e.g., to mitigate against potential differences in boundary-alignment effects 

across cities; McNamara et al., 2003), 2) the distribution of the distances between pairs of 

landmarks, and 3) the distribution of the angles of the answers. Note that we employed 

different store identities and locations, which past work suggests will result in independent 

spatial codes (Newman et al., 2007; Kyle et al., 2015), thereby significantly reducing the 

likelihood that participants simply used a copy of the same representation for each city (see 

Figure 1). All city types were counterbalanced across subjects and body-based encoding 

conditions to avoid any city-specific effects confounding our findings (note, there were 6 

possible city-cues combinations and 36 city-cues-order combinations, thus we fully 

counterbalanced at the city-cues level and partially counterbalanced at the city-cues-order 

level; however, there were no significant differences in performance between the three cities, 

suggesting that they were comparably difficult).
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There were two types of body-based cues in our experiment: 1) those related to translation 

(i.e., movement through the environment; e.g., leg movements), 2) those related to rotation 

(e.g., head and body rotations). Participants learned each of the three cities under one of the 

following body-based conditions: 1) enriched (translation by taking steps on the 

omnidirectional treadmill, rotations via physical head and body rotations), 2) limited 

(translation via joystick, rotations via physical head and body rotations), 3) impoverished 

(all movements controlled via joystick). Note, to experimentally manipulate body-based 

cues while matching visual information and immersion between conditions, participants 

stood on the treadmill and wore the head-mounted display for all three conditions 

(anecdotally, the impoverished condition in this format feels more immersive than a desktop-

based virtual experiment; e.g., because you still appear to be standing in the environment). 

Additionally, the order in which participants received the different motion cues and the order 

in which participants learned the three cities was partially counterbalanced, thus mitigating 

the potentially confounding effect of order or city.

At the beginning of each round of navigation, participants were placed at the center of the 

city. Participants were asked to navigate to each of the five target stores (the order of which 

was random on each block), and then the JRD task began, with 20 questions per block. If a 

participant did not reach criterion (subject-specific mean error determined by performance in 

the first session; specifically, 10 degrees higher than their mean error after three rounds of 

navigation in the practice city), they then performed another round of navigation and the 

JRD task. This procedure continued until the participant reached criterion or for a maximum 

of four rounds (at which point they were excluded from further participation; note, as stated 

in Participants, one additional participant was run on a single city of Session 2 but they were 

excluded from further participation because they failed to meet this criterion).

After reaching criterion, participants learned about the next city. After participants learned 

all three cities, they were re-exposed to each city by performing an additional round of the 

navigation task. Then, we tested their memory for each of the three cities (20 questions on 

the JRD task). If a participant failed to perform better than chance for a city (we assessed 

significance via a permutation test because chance performance on the JRD task depends on 

how participants distribute their responses; for more details please see: Huffman and 

Ekstrom, 2019), then they were re-exposed to that city and then re-tested on their memory 

for all three cities. After we ensured that a participant was performing better than chance for 

all three cities, we went to the scanner for the MRI session.

fMRI task—The fMRI task consisted of ten blocks, which corresponded to the length of the 

functional scans (6 minutes and 16 seconds). Each block consisted of the JRD pointing task, 

a visually matched active baseline task, or a resting-state scan (see Figure S1). The JRD task 

was the same as described above with three differences. First, the blocks consisted of 15 

questions. Second, there was a response limit of 16 seconds. Third, the JRD task blocks 

were randomly interspersed with the active baseline task (17 trials that were 8 seconds 

each). Note, in addition to these baseline trials, if participants submitted their response prior 

to the trial response timeout, then they performed the baseline task until that point. In the 

active baseline task, participants were instructed to make arrow movements based on math 

questions (the left/right and the correct/incorrect aspects were randomly assigned on each 

Huffman and Ekstrom Page 14

Neuron. Author manuscript; available in PMC 2020 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



trial). The baseline task was self-paced and participants were instructed to respond as 

quickly and as accurately as possible (Stark and Squire, 2001), in this way, matching 

difficulty as closely as possible compared to the JRD task. Participants performed two 

blocks of the JRD task for each of the three body-based cues conditions, two blocks of the 

active baseline task, and two resting-state blocks, the order of which was pseudo-random 

such that each task was performed before any task repeated.

MRI acquisition—Participants were scanned on a 3-T Siemens Skyra scanner equipped 

with a 32-channel head coil at the Imaging Research Center in Davis. T1- (MP-RAGE, 1 

mm3 isotropic) and T2-weighted (in-plane resolution = 0.4 × 0.4 mm, slice thickness = 1.8 

mm, phase encoding direction = right to left) structural images were acquired (note, the T2 

scan was not utilized for the present analyses). fMRI scans consisted of a 2 mm3 isotropic 

whole-brain T2*-weighted echo planar imaging sequence using blood-oxygenation-level-

dependent contrast (BOLD; 66 slices, interleaved acquisition, in-plane resolution = 2 × 2 

mm, slice thickness = 2 mm, TR = 2000 ms, TE = 25 ms, flip angle = 65 degrees, number of 

frames collected = 188, multi-band acceleration factor = 2, GRAPPA acceleration factor = 2, 

phase encoding direction = anterior to posterior).

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of behavioral data—We conducted three sets of analyses of our behavioral 

data. First, if body-based cues fundamentally influence spatial representations in the human 

brain, then we should observe differences in the rate of learning as a function of body-based 

cues. We tested this hypothesis using linear mixed models within a Bayes factor framework 

using the BayesFactor package (version 0.9.12–2) in R (version 3.3.1; R Core Team, 

2016) to fit a mixed linear regression model (using the lmBF function; the rscaleFixed 

parameter was set to the default: 1/ 2) to participants’ errors (here, median absolute angular 

error as in Huffman and Ekstrom, 2019) on the first block of the JRD task (our model 

included random intercepts across participants; the navigation conditions were coded as 

follows: enriched = −1, limited = 0, impoverished =1). For more details on the Bayes factor 

analysis we implemented, please see (Rouder and Morey, 2012). In other words, this model 

tested the hypothesis that performance would be best for the enriched condition, followed by 

the limited condition, followed by the impoverished condition. We also conducted a 

likelihood ratio test using the anova function within the R stats package and the lmer 

function within the lme4 package (1.1–14; Bates et al., 2015) to assess whether or not this 

full model fit the data better than a model that only included the random intercepts across 

subjects (i.e., our null model). We assessed whether performance was better than chance on 

the first round of the JRD task using a group-level permutation approach that we developed 

in our previous work (Huffman and Ekstrom, 2019). Briefly, we used a two step procedure. 

First, we randomly shuffled a participant’s responses and calculated the median angular 

error with these arbitrarily associated angles. We performed this procedure 10,000 times, 

separately for each participant. Second, we created group-level distributions by averaging 

these random distributions across participants (i.e., to obtain 10,000 shuffled group-level 

means). We then assessed whether the empirical value was significantly better than this 

resultant group-level null distribution using a two-tailed test (see Equation 1 below and 

Huffman and Ekstrom, 2019). As an additional test of significant spatial learning after a 
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single round of navigation, we tested whether participants exhibited an improvement in 

navigation performance between blocks of navigation. Specifically, we calculated excess 

path (defined here as the length of a participant’s actual path between two landmarks minus 

the Euclidean distance between their start and finish locations for that trial) and assessed 

whether it decreased from the first to second block of navigation using a generalized linear 

mixed-effects model framework (using the glmer function within lme4 with a gamma 

function for our dependent variable—i.e., excess path—and a log link function; our models 

included random intercepts across subjects). We also assessed whether a model that included 

an interaction between body-based cues and block fit the data better than the block model. If 

body-based cues influence the rate of spatial learning, then we would expect to observe a 

significantly better fit of the interaction model than the block model. We also assessed 

whether there were differences in the number of rounds of navigation required to reach 

performance criterion between body-based cues conditions using a Friedman rank sum test 

using the friedman.test function within the stats package (3.3.1) in R.

Second, we used a Bayes factor ANOVA (using the anovaBF function; the rscaleFixed 

parameter was set to the default: 1/ 2) to assess whether performance differed on the JRD 

task as a function of body-based cues during fMRI scanning. One of the major goals of our 

training paradigm was to ensure that performance did not differ across body-based cues 

conditions. Thus, we tested the hypothesis that pointing performance would be in favor of 

the null hypothesis of no difference as a function of body-based cues. Note that in this case 

we conducted our analysis within an ANOVA framework (i.e., we treated the navigation 

conditions as categorical variables) because we did not have a specific prediction about the 

nature of the underlying relationship between performance after cities were learned to 

criterion. In contrast, we used a linear mixed model to test differences in the rate of learning 

based on the number of body-based cues available to participants because we were testing an 

a priori hypothesis about the nature of the relationship between these variables.

Third, we assessed whether there were boundary-alignment effects on pointing performance 

after participants had been trained to criterion (Shelton and McNamara, 2001; Kelly et al., 

2007; Mou et al., 2007). Specifically, we included the data from the final pre-fMRI retrieval 

task (20 trials per city) and the fMRI retrieval task (30 trials per city), excluding “no 

response” trials. We restricted our analysis to blocks in which participants were trained to 

criterion because our previous research suggested that alignment effects are not present 

initially but rather emerge over blocks of training for large-scale environments (Starrett et 

al., 2019). We generated our alignment regressors using a sawtooth function, which 

alternated between −0.5 and +0.5 every 45 degrees (i.e., 0: −0.5, 45: +0.5, 90: −0.5, …, 360: 

−0.5), with intermediate values lying on the “line” between the two values (e.g., 11.25: 

−0.25, 22.5: 0; see Figure S2A; Meilinger et al., 2016). We accounted for the fact that the 

distribution of absolute angular errors is non-normal and positively skewed by using a 

generalized linear mixed-effects model framework using the glmer function within lme4 

with a gamma function for our dependent variable (i.e., absolute angular error) and a log link 

function (Lo and Andrews, 2015). Our models included random slope and intercept terms 

for alignment across subjects. We compared models using likelihood ratio tests.
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Regions of interest—Based on prior spatial cognition experiments, we defined three 

regions of interest (ROIs) in our analysis: retrosplenial cortex, parahippocampal cortex, and 

the hippocampus. As in Vass and Epstein (2017), we defined retrosplenial cortex as 

Brodmann Areas 29/30 from the MRIcron template and we also removed voxels that were 

ventral to Z = 2. We warped this mask from the MRIcron template to our model template 

and from our model template we warped this mask into each of our subjects’ native space 

using Advanced Normalization Tools (ANTs; Avants et al., 2011). We also used ANTs to 

warp hand-drawn labels for parahippocampal cortex and hippocampus from our model 

template into each of our subjects’ native space using templates from our previous research 

(for more details see: Huffman and Stark, 2014, 2017). For our functional correlativity 

analysis, we used an atlas of 264 functional nodes (from Power et al., 2011; Cole et al., 

2014; see Figure S3A), which we warped from MNI space into our model template space 

and then into each participant’s native space. For all masks, we then resampled these to the 

fMRI resolution and masked to only include completely sampled voxels.

Standard fMRI preprocessing—Each participant’s functional runs were aligned to their 

MP-RAGE scan by a 12 parameter affine transformation, which also included motion 

correction and slice-time correction, using align_epi_anat.py (Saad et al., 2009) in 

AFNI (Cox, 1996). Additional preprocessing was conducted for our functional correlativity 

analysis (see Functional correlativity preprocessing).

Univariate analysis—We used the 3dDeconvolve function in AFNI to conduct a finite-

impulse-response-based (FIR) regression analysis (using the TENTzero option; we modeled 

each TR from the stimulus onset to 24 seconds following stimulus onset; note, this model 

sets the initial and final values to zero; we set the polort option to 3, thus allowing up to 

3rd order drifts to be removed from the data). Similar to our functional correlativity analysis, 

we censored frames using a framewise displacement threshold of 0.5 mm (see Functional 

correlativity preprocessing). We used an area-under-the-curve-type approach by summing 

the resultant betas from 4 to 8 seconds following stimulus onset. We first assessed the 

hypothesis that the retrosplenial cortex, parahippocampal cortex, and the hippocampus 

would exhibit task-based activations for the JRD task relative to our active baseline task by 

testing whether the resultant “peak” responses were greater than zero. Specifically, within 

each subject, we averaged all of the peak responses within each ROI and then we used a t-

test (using the t.test function in R) and a Bayes factor t-test (using the ttestBF function 

within BayesFactor in R; note, the rscale factor was set to the default: 2/2) to assess 

whether these responses differed from zero at the group level. We also conducted a Bayes 

factor ANOVA to assess whether there was a difference in task-based activation within these 

regions as a function of body-based cues (see fMRI Bayes factor analysis).

We conducted a similar analysis at the whole-brain level. Here, we warped the resultant 

whole-brain peak response maps to our model template using ANTs. We then used 3dttest

++ (compile date August 28, 2016) to determine brain regions that had peak responses that 

were significantly different than zero (note, we used the -clustsim option to calculate a 

cluster-corrected threshold for significance). For our main analysis of task-based activation 

(i.e., JRD task vs. active baseline task), we set a voxelwise threshold of p < 0.001 (this 
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corresponded to a FDR q < 0.0196) and a corrected cluster threshold of p < 0.01 (here, 18 

voxels). We implemented a whole-brain ANOVA (using the 3dANOVA2 function) to test the 

hypothesis that task-based activation would differ as a function of body-based cues. Because 

this analysis revealed no significant clusters throughout the entire brain, we implemented a 

whole-brain Bayes factor analysis to assess whether evidence throughout the brain was in 

fact more consistent with the null hypothesis (see fMRI Bayes factor analysis).

fMRI Bayes factor analysis—Similar to our analysis of the JRD task data during fMRI 

scanning (see Analysis of behavioral data), we implemented a Bayes factor ANOVA 

(Rouder et al., 2012) to assess whether the evidence was in favor of the null hypothesis or 

the alternative hypothesis of a difference in task-based activation (i.e., JRD task vs. the 

active baseline task) as a function of body-based cues conditions. First, we conducted an 

ROI analysis in which we used the anovaBF function (the rscaleFixed parameter was set 

to the default: 1/ 2) from BayesFactor to test whether task-based activation differed within 

our ROIs (see Regions of interest). Second, we conducted a whole-brain analysis in which 

we used oro.nifti (version 0.9.1; Whitcher et al., 2011) to load our fMRI data into R and 

we wrote code to implement anovaBF at every voxel of the brain. We then saved the results 

of our Bayes factor analysis as AFNI files for visualization.

Functional correlativity preprocessing—After the steps described in Standard fMRI 

preprocessing, the time-series were quadratically detrended using 3dDetrend and then 

normalized to zero mean and unit variance (i.e., within each voxel) using 3dTstat and 

3dcalc. We then regressed out the six motion parameters generated from motion correction 

as well as their first derivatives (using 3dDeconvolve and 1d_tool.py). We then used the 

CompCorrAuto function within ANTs (i.e., within the ImageMath function) to calculate 

the first six principal components of the time-series across all voxels in the brain, including 

gray matter, white matter, and cerebrospinal fluid. We then regressed out these 6 

components, and we bandpass filtered these time-series between 0.009 and 0.08 Hz.

We then regressed out the effect of task using a FIR deconvolution (using the TENT option 

within 3dDeconvolve; we modeled each TR from the stimulus onset to 24 seconds 

following stimulus onset). Importantly, this method makes no assumptions about the 

underlying shape of the hemodynamic response (cf. Norman-Haignere et al., 2012). We then 

extracted the first eigentimeseries from each of our ROIs (i.e., the 264 node atlas from 

Power et al., 2011) using 3dmaskSVD. Note, this process is akin to extracting the average 

time-series but has been shown to provide a more representative time-series of voxels 

throughout an ROI (e.g., O’Reilly et al., 2010). We followed the approach of Power et al. 

(2012) and censored frames with a framewise displacement greater than 0.5 mm as well as 

one frame before any such motion events and two frames following any such motion events. 

We then calculated Pearson’s correlation coefficient between each of our ROIs, separately 

for each run, and entered these values into a correlation matrix. We converted these matrices 

using Fisher’s r-to-z transformation (z[r])—i.e., the inverse hyperbolic tangent function. The 

lower triangle of these z[r] correlation matrices—i.e., the unique entries—were used in our 

classification analysis. Note, we only included ROIs that had coverage across all 21 

participants.
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Functional correlativity analysis—We performed a leave-one-subject-out cross-

validation classification analysis using a linear support vector machine (SVM) in Python 

using the LinearCSVMC function in PyMVPA (0.2.6; Hanke et al., 2009) and custom-

written code on a NeuroDebian platform (Halchenko and Hanke, 2012). For each iteration of 

the analysis, each feature (i.e., between-region correlation) was normalized to zero mean and 

unit variance using the StandardScalar function in scikit-learn (0.18.1; Pedregosa et al., 

2011). We then performed principal components analysis (PCA) and extracted the minimum 

number of features required to explain 97.5% of the variance using the PCA function in 

scikit-learn. Importantly, both the normalization and PCA steps were fit using the training 

data and these models were then applied to the left-out test data (i.e., the test data were not 

used in the normalization or in the PCA steps). These features were then used to train a 

linear SVM, and the left-out participant was used to assess classifier accuracy (i.e., the 

percentage of correctly predicted task labels). This procedure was iterated until all 

participants served as the left-out test dataset, and we averaged the classification accuracy 

over all participants.

We assessed whether classification accuracy was better than chance using a randomization 

test in which the task condition labels in the training set were randomly shuffled and we 

tested performance using unshuffled labels in the test set. On each iteration, we randomized 

the training labels and then ran all iterations of testing. Note that our shuffling procedure 

matched the pseudo-randomization of our actual data collection. Specifically, the run labels 

were not shuffled between the first and second half of the runs because in our experimental 

design we ensured that every task type occurred prior to any repetitions; thus, fully 

randomizing the labels in our randomization test could have led to increased variability that 

was not present in our actual data. For each of the 10,000 iterations, we calculated the 

average classification accuracy. We then calculated two-tailed p-values by comparing the 

empirical classification accuracy to that across the 10,000 permutations (see Ernst, 2004; 

Huffman and Stark, 2017; Huffman and Ekstrom, 2019):

p =
1 + i = 1

10, 000 I ti − t ≥ t∗ − t
1 + 10, 000

(1)

where I ⋅  is an indicator function that is set to 1 if the statement is true and to 0 otherwise, 

ti represents the classification accuracy on the ith randomization, t  represents the mean 

across all such randomizations, and t* represents the observed classification accuracy (i.e., 

the empirical classification accuracy). We set a significance threshold of a two-tailed p < 

0.05. Note, any statistics that we report at p < 0.05 for our permutation test on classification 

accuracy also survived false discovery rate (FDR) correction for multiple comparisons using 

the Benjamini-Hochberg method (Benjamini and Hochberg, 1995) using p.adjust in R.

Single-trial classification analysis—We generated single-trial patterns of activity using 

an iterative approach across all trials within a run. Specifically, for each iteration we fit a 

FIR regression model (using the TENTzero function within 3dDeconvolve) which 

contained one regressor for the trial of interest and one regressor for all other trials (note, 

this is an FIR version of the Least Squares – Separate [LS-S] approach described in 
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Mumford et al., 2012; Turner et al., 2012). Here, we ran this iterative approach within each 

run separately, thus each run solely contained trials of one type. Similar to our activation 

analysis, we summed the resultant betas from 4 to 8 seconds following stimulus onset and 

we censored frames using a framewise displacement threshold of 0.5 mm (see Univariate 

analysis and Functional correlativity preprocessing). Additionally, we excluded any trials 

with any censored frames during the duration of the modeled FIR response because 1) 

models with censored frames at the single-trial level resulted in matrix inversion errors due 

to insufficient data and 2) motion during a single trial would make its estimation inherently 

noisy in any case. Note, for cases in which trials were excluded, we balanced the number of 

trials in each condition of our classification analysis by randomly selecting the same number 

of trials for each condition (this procedure was performed separately within each split-halves 

of the data and for each binary classification).

We performed a within-subject split-halves classification analysis using a similar approach 

to our analysis of functional correlativity patterns. Specifically, for each pair of conditions, 

we normalized the patterns of activity within each split halves of the data to zero mean and 

unit variance. We used a linear SVM to classify individual trial patterns of activity, 

separately within each participant. We averaged the classification accuracy for each 

participant for each comparison and assessed whether these accuracies were significantly 

better than chance using a randomization test. We randomized the labels using the same 

pseudo-randomization as our empirical data. Specifically, for each participant there were 4 

possible permutations (i.e., 2 ×2) of the labels. We generated a group-level null distribution 

by randomly selecting one value from each participant’s permutation vector 10,000 times 

(note, there were a total of 4N = 421 possible permutations). We assessed whether the 

classification accuracy was better than chance using a two-tailed test (see Equation 1).

Because classification accuracy was calculated within each participant individually, we were 

also able to compare whether classification accuracy was significantly better than chance 

using t-tests in which we compared the group of classification accuracies to an assumed 

chance accuracy of 50% (note, the means of the null distributions from our randomization 

tests were all around 50%). This procedure revealed nearly identical results to our 

randomization test. We extended this approach to a Bayes factor framework to assess 

whether the chance-level classification accuracy between body-based cues conditions was 

more consistent with the null hypothesis. Specifically, we used one-tailed Bayes factor t-

tests to assess whether classification accuracy was more consistent with the hypothesis of the 

null hypothesis of 50% accuracy relative to the alternative hypothesis of greater than 50% 

accuracy (using the ttestBF function within BayesFactor in R; note, the rscale factor 

was set to the default: 2/2. We ran a one-tailed test was because classification accuracy 

between body-based cues conditions was occasionally less than 50%, thus we felt it was 

more intuitive to calculate one-tailed Bayes factors (i.e., because sometimes the Bayes 

factors were in favor of the alternative hypothesis of classification accuracy less than 50%). 

Additionally, we performed a between-condition generalization test, similar to our approach 

for functional correlativity patterns. Specifically, within each participant, we trained the 

classifier on a pair of conditions, and then tested the classifier on a complementary set of 
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conditions. Importantly, we used the same split-halves approach as our main analysis, and 

we again assessed significance via a randomization test.

Single-trial pattern similarity analysis—We performed a split-halves pattern similarity 

analysis in which we calculated the correlation between all possible pairs of trials between 

different runs, separately within each body-based cues condition (for details on estimation of 

single-trial patterns of activity see Single-trial classification analysis). We also calculated the 

Euclidean distance between the imagined standing locations between trials. We used linear 

mixed models to assess whether the Euclidean distance model provided a better fit to the 

pattern similarity data than a null model. Additionally, we compared whether a model that 

included an interaction between body-based cues and Euclidean distance fit the pattern 

similarity values better than the Euclidean distance model. The random effects structure for 

the null model, the Euclidean distance model, and the interaction model included random 

intercepts and slopes for body-based cues conditions (note, this random effects model fit the 

data significantly better than a random effects model that only included random intercepts 

for participants; Matuschek et al., 2017). We performed likelihoood ratio tests to assess 

significance of the models (also see Analysis of behavioral data). Identical results for the 

effect of Euclidean distance were obtained when we used a permutation approach (using the 

function permlmer from the package predictmeans in R), which is subject to different 

assumptions than the likelihood ratio test. Note, an initial analysis using the anatomical 

hippocampus did not reach significance, so for the pattern similarity analysis we report the 

results from a functional region of interest for the hippocampus, in which we selected the 

100 most active voxels (the voxels with the largest t-statistic for the JRD task vs. active 

baseline task) in each hemisphere and combined these to generate bilateral masks, similar to 

previous studies (Marchette et al., 2015; Vass and Epstein, 2017).
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Highlights

• What is the role of body-based cues, such as head turns, in human navigation?

• We tested this question using immersive virtual reality and neuroimaging

• Behavioral and brain data suggest that human spatial memory is modality 

independent

• Vision might play a dominant role in human memory for large-scale spaces
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Figure 1. 
Images of the navigation task and of performance on our spatial memory task, the judgments 

of relative directions task. (A) Participants learned three virtual cities (which differed in 

store location and identity, see STAR Methods) by navigating to the task-relevant landmarks 

within the environment. (B) Each city was learned under one of three body-based cues 

conditions (enriched: all movements via body movements on the treadmill; limited: 

translation via joystick and rotations via body rotations on the treadmill; impoverished: all 

movements controlled via joystick while standing still on the treadmill with their head facing 

forward). (C) Pointing performance on the JRD task after one round of navigation was more 

consistent with the null hypothesis of no difference as a function of body-based cues (BF01 = 

3.7; bottom left panel). (D) Consistent with the goals of our training paradigm, pointing 

performance on the JRD task during fMRI scanning did not differ as a function of body-
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based cues (BF01 = 5.1). Each dot represents the median absolute angular error for a single 

participant.
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Figure 2. 
Evidence that network interactions differ between tasks but the network underlying human 

spatial memory retrieval is stable across body-based cues conditions. (A) A classification 

analysis revealed that patterns of functional correlativity carried sufficient information for 

discriminating between task conditions (i.e., JRD task vs. active baseline task and all tasks 

vs. resting state), but there was no evidence of discriminability between the JRD tasks as a 

function of body-based cues (i.e., enriched vs. limited vs. impoverished). (B) Supporting the 

similarity of the networks across body-based cues conditions, a between-condition 

generalization test revealed significant classification accuracy between all three conditions 

for comparisons to both the active baseline task and the resting state. Classification 

accuracies indicate the average percent correctly classified across all participants for each 

binary classification. * indicates two-tailed permutation p < 0.05 (note, these also survived 

FDR correction for multiple comparisons).
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Figure 3. 
Evidence that the retrosplenial cortex (BA 29/30), parahippocampal cortex (PHC), and 

hippocampus are activated by judgments of relative direction in a modality-independent 

manner. These figures depict the estimated impulse response functions for the JRD task 

versus the active baseline task in our regions of interest (data are represented at the mean ± 

the standard error of the mean). The peak responses (4–8 seconds following stimulus onset) 

were significantly greater than zero in all three regions for all three body-based cues 

conditions (all BF10 ≥ 65). Additionally, the evidence was in favor of the null hypothesis of 

no difference in task-based activation as a function of body-based cues across all three 

regions (all BF01 ≥ 3.4).
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Figure 4. 
Evidence that the core spatial navigation network is activated by judgments of relative 

direction in a modality-independent manner. (A) A task-based activation analysis across all 

body-based cues conditions revealed activations in the putative spatial cognition network. 

RS-Complex: retrosplenial complex; HPC: hippocampus. (B) A whole-brain ANOVA 

revealed no significant clusters for differences in task-based activation as a function of body-

based cues and a Bayes factor analysis revealed widespread evidence in favor of the null 

hypothesis (thresholded at BF01 > 3). Specifically, the majority of the brain showed a Bayes 

factor of at least 3 in favor of the null hypothesis.
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Figure 5. 
Single trial classification analysis revealed evidence that patterns of activity differ between 

tasks but that patterns of activity during spatial memory retrieval are stable across body-

based cues conditions. Across our ROIs, we observed significant classification accuracy 

between the JRD task and both the active baseline task and the resting state. In contrast, the 

evidence was in favor of the null hypothesis of chance-level classification accuracy between 

body-based cues conditions, and a between-condition generalization test revealed similar 

classification accuracy to the within-condition classifiers. * indicates two-tailed permutation 

p < 0.05. ~ indicates one-tailed BF01 > 3.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

AFNI (Debian precompiled binary; 
Debian-16.2.07~dfsg.1–2ñd80+1; August 28, 2016)

Cox (1996) http://neuro.debian.net/pkgs/afni.html

ANTs (2.0.1) Avants et al. (2011) http://neuro.debian.net/pkgs/ants.html

BayesFactor (0.9.12) package for R Rouder and Morey (2012) https://cran.r-project.org/web/packages/BayesFactor

lme4 (1.1–14) package for R Bates et al. (2015) https://cran.r-project.org/web/packages/lme4

NeuroDebian Halchenko and Hanke (2012) http://neuro.debian.net/index.html

oro.nifti (0.9.1) Witcher et al. (2011) https://cran.r-project.org/web/packages/oro.nifti

PyMVPA (0.2.6) Hanke et al. (2009) http://neuro.debian.net/pkgs/python-mvpa2.html

Python (2.7.9) Python Software Foundation https://www.python.org

R (3.3.1) R Core Team (2016) https://www.r-project.org

scikit-learn (0.18.1) package for Python Pedregosa et al. (2011) http://neuro.debian.net/pkgs/python-sklearn.html

Unity 3D Unity Technologies https://unity3d.com
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