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Abstract Microbial enzymes are high in demand and there

is focus on their efficient, cost effective and eco-friendly

production. The relevant microbial enzymes for respective

industries needs to be identified but the conventional

technologies don’t have much edge over it. So, there is

more attention towards high throughput methods for pro-

duction of efficient enzymes. The enzymes produced by

microbes need to be modified to bear the extreme condi-

tions of the industries in order to get prolific outcomes and

here the synthetic biology tools may be augmented to

modify such microbes and enzymes. These tools are

applied to synthesize novel and efficient enzymes. Use of

computational tools for enzyme modification has provided

new avenues for faster and specific modification of

enzymes in a shorter time period. This review focuses on

few important enzymes and their modification through

synthetic biology tools including genetic modification,

nanotechnology, post translational modification.
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Introduction

Enzymes are produced biologically by organisms for their

cellular functioning. They act as a catalyst for conversion

of molecules to carry out necessary biological functions.

Enzyme binds non-covalently to the substrate and forms an

enzyme–substrate complex, which further changes to form

product, and the enzyme reverts to its native configuration.

Enzymes are used widely for an industrial purposes like

pulp and paperboard industry, textiles, bio-bleaching, food

industry and biofuel industry [1, 2].

Enzymes are obtained from various plant, animal, and

microbial sources. Among all these sources, microbes are

the most efficient and explored source for enzyme pro-

duction as microbes can be easily cultured and enzymes are

easily obtained in a little span of time due to their shorter

life cycle [3]. They are also easy to manipulate by synthetic

biology tools. The normal metabolic pathway of microbes

is regulated by different metabolic engineering tools to get

the desired characteristics of enzymes [4]. Some examples

of enzymes used in industry are xylanases, amylases, lac-

cases, inulinase, nitrilase, lipases, and proteases [5]. Most

of the naturally produced microbial enzymes have many

limitations for industrial use such as low catalytic effi-

ciency, activity, and stability at high temperature and

variable pH. These enzymes need to be modified according

to the needs of industries. Substrate specificity, enzyme

stability, and cost of enzymes are the major problems faced

in industries [4, 6]. Synthetic biology provides a platform

to engineer microorganisms to produce thermostable and

specific enzymes for the industrial purpose [1].

A Recap: Some Important Enzymes and Their
Notable Microbial Sources

Enzymes are of immense importance for increasing cost

effective production in industries [1]. They are used from

basic food and feed industry to the advanced dye removing

industry. They are superior to chemical modification
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methods as they don’t produce toxic substances and hence

decrease the environment pollution as well [7].

Xylanases

Xylan is the second most abundant hemi cellulosic polysac-

charide. Xylanases are hydrolytic enzymeswhich break down

xylan with the help of other glycosidases. Xylanase is pro-

duced from a number of microbes which include bacteria,

filamentous fungi, yeast, and actinomycetes. Xylanase is used

in the pulp and paperboard industry for the transformation of

lignocellulosic biomass into fermentation products. Biofuel is

also produced during this lignocellulosic conversion [1, 2].

The xylan hydrolysis by xylanase generates xylooligosac-

charides (XOS) that can be used in functional foods for pro-

duction of prebiotics. Some potential thermostable xylanase

producing micro organism are—Chaetomium thermophilum,

Caldicellulosiruptor sp., Rhodothermus marinus, Thermo-

toga sp., Nonomuraea flexuosa, Thermoascus aurantiacus,

Malbrancheacinnamomea strain S168,Paecilomyces varioti,

Caldicoprobacter algeriensis strain TH7C1 and Ther-

momyces lanuginosus [1, 2].

Laccases

Enzymes belonging to laccase family are multi copper

oxidases that are used in the lignin degradation. Laccases

are used in a number of industries which include the textile

and dye industry, waste matter treatment and bioremedia-

tion, beverage processing and baking industry, pulp and

paper industry [8]. Laccases are exploited from various

microbial and fungal sources, such as Alternaria tenuis-

sima KM651985 [9], Peroneutypa scoparia [10], Co-

prinopsis cinerea [11], Trichoderma harzianum [12] and

Panus strigellus [13].

Amylases

Amylase was the first, discovered, and isolated enzyme [14].

Amylases are starch hydrolyzing enzymes which are classi-

fied as endo-amylase and exo-amylase that act on a-1,4- and
a-1,6-glucosidic bonds of starch and glycogen.Amylases are

particularly used in the dairy industry, where they reduce

processing time during manufacture and increase the safety

and shelf life of products [15]. Amylases are also used in the

detergent industry due to their stability at alkaline pH [16].

Microbial source of amylases is Thermococcus hydrother-

malis [17], B. subtilis strain AS01a [18].

Proteases

Proteases are a group of most important commercial enzymes

which are used for hydrolysis of peptides andproteins [19, 20].

Proteases can be obtained from various sources, but due to

easy genetic manipulation and technical advantage, microbes

are the best potential source for protease production [21, 22].

They canbeclassifiedon thebasis of reactioncatalyzed, site of

their action or their active site. Proteases are used actively in

the food industry (bakery and cheese making), for production

of antimicrobial bioactive peptides, cleaning industry and

leather industry [23]. Proteases are potentially produced from

diverse microbial sources which include Exiguobacterium

profundam sp. MM1 [22], Bacillus cereus strain S8 [21],

Lysinibacillus fusiformisC250R [24],Aspergillus sp. [25–27].

Lipases

Lipases are also known as triacylglycerol acyl hydrolases

which hydrolyze fats and oils into free fatty acid and glyc-

erol. They are omnipresent in environment; occurring in

animals, plants, bacteria, and fungi [28]. Microbial lipases

display a broad array of industrial relevance as they show

higher stability, high conversion rate of the substrate into the

product, highly adaptable to ecological circumstances and

the ease in genetic modification and growth situations [29].

Bacterial species producing lipases come under the genus

Pseudomonas, Staphylococcus and Chromobacterium;

while that of fungi are present mainly in the genus Geo-

trichum,Penicillium,Mucor,Aspergillus,Rhizopus [28–30].

Nitrilases

Nitrilases are used to hydrolyze nitriles to their respective

carboxylic acid and ammonia group in a single step [31, 32].

Nitrilases are useful in the industry, but due to their less sta-

bility and inactivation at a higher temperature, they are not the

potential candidate to use in the industry [32]. Synthetic

biology tools have been applied to produce thermostable ni-

trilases [33]. Nitrilases are used in chemical industries for the

production of plastic, fibre, paper. They are also helpful in the

production of herbicides for the agriculture sector and phar-

maceutical drugs for health benefits [31]. Nitrilases are pro-

duced by a number ofmicroorganismswhich include bacteria

from genera Rhodococcous, Nocardia, Pseudomonas,

Arthrobacter, Bacillus, Klebsiella etc.; yeasts belonging to

genera Candida, Pichia, Aureobasidium, Debaryomyces,

Geotrichum, Hanseniaspora, Gibberella, Williopsis, Toru-

lopsis, Kluyveromyces, Saccharomyces, Exophiala, Crypto-

coccus and Rhodotorula, and fungi of genus Aspergillus,

Fusarium, Penicillum [31].

Inulinases

Inulinases are inulin hydrolyzing enzymes which produce

fructose and fructooligosaccharides upon the breakdown of

inulin [34, 35]. They are potentially produced by bacteria,

402 Indian J Microbiol (Oct–Dec 2019) 59(4):401–409

123



fungi, and yeasts. Free inulinase has restricted applications

at the industrial level because of its limited functional and

storage stability, difficulty in recovery from the reaction

mixture and its inactivation due to aggregation, which is

irreversible. Nanoparticle-based immobilization technique

is the most suitable synthetic biology tool for such enzymes

[35, 36]. Potential inulinase producing microbes are

Kluyveromyces marxianus, Penicillium oxalicum, Asper-

gillus sp., Streptomyces sp., and Xanthomonas sp. [35–37].

Synthetic Biology Tools for Enzyme Modification

Synthetic biology is an emerging field which uses various

molecular engineering tools and computational tools to

manipulate the biochemical pathway of organisms. Syn-

thetic biology tools are used to exploit the full potential of

organisms [38, 39]. Figure 1 gives an insight of the use of

synthetic biology tools for modification of enzymes and

their selection for use in different industries. In Silico

synthetic biology tools help in cost effective, less labori-

ous, and less time-consuming production of microbial

enzymes, which is the need of the hour to fulfill the

demand of the market [40]. Synthetic biology is not only

used to alter the biochemical pathway of organisms but

also for the modification of proteins and enzymes produced

by microorganisms. Proteins and enzymes used in the

industry require much more sophisticated parameters than

their natural occurrence. So there is always a need to detect

or form novel enzymes and proteins for such uses [41].

Synthetic biology tools like molecular engineering and

post-translational modification help to design and develop

such novel enzymes [42, 43]. It is a bit difficult to analyze a

wide array of enzymes for substrate specificity and their

different optimum conditions by doing lab work, so syn-

thetic biology tools like molecular simulation, molecular

docking, In Silico studies and artificial intelligence has

made it possible to study such parameters in a shorter time

span by using computational tools [44, 45].

Fig. 1 A snapshot of synthetic biology tools used for modification of microbial enzymes
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Synthetic biology tools are also used to develop

microbial consortia, which help in better utilization of

substrate and division of labor among different microbes

[5, 46]. Synthetic biology tools have been used to engineer

several microbial enzymes such as inulinase, laccases,

xylanases, lipases, amylases, etc. In this review, the

industrial application of these enzymes and the synthetic

biology tools applied to modify the microorganism and

proteins for their large scale production and efficient use in

industry has been described. Figure 2 gives brief infor-

mation of the enzymatic selection for industries and dif-

ferent synthetic biology tools used for enzyme modification

as per the requirement of industries. Synthetic biology uses

tools like genetic engineering, in silico studies, molecular

docking, artificial intelligence technique, nanotechnology

and post-translational modification for better and efficient

use of enzymes. A list of bacterial and fungal enzymes

modified by different synthetic biology tools is presented in

Table 1.

Genetic Engineering

This is the most frequently used technique to enhance the

physical and chemical parameters of enzymes for their use

in industries [66]. Genetic engineering includes several

new approaches like metabolic engineering of microbes to

regulate the production of enzymes, use of strong pro-

moters for enhanced production, vector elements for

expression of genes like inducers and enhancers, protein

tags for isolation, high-performance tools for cloning,

process screening and fermentation technologies [67].

Further, the cloning followed by functional appearance of a

xylanase gene from T. lanuginosus was successfully

reported [68]. Several other genetic engineering tools have

been successfully applied to increase the thermostability of

xylanase enzyme for their industrial use [56–59]. Inulinase

was engineered by protease site mutation, which resulted in

its thermostability and made possible the large scale pro-

duction in the bioreactor [69]. Laccase, amylase, protease

Fig. 2 A preview of enzyme screening and modification tools for their applications in adverse industrial conditions
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have also been engineered by mutagenesis and cloning to

improve their functionality and stability [11, 17, 20, 70].

Nanotechnology

This technique involves the immobilization of enzymes on

nanoparticle beads to increase their activity and ther-

mostability [1]. Nanoparticles have special characteristics

of acting as immobilization support and conjugating

material. Metal coated magnetic nanoparticles were used

for xylanases immobilization obtained from A. niger [7].

Amino-functionalized magnetic nanoparticles (APTES) of

Iron (II, III) oxide were made to immobilize lipase by their

covalent linking with the help of glutaraldehyde (as a

coupling reagent). The advantage associated with metallic

nanoparticle linked enzyme is that they can be easily

obtained after reaction by a magnetic field [71]. Protease

obtained from Penaeus vanamei showed high thermal

stability and pH stability when immobilized on ZnO

nanoparticles. Also, FTIR, TEM, UV Vis spectroscopy

showed that it can be used for the long term in such a form

without losing its activity [72].

In Silico Studies, Molecular Docking and Artificial
Intelligence Strategy

Computer simulation studies save a lot of time, which is

otherwise used in performing lab-scale experimentation. In

silico studies computes the data statically and give infer-

ence in a short span of time, which is cost effective and less

laborious. In silico studies are generally used for knowing

interactions of enzyme with different substrates or different

Table 1 Synthetic biology tools used for modification of some key enzymes from bacteria and fungi

Sr.

No.

Microorganism Enzyme Synthetic biology tool applied References

1. Lactobacillus casei IAM 1045 Inulinase Genetic engineering of gene levH1 [47]

2. Aspergillus pumiga-U4 Inulinase Immobilization [48]

3. Photobacterium panuliri strainLBS5T b-
Endoglucanase

Cloning and overexpression [43]

4. Bacillus subtilis DR8806 a-Amylase Recombination [49]

5. Staphylothermus marinus a-Amylase Recombination [50]

6. Bacillus acidocaldarius a-Amylase Conjugation to oxidized polysaccharides [18]

7. Aspergillus niger a-Amylase Molecular cloning [17]

8. Aspergillus awamori a-Amylase Immobilization on alginate carriers [51]

9. Rhizopus oryzae a-Amylase Site saturation mutagenesis of H286 [52]

10. Pseudoalteromonas phenolica Halophilic

Protease

Cloning and recombination [53]

11. Acidovorax facilis ZJB09122 Nitrilase Codon optimization, random mutagenesis, site saturation

mutagenesis

[5, 32]

12. Pseudomonas psychrotolerans L19 Nitrilase Random mutagenesis and site directed mutagenesis [54]

13. Pyrococcus abyssi Nitrilase Cloning and overexpression [55]

14. Psychrobacter sp. strain 2–17 Xylanases Ep-PCR and recombinant expression [56]

15. Aspergillus umigates RT-1 Xylanases Ep-PCR [57]

16. Trichoderma reesei Xylanases Site-directed mutagenesis by incorporating disulfide bonds [58]

17. Thermoascus aurantiacus CBMAI 756 Xylanases Site-directed mutagenesis and overexpression [59]

18. Fusarium incarnatum KU377454 Lipase Immobilization on nanoparticle [60]

19. Aspergillus niger Lipase Immobilization by anion-macroporous resin [61]

20. Candida Antarctica and Humicola

lanuginose

Lipase Chemical modification [62]

21. Pleurotus ostreatus Laccase Gold nanoparticle formation [63]

22. Bacillus amyloliquefaciens Laccase Recombination [42]

23. Yersinia enterocolitica strain 7 Laccase Molecuar simulation [40]

24. Alternaria tenuissima KM651985 Laccase Covalent coupling to polysaccharides [9]

25. Pichia pastoris Laccase Recombination of Lac9 obtained from Coprinopsis cinerea [11]

26. Trametes versicolor Laccase Immobilization [64]

27. Pycnoporus sanguineus Laccase N-Glycosylation [65]
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concentration of same substrate at the molecular level, for

understanding the effect of alteration at genetic level on

substrate detection of enzyme, for detection of homology

of enzyme obtained from other sources and increased

production with the help of statistical analysis [73–76].

Inulinase enzyme and its substrate-binding efficiency have

been analyzed by molecular docking and molecular

dynamic simulations [40, 73]. An immobilizing matrix can

also be developed by using in silico strategy as is the case

of Inulinase [77]. Hybrid statistic tools like GA-ANN and

GA-ANFIS also helps in improvement in the functionality

of enzymes [66].

Post-translational Modifications

Post-translational modification refers to the enzymatic or

non-enzymatic alterations in proteins after their translation

process. Enzymatic alteration includes glycosylation,

phosphorylation, ubiquitylation, sumoylation, and pegyla-

tion while non enzymatic alterations include oxidation and

nitration of proteins [78, 79]. Post translational modifica-

tions not only increase the stability of proteins but also

adapt the bacteria and fungi to tolerate the extreme con-

ditions [80]. Janusz et al. [81] in 2015 have done the

proteolytic modification of laccase enzyme of Cerrena

unicolor FCL139 which increased its efficiency up to 140%

for decolorization of dyes. Effect of PEGylation and gly-

cosylation on laccase protein from Trametes versicolor was

studied which gave a contemplation of different modifi-

cations on the same protein [82].

Conclusion and Future Perspective

Although a large extent of research has done for production

of enzymes suitable for industrial use including their

technological perspectives, functional improvements,

optimization, but a vast amount of microflora still remains

untouched for exploration [83–85]. Detection of novel

microorganisms for the production of enzymes suitable for

industrial use or modifying the existing databases based on

our understanding of synthetic biology tools are the only

way forward. Synthetic biology tools help in the faster and

more efficient production of enzymes from microorganisms

than traditional tools. Computational tools help in devel-

oping microbial enzymes and development of consortia of

microorganisms, which can utilize the substrate in a better

and efficient manner. By knowing the possible interaction

among microorganisms in such consortia, we will be able

to design better molecular engineering tools for microor-

ganisms. Computational protein designing adds up to the

synthetic biology in technical advantages for de novo

protein design and study of their functional aspects

[86–90].

Synthetic biology predicts the pathway alteration,

design of pathways for the production of different

enzymes. But it is not always necessary that the predicted

pathway works according to the designed strategy so their

always a possibility for the development of new compu-

tational tools for designing pathways to get more favorable

outcomes so that solution to important biological problems

faced in industries can be given. Use of synthetic biology

will open new avenues for genetic engineering of microbes

for enzyme production and their modification.
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