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Abstract 

Molecular descriptor (2D) and three dimensional (3D) shape based similarity methods are widely used in ligand 
based virtual drug design. In the present study pairwise structure comparisons among a set of 4858 DTP compounds 
tested in the NCI60 tumor cell line anticancer drug screen were computed using chemical hashed fingerprints and 
3D molecule shapes to calculate 2D and 3D similarities, respectively. Additionally, pairwise biological activity similari-
ties were calculated by correlating the 60 element vectors of pGI50 values corresponding to the cytotoxicity of the 
compounds across the NCI60 panel. Subsequently, we compared the power of 2D and 3D structural similarity metrics 
to predict the toxicity pattern of compounds. We found that while the positive predictive value and sensitivity of 3D 
and molecular descriptor based approaches to predict biological activity are similar, a subset of molecule pairs yielded 
contradictory results. By simultaneously requiring similarity of biological activities and 3D shapes, and dissimilarity 
of molecular descriptor based comparisons, we identify pairs of scaffold hopping candidates displaying characteris-
tic core structural changes such as heteroatom/heterocycle change and ring closure. Attempts to discover scaffold 
hopping candidates of mitoxantrone recovered known Topoisomerase II (Top2) inhibitors, and also predicted new, 
previously unknown chemotypes possessing in vitro Top2 inhibitory activity.
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Introduction
Drug resistance poses a serious challenge in the treat-
ment of malignant diseases or bacterial infections, 
prompting the need for the development of new drugs. 
With the increased understanding of the genetic addic-
tions, dependencies and vulnerabilities of cancer cells, 
target based approaches have yielded several successful 
treatment options, such as in the case of drugs developed 
against the epidermal growth factor receptor (reviewed 
in [1]). In addition, a significant number of novel FDA 
approved drugs across all therapeutic areas [2] and spe-
cifically in cancer [3] have been identified by phenotypic 
screens.

Target and ligand based approaches are also widely 
used in virtual drug design. Opposed to target-based 
design, where drug binding to a known target is tested 
[4], ligand-based screening can be utilized also when the 
three dimensional (3D) structure of the target protein is 
not available [5]. Advances in computational techniques 
and hardware solutions have enabled in silico methods, 
in particular virtual screening, to accelerate lead identifi-
cation and optimization [6].

In phenotypic screens, molecules are characterized by 
their biological function. The Developmental Therapeu-
tics Program’s (DTP) NCI60 panel is a collection of 60 
human cancerous cell lines maintained by the National 
Cancer Institute (NCI). From 1990 more than 140,000 
synthesized compounds and natural products were 
screened providing a vast repository of molecules for 
which both toxicity data and structural information are 
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available [7]. Each drug—cell line pair can be character-
ized by the negative logarithm of the drug concentra-
tion that results in 50% growth inhibition of the given 
cell line (pGI50). Hence, each drug may be described 
by a 60 element vector, termed ‘biological activity’. Sev-
eral studies have found that biological activity is a strong 
predictor of the mechanism of action (MoA) of the com-
pounds [8–13]. Moreover, compounds with previously 
unknown MoAs were correctly classified (see [7] and ref-
erences therein), further supporting the use of toxicity-
based biological activity patterns as a surrogate for MoA. 
In addition, by employing molecular descriptor-based 
methods, where molecules are converted to bit-strings 
such as chemical hashed fingerprint [14] or extended 
connectivity fingerprints [15], molecular structures can 
be analyzed with high speed and at a low computational 
cost. Methods for comparison of molecule shapes have 
also been developed to account for spatial features by 
maximizing the physical overlap of two molecules [16]. 
Whereas 3D methods have been successfully used to 
identify chemical leads with different scaffolds [17], 3D 
screening remains computationally expensive and it is 
challenging to find the biologically relevant active confor-
mations of the compared molecules.

The relation of molecular descriptors to biological 
activity of the DTP compounds was extensively analyzed 
by Wallqvist et al. [18]. Here our aim was to characterize 
the relationship of different structural similarity meas-
ures to the cytotoxic patterns (i.e. biological activity) of 
the DTP compound set. Interestingly, we identified a 
set of compound pairs that were dissimilar in molecular 
descriptor based comparisons, but nevertheless displayed 
significant biological and 3D shape similarities. The 
same criteria would also define scaffold hopping pairs 
representing molecules of different core structures hav-
ing comparable affinities to their molecular targets [19, 
20]. To test this assumption, putative scaffold hopping 
analogues of the Top2 poison anticancer agent mitox-
antrone were analyzed by in silico docking calculations 
and in vitro decatenation assays.

Results
Relation of structural similarity metrics and biological 
activity of the DTP compounds
In order to assess the relation of structural similarities 
to biological activity, we calculated pairwise molecu-
lar descriptor similarities (chemical hashed fingerprint, 
CFP), 3D shape similarities (ROCS) and biological activ-
ity (BiolAct or BA) similarities among 4858 compounds 
analyzed by DTP’s NCI60 screening project [7] (see 
Additional file 1: Fig. S1).

Additional file  1: Fig.  S3 shows the distribution of 
11,797,653 pairwise similarity values obtained from 

calculations assessing structural and biological overlaps 
of the molecules. The pairwise similarity values show a 
normal distribution, with different means and standard 
deviations for the structural metrics and the biological 
activity pattern. We assumed that high values represent 
significant similarities between the corresponding mol-
ecules. Indeed, the right threshold of the 95% confidence 
intervals (CI) of the bootstrapped distributions repre-
senting no-correlation are 0.30 and 0.22 for Pearson-cor-
relation (BA similarity) and CFP similarity, respectively. 
Bootstrapped distribution could not be obtained for the 
3D ROCS method, where the molecules are compared in 
a pairwise manner (see “Materials and methods”).

In order to test how well either of the structural metrics 
predict biological activity, the positive predictive value 
(PPV) and sensitivity were calculated treating the struc-
tural metric similarity as the test and Pearson correlation 
as the true value. In this context, the positive predic-
tive value defines the proportion of molecule pairs that 
simultaneously display structural and biological activity 
similarities to the total number of structurally similar 
molecule pairs (see Eq. (1)). Conversely, sensitivity is the 
number of molecule pairs that simultaneously display 
structural and biological activity similarities relative to 
the number of molecule pairs sharing similar biological 
activity (Eq. (2)). For any of the metrics, two compounds 
are considered similar, if their similarity score exceeds 
a chosen threshold value. Ideally, the selected threshold 
should warrant not only a high positive predictive value 
but also a high sensitivity. In our dataset, we find that 
while an increase of the threshold of a structural similar-
ity metric increases the positive predictive value, it also 
results in a decrease of sensitivity.

Since the distributions of pairwise similarities differ for 
ROCS and CFP, we introduced percentiles as an inde-
pendent variable to allow comparison of the 2D and 3D 
methods. Figure 1 shows that when percentiles are used 
to define thresholds, the positive predictive value and 
sensitivity curves are almost superimposable, suggest-
ing that  the overall effectivity of the molecular descrip-
tor based and 3D metrics to predict biological activity is 
highly similar. The percentage of overlap among the dis-
tribution curves are 89% and 90% for positive predictive 
value and sensitivity, respectively. Interestingly, similar-
ity in biological activity and molecular descriptor based 
structures does not necessarily imply 3D similarity. Like-
wise, there are molecule pairs that jointly satisfy 3D and 
biological activity similarities without showing any simi-
larity according to the CFP metric (Fig 2).

We focused on molecule pairs showing high 3D simi-
larity and a highly similar toxicity pattern—yet whose 
molecular descriptor based similarity did not suggest 
structural resemblance. This characteristic is reminiscent 
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of ‘scaffold hopping’, i.e. the switch to a new chemotype 
without a compromise in biological activity.

Identified scaffold hopping candidates of the Top2 poison 
mitoxantrone
In search for scaffold hopping candidates we collected 
compounds showing high similarity to the 3D struc-
ture and the biological activity but low similarity to the 
molecular descriptor based fingerprint of FDA approved 
drugs among the 4858 structures analyzed in this study. 
A prominent group of highly diverse compounds was 
formed by compounds sharing 3D and biological similar-
ity with the Top2 poison mitoxantrone. Within the subset 
of these agents, putative scaffold hopping candidates were 
identified based on dissimilarity of the molecular descrip-
tor-based fingerprints  (selection of similarity thresh-
olds is detailed in “Materials and methods”). Briefly, 
candidates  were chosen by considering the similarities 
of annotated Top2 poisons and inhibitors within the 
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Fig. 1  Positive predictive value (a) and sensitivity (b) of ROCS (black) and CFP (red) similarities to predict biological activity (BA). Values are shown as 
a function of the percentiles of the number of molecule pairs displaying ROCS or CFP similarities. The thresholds of ROCS and CFP similarity values 
used for identification of scaffold hopping candidates of mitoxantrone are shown by black and red vertical lines, respectively

Fig. 2  Relation of the three similarity values computed for selected 
DTP agents. Molecule pairs with high biological activity similarities 
are shown ( > 0.52 ). Black: high CFP and ROCS similarities ( > 0.34 and 
> 0.52 respectively), green: low ROCS but high CFP similarity, red: 
high ROCS but low CFP similarity, blue: low ROCS and CFP similarities

Fig. 3  Top2 poisons in the set of 4858 DTP structures used in this study as obtained from Weinstein et al [59], supplemented by mechanism of 
action (MoA) information downloaded from the CellMiner website. The annotated Top2 poisons include ametantrone (NSC196473/NSC287513), the 
closest derivative of mitoxantrone, the anthracyclines daunorubicin (NSC83142), idarubicin (NSC256439), N,N-dibenzyldaunorubicin (NSC268242), 
epirubicin (NSC256942), doxorubicin (NSC123127), rubidazon (NSC164011) and valrubicin (NSC246131), as well as menogaril (NSC269148). 
Futhermore, piroxantrone (NSC349174), bisantrene (NSC337766), amsacrine (NSC141549/NSC154948/NSC156303/NSC249992), ellipticiniums 
(NSC351710, NSC638066) and podophyllin derivatives (etoposide: NSC141540, teniposide: NSC122819), as well as dexrazoxane (NSC169780)

(See figure on next page.)
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compounds set (Fig. 3) to mitoxantrone. As presented in 
Fig. 1, the chosen thresholds (BA: 0.53; ROCS: 0.51; CFP: 
0.32) represent a compromise between reasonable sensi-
tivity and PPV values for the whole dataset. Within the 
subset of agents showing high 3D and biological similar-
ity to mitoxantrone ( BA ≥ 0.54 , ROCS ≥ 0.51 ), putative 
scaffold hopping candidates were identified based on dis-
similarity of the molecular descriptor-based fingerprints 
( CFP < 0.32 ). This approach identified 20 scaffold hop-
ping candidates, representing six distinct chemotypes. As 
expected based on the similarity criteria, the structure of 
the compounds show characteristic differences (Fig.  4). 
SMILES of the scaffold hopping candidates are listed in 
Additional file S1. 

Given the similar biological activity of the compounds 
shown in Fig. 4, we expected that their MoA relied on 
Top2 inhibition. Whereas none of the scaffold hop-
ping candidates is annotated as a Top2 poison, some 
agents, including sedoxantrone (NSC635371), three 
of the six imidazoacridinone derivatives (NSC637992, 
NSC645809, NSC645810) [21] and the 5-substituted 
9-aminoacridine-4-carboxamides [22] could be linked 
to Top2 poisoning by literature search. Apart from 
these compounds, the remaining imidazoacridinone 
derivatives (NSC637991, NSC637994, NSC645808), 
the lucanthone derivatives (NSC317003, NSC317921, 
NSC334352), the triazoloacridinones (NSC645829, 
NSC699148) and the pyrimidoacridines (NSC693117, 
NSC693118, NSC693119, NSC693120, NSC691849, 

Fig. 4  Scaffold hopping candidate molecules around mitoxantrone grouped by their chemotypes. Scaffold hopping candidates are similar to 
mitoxantrone in their 3D shape, show a similar toxicity pattern in the NCI60 panel and yet can be described by different molecular descriptor-based 
fingerprints. For each NSC molecule, salts are omitted
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NSC691852) represent novel scaffold hopping candi-
dates of mitoxantrone. Based on the range of the pGI50 
values measured in the NCI60 cell panel, the activities 
of these compounds are in the range of the toxicity of 
mitoxantrone, but their potential to inhibit Top2 has 
not been investigated so far.

Verification of the MoA of the scaffold hopping candidates
Similar toxicity patterns (i.e. biological activity) along 
with similar 3D structures suggest that—similarly to 
mitoxantrone—the compounds shown in Fig. 4 kill cells 
by binding to the active site of Top2. To verify this propo-
sition, binding of the scaffold hopping candidates to the 
Top2-DNA adduct was quantified by in silico docking 
calculations using protein coordinates reported by Wu 
et al. [23, 24]. In addition to the scaffold hopping candi-
dates (Fig.  4) and the DUDE-E generated decoy struc-
tures, simulations were run for a 3D shape similar but 
biologically distinct (‘3D decoy’), and a biologically simi-
lar but 3D shape distinct (‘biological decoy’) set of mol-
ecules. Docking scores obtained for individual molecules 
are displayed in Additional file  1: Tables S5–S7. Since 

this search recovered relatively few decoy structures, 
the search was extended to include similarities in the 
context of the scores obtained for any of the published 
Top2 ligands mitoxantrone, ametantrone, amsacrine 
and etoposide [23, 24]. While five additional putative 
scaffold hopping candidates arose (Additional file 1: Fig. 
S4 and Table S3), the overall distribution of the scaffold 
hopping docking scores did not change (Fig. 5). Docking 
scores and ranks obtained for the putative scaffold hop-
ping analogues of mitoxantrone are shown in Table 1 and 
Additional file  1: Table  S4, respectively; scores for the 
‘3D decoy’ and ‘biological decoy’ sets are shown in Addi-
tional file 1: Tables S5, S6. As displayed in Fig. 5, scaffold 
hopping candidates exhibit a significantly lower dock-
ing score than any of the decoy sets, suggesting that the 
toxic activity of these compounds relies on binding to the 
Top2-DNA adduct. Mitoxantrone and different chemo-
types of scaffold hopping molecules overlap well and 
share the same binding site, only the longer side-chain of 
mitoxantrone is involved in additional interactions with 
the receptor structure (Fig. 6).
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Fig. 5  Scaled density of the docking scores calculated for candidate scaffold hopping analogues of mitoxantrone or any of the published Top2 
ligands (blue and green, respectively), the ‘3D decoy’ and the ‘biological decoy’ sets (orange and red, respectively) and the DUDE-E decoys (grey). 
Black vertical lines depict the docking scores of mitoxantrone, ametantrone, amsacrine and etoposide obtained by rigid ligand sampling docking 
calculations using their own crystal structures
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Finally, we tested the actual Top2 poisoning potential 
of mitoxantrone analogs and a ‘3D decoy’ (Additional 
file 1: Fig S7) molecule that were made available by DTP 
in in vitro decatenation assays. The obtained IC50 value 
of mitoxantrone is in line with the published literature 
[25], while for imidazoacridinones, only yeast Top2 assay 
results were previously available [21]. As shown in Fig 7, 
the three scaffold hopping analogs representing the imi-
dazoacridinones, lucanthones and the aminoacridines 
exhibited significant Top2 inhibitory activities (summa-
rized in Table  2), while NSC660839 showed no inhibi-
tion, despite the fact, that its docking score (depicted in 
table  S5) was comparable to that of etoposide, a ligand 
co-crystallized with Top2 [23].

Discussion
The DTP’s NCI60 is an information rich resource which 
has provided valuable insights into the MoA of the com-
pounds as well as mechanisms of cellular sensitivity and 
resistance [7]. Earlier studies have established the rela-
tion of drug toxicity profiles to structural clusters and 
distinct modes of action (reviewed in [7]). In particular, 
molecular descriptor-based (2D) structural similarity was 
extensively studied by Wallqvist et al., who quantified the 
effect of structural changes on biological activity within 
the DTP molecule set [18]. Our first goal was to com-
pare the power of 2D and 3D structural similarity metrics 
to predict biological similarity. We used the measures 
of positive predictive power and sensitivity to assess 
whether 3D shape based similarities would perform 

Table 1  Biological, ROCS and  2D similarities compared 
to mitoxantrone

Docking scores of scaffold hopping candidates

Chemotype NSC BiolAct ROCS CFP Docking

Mitoxantrone 301739 − 13.45

Lucanthone derivatives 317003 0.73 0.55 0.28 − 11.31

317921 0.66 0.55 0.29 − 11.47

334352 0.74 0.55 0.28 − 11.67

Triazoloacridinones 645829 0.56 0.62 0.27 − 13.41

699148 0.58 0.54 0.26 − 10.28

Pyrimidoacridines 693117 0.67 0.58 0.22 − 13.19

693118 0.68 0.53 0.22 − 14.48

693119 0.70 0.57 0.25 − 13.53

693120 0.70 0.63 0.26 − 14.57

691849 0.79 0.65 0.24 − 13.81

691852 0.54 0.63 0.26 − 14.17

Sedoxantrone 635371 0.67 0.60 0.24 − 13.32

Imidazoacridinones 637991 0.60 0.53 0.27 − 13.66

637992 0.66 0.53 0.28 − 13.25

637994 0.76 0.52 0.26 − 13.25

645808 0.76 0.53 0.28 − 13.33

645809 0.76 0.53 0.29 − 13.00

645810 0.84 0.52 0.26 − 13.27

5-Substituted-9-aminoacr-
idine

691240 0.68 0.52 0.26 − 13.08

4 Carboxamides 693545 0.63 0.52 0.25 − 12.95

Fig. 6  The structure of human Top2β is shown with purple color in cartoon, while ligands are shown in stick representation. Co-crystallized 
structure of mitoxantrone is marked in red color, while poses of NSC317921 and NSC637992 obtained by Glide SP docking calculations are colored 
using atom types



Page 8 of 14Lovrics et al. J Cheminform           (2019) 11:67 

better than molecular descriptor based methods at pre-
dicting the similarities of biological activities. In virtual 
screening campaigns, the positive predictive value can 
be interpreted as the fraction of truly biologically similar 
molecules among the compounds obtained by structure 
similarity search, whereas sensitivity defines the fraction 
of compounds returned by the structure search among all 
of the biologically similar molecules. The 2D CFP and 3D 
ROCS metrics were similar in their ability to predict bio-
logical function (Fig. 1), a result in accordance with find-
ings of benchmark studies that have not detected clear 
evidence of superiority of 3D methods [26–29].

Figure 2 shows the relation of structural and biological 
similarity metrics. As expected, a large number of mol-
ecules are similar in structural and biological aspects. 
More interestingly, we identified biologically similar 
molecule pairs for which only either of the 2D or the 3D 
structural metrics proved to be similar. For example, we 
found compound pairs that are dissimilar according to 
the 3D similarity measure, but nevertheless show high 

similarity in their 2D structures and biological activities 
(Fig. 2, green). This can occur if a relatively large struc-
tural moiety appears once in one of the molecules and 
multiple times in the other molecule. Naturally, in this 
case, 3D shape similarity is not observed. On the other 
hand, such molecule pairs may highlight substructures 
that are essential for biological activity. Molecule pairs 
that are structurally dissimilar based on both 3D and 2D 
comparisons despite their biological activity similari-
ties are displayed in blue. Structural dissimilarity despite 
biological similarity is a common phenomenon, exam-
ples include structurally diverse substrates of transport-
ers [30]; range of ligands of the same protein target that 
may adopt multiple conformations or simply ligands of 
different protein targets that belong to the same path-
way. Finally, there are agent pairs that are dissimilar in 2D 
despite high 3D and biological similarities. We hypoth-
esized that this subset would be enriched in scaffold hop-
ping candidates.

An important goal in the initial phase of drug discovery 
is to increase the quality of drug candidates [31]. Scaf-
fold or lead hopping, defined by similar biological activ-
ity of different molecular backbones, could contribute to 
this aim. Despite their different core structures, scaffold 
hopping molecule pairs show comparable affinities to 
their molecular targets [19]. Scaffold hopping analogues 
may exhibit better physicochemical and pharmacoki-
netic properties while retaining the original potency, thus 
providing a new direction for further optimization. Scaf-
fold hopping has been employed to discover novel com-
pounds for drug development in the case of a variety of 
diseases, including finding scaffold hopping analogues of 
natural compounds [32]. Overall, finding scaffold hop-
ping variants of active molecules is an integral part of vir-
tual screening in the drug discovery pipeline [5]. While 
a wide variety of similarity search approaches exist to 
identify structural analogues to a lead compound, to our 
best knowledge, there is not a single, commonly accepted 
in silico method to identify scaffold hopping molecules. 
Here, we propose a method to identify biologically simi-
lar molecules to a query compound that are distinct 
in their core structure. While an experienced medici-
nal chemist may readily identify the remote similarity 
to mitoxantrone of the structures displayed in Fig.  7, it 
would be impossible to visually screen thousands of com-
pounds. Also, the MoA of these compounds may differ 
from that of the original active molecule. We introduce 
similarity of biological activity as an additional criterion 
to obtain molecule pairs whose MoA is expected to be 
identical despite differences in their scaffolds.

We tested the validity of our approach by performing 
in silico and in  vitro experiments with scaffold hopping 
candidates of the Top2 inhibitor mitoxantrone. Since we 

Fig. 7  Effect of the test compounds on Top2-mediated decatenation 
of kinetoplast DNA (KDNA). Dose-dependent poisoning was 
calculated from DNA samples separated by gel electrophoresis. 
Symbols represent experimental data, continuous curves are fitted 
lines. Red: mitoxantrone, black: NSC637992, blue: NSC317921, green: 
NSC691240, purple: NSC660839. Filled and open circles represent 
scaffold hopping and decoy molecules, respectively. A representative 
gel photo is shown in Additional file 1: Fig S5

Table 2  Calculated Top2 poisoning IC50 values of  test 
compounds

NSC IC50 (μM) 95% CI (μM)

Mitoxantrone 3.3 2.6–4.1

637992 3.3 2.5–4.6

317921 7.5 5.9–9.6

691240 12.1 9.0–16.3

660839 > 100 NA
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introduced 2D dissimilarity to mitoxantrone as a condi-
tion, the scaffold hopping candidates listed in Table  4 
represent different chemotypes. Next to known Top2 
poisons, including anthracyclines, structures were recov-
ered that were linked to Top2 poisoning in the litera-
ture [21, 22], but some of the analogs represented novel 
chemotypes for Top2 poisoning. In comparison to mitox-
antrone, these structures have additional heteroatoms 
incorporated in their rings, as in the case of lucanthone 
derivatives; or a heteroatom incorporation with an addi-
tional heteroatom change, as in the case of the 5-substi-
tuted-9-aminoacridine 4 carboxamides. A further ring 
closure can be observed in the triazoloacridinones and in 
sedoxantrone, which show high similarity to the known 
Top2 poison piroxantrone (see Fig.  3). Imidazoacridi-
nones are derivatives of mitoxantrone, in which a heter-
atom is incorporated into a ring, another one is removed 
and additionally a ring is formed. Pyrimidoacridinones 
differ from mitoxantrone by a heteroatom incorpora-
tion, a ring closure and a shift of another heteroatom. A 
remote similarity of the scaffold hopping candidates can 
also be seen to amsacrine, which is a known Top2 poi-
son (Fig. 3). However, these molecules still represent new 
chemotypes among Top2 poisons.

As the principal MoA of mitoxantrone is Top2 poison-
ing, activity of the scaffold hopping set could be verified 
by in silico docking and in vitro decatenation assays.

Scaffold hopping candidates of mitoxantrone obtained 
similar docking scores as the published Top2 ligands 
mitoxantrone and ametantrone, and notably, better 
docking scores than etoposide and amsacrine and the 
majority of known Top2 poisons. By defining biologi-
cal and structural decoy sets (agents where only either 
the biological activity or 3D structural similarity to a 
published Top2 ligand is above the chosen thresholds), 
we found that both properties were required to obtain 
good docking scores. We note that some of the biological 
decoy molecules possess docking scores as good as the 
scaffold hopping candidates, and hence can be thought of 
false negatives. However, on the one hand, it is expected 
that some structurally diverse molecules would also fit 
well to the Top2 binding site. Still, the majority of struc-
turally distinct biological decoys display a worse docking 
score. Taken together, some scaffold hopping candidates 
might have been lost by applying the methodology pre-
sented in this paper, but the number of false positives 
was also reduced significantly. On the other hand, ROCS 
similarity was found to perform better than docking in 
search for active molecules [5], and hence it could also be 
hypothesized, that in some cases, the docking calculation 
produces false positive results.

In order to test whether using different thresholds for 
the similarity metrics would provide better docking score 

separation between the scaffold hopping candidates and 
the biological decoy molecules, Fig. 5 was replotted using 
stricter (higher BiolAct and ROCS and lower CFP) and 
more lenient (lower BiolAct and ROCS and higher CFP) 
similarity threshold values. While at more stringent 
threshold values the separation of scaffold hopping can-
didates and decoy molecules is more pronounced, there 
remains a subset of ’3D decoy’ molecules displaying good 
docking scores (Additional file 1: Fig. S6).

Scaffold hopping candidates made available by DTP 
were also evaluated in in  vitro decatenation assays, 
which demonstrated that NSC637992, NSC317921 
and NSC691240 are efficient Top2 poisons, while 
NSC660839, a ’3D decoy’ molecule does not show inhibi-
tory power despite the fact that it obtained a good dock-
ing score.

The list of 4858 DTP compounds used in this study and 
their pairwise structural and biological similarities are 
available in Additional files S2 and S3 respectively. Based 
on this dataset, scaffold-hopping candidates of any arbi-
trary agent may be obtained. As a further example, scaf-
fold hopping candidates of camptothecin (NSC94600), 
a Topoisomerase I (Top1) inhibitor were also collected 
[33]. Additional file  1: Figs.  S8 and S9 depict known 
Top1 inhibitor scaffolds and the scaffold hopping can-
didates, respectively. Threshold values to obtain scaffold 
hopping analogues around camptothecin were obtained 
similarly to those for mitoxantrone (see “Materials and 
methods”), by comparing the biological activity to known 
Top1 inhibitors. However, this approach could not be 
followed to identify scaffold hopping analogues of podo-
filox (NSC24818). Podofilox targets Eg5, a human kine-
sin involved in the formation of the bipolar spindle [34], 
and as such, could be categorised as tubulin affecting 
antimitotic. Still, biological activities of DTP compounds 
annotated as tubulin affecting agents display such a wide 
variety, that the minimum of the biological activity simi-
larities of these molecules to podofilox represent random 
correlation among the set of 4858 DTP agents. Hence, 
in the case of podofilox, putative scaffold hopping can-
didates were selected using similarity thresholds corre-
sponding to the 90th percentile of all pairwise similarities 
for each metric. Additional file 1: Figs. S10 and S11 rep-
resent the structure of podofilox and its putative scaffold 
hopping analogs, respectively.

The presented methodology can be applied to any set 
of molecules whose biological activity can be quantita-
tively compared in a pairwise manner. For this purpose, 
the DTP NCI60 database serves as a unique resource, but 
CMap [35], SIDER [36, 37] or chemogenomic databases 
[38] or the calculated ADMET properties [39] could also 
provide the starting point to search for candidate scaffold 
hopping molecule pairs. Similarly, different structural 
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similarity metrics could be employed. For the molecular 
descriptor similarity calculations, ChemAxon’s CFP [40] 
was chosen as a well-established, widely used measure, 
however other similar metrics (e.g. the Extended Con-
nectivity Fingerprint) may also be applied. OpenEye’s 
ROCS was chosen for 3D calculations as the most widely 
used and tested method [17], however, other alternatives 
exist (e.g. ChemAxon’s Screen3D [41], pharmacophore 
fingerprints using either fuzzy molecular representations 
[42] or combined with ranking, voting, and consensus 
scoring [43]). It has to be noted that parametrization of 
the chosen metric, the similarity calculation method and 
the selection of the thresholds may also influence the out-
come of similarity estimations. For instance, in the ROCS 
calculations, the most similar conformations among 
tested molecule pairs were used to assign the similarity 
score of the compounds. If the biologically active confor-
mations are not known or in case of a general database 
search this might be the method of choice, however, the 
presented in silico application to find scaffold hopping 
analogues of a main compound should always be tailored 
to the actual task.

Conclusion
We have introduced a method to generate scaffold hop-
ping molecule pair candidates by simultaneously cal-
culating biological activity, 3D shape and molecular 
descriptor based similarities. Scaffold hopping candi-
dates of mitoxantrone displayed typical examples of 
core structural changes such as heteroatom/heterocycle 
change and ring closure. The method was able to recover 
known Top2 inhibitors and additionally predicted new, 
previously unknown chemotypes possessing in  vitro 
Top2 inhibitory activity.

Materials and methods
Description and curation of DTP toxicity data 
and molecular structures
Structural information and pGI50 values were down-
loaded from the DTP websites (https​://wiki.nci.nih.
gov/displ​ay/NCIDT​Pdata​/Chemi​cal+Data and https​://
wiki.nci.nih.gov/displ​ay/NCIDT​Pdata​/NCI-60+Growt​
h+Inhib​ition​+Data: GI50 Data (Sept 2014) respectively). 
Chemical and biological data curation inspired by [44, 
45] is detailed in Additional file 1: Text and Fig. S1.

Briefly, for downloaded agents, pGI50 values were 
available for some or all of the NCI60 cell lines. Missing 
values or GI50 values equal to tested minimal or maximal 
drug concentrations were replaced by ‘NA’. Compounds 
with more than 30 ‘NA’ values were omitted; the remain-
ing set was filtered to retain compounds showing vari-
able toxicity (standard deviation of pGI50 values ≥ 0.4 ) 

[46, 47]. Correlations of pGI50 values across the cell lines 
of compounds measured multiple times were generally 
good as shown in Additional file 1: Fig. S2, demonstrating 
the reliability of the DTP dataset.

Biological curation was followed by chemical standard-
ization: non-covalently bound fragments were removed 
from the structures using ChemAxon’s Standardizer 
[48]; if these fragments were physiologically relevant ions 
(i.e. Na+ , Cl− , SO4

2− ), then the desalted compound was 
retained, otherwise the agent was omitted. Additional 
structures were either fixed when possible, or removed 
based on problems related to valence, formal charge and 
stereochemistry as defined by Structure Checker (Che-
mAxon) [49]. Inorganics and metal-containing molecules 
were also removed using an in-house script. Remaining 
agents were dearomatized and nitro groups were trans-
formed into customized representations by ChemAxon’s 
Standardizer [48]. The final structures were tested by 
both ChemAxon’s Structure Checker [49] and OpenEye’s 
OMEGA [50]. Since the DTP structure set only contains 
2D structure information, compounds with undefined 
stereocenters were kept—even though this added some 
uncertainty to the 3D shape-based similarity calculations.

The final set contained 4858 unique structures after 
removal of desalted molecules that represented dupli-
cate or triplicate structures as obtained by ChemAxon’s 
duplicate search [51]. In the case of low biological activity 
correlation among duplicate structures, the agents were 
omitted, while in the case of high correlation of toxic-
ity values of the duplicate structures, pGI50 values were 
averaged resulting in a final set of 4858 unique structures. 
The workflow of molecule selection is depicted in Addi-
tional file 1: Fig. S1.

Similarity calculations
Pearson correlation was used to calculate the similarity 
between biological activites (drug toxicity profile vectors) 
of the DTP compounds, handling missing pGI50 val-
ues by casewise detection. In total, 11,797,653 pairwise 
similarity values were obtained. ROCS (OpenEye Scien-
tific Software, Santa Fe, NM) was used to calculate 3D 
shape-based overlaps [52, 53]. For calculating 3D similar-
ity, each compound was expanded into a set of 3D con-
formers using OpenEye’s OMEGA. For each molecule, 
a maximum number of 200 conformers were generated 
and assembled in an energy sorted order [50, 54]. When 
a molecule contained undefined stereocenters, random 
stereocenters were defined during conformer generation. 
For each pair of structures, 3D overlaps between all of the 
the available conformers were calculated using ROCS [52, 
53], by applying the ‘-subrocs’ option (starting the search 
at heavy atoms of the larger molecule) without further 
optimization. The highest similarity score was accepted 

https://wiki.nci.nih.gov/display/NCIDTPdata/Chemical+Data
https://wiki.nci.nih.gov/display/NCIDTPdata/Chemical+Data
https://wiki.nci.nih.gov/display/NCIDTPdata/NCI-60+Growth+Inhibition+Data
https://wiki.nci.nih.gov/display/NCIDTPdata/NCI-60+Growth+Inhibition+Data
https://wiki.nci.nih.gov/display/NCIDTPdata/NCI-60+Growth+Inhibition+Data
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as the ‘ROCS’ similarity between the selected pair of mol-
ecules. To obtain structural similarity based on molecular 
descriptors, ChemAxon’s chemical fingerprint (CFP) [40] 
was utilized using the default parameters and the Tani-
moto metric as the similarity measure. Similarity was cal-
culated between each of the 4858 individual structures, 
resulting in 11,797,653 pairwise similarity values. The 
exact commands and parameters used for the molecular 
similarity methods are shown in Additional file  1: Text, 
and Fig. S1 summarizes the similarity calculations.

Motivated by the work of Wallqvist et al. [18], we define

where N (s ≥ sT ; ρ ≥ ρT ) represent the number of mol-
ecule pairs for which the value of the structural similarity 
metric (s) is larger or equal than the requested threshold 
sT and the value of the Pearson correlation ( ρ ) is simulta-
neously larger or equal than the requested threshold ρT.

The measures in Eqs. (1–2) quantify how well struc-
tural similarities predict biological response. Specifically, 
F(s = sT |ρ = ρT ) expresses the fraction of molecule 
pairs with at least sT structural similarities that also show 
a minimum of ρT biological activity similarities, i.e. the 
positive predictive value. Similarly, F(ρ = ρT |s = sT ) 
indicates the fraction of molecule pairs with at least ρT 
biological activity similarities that also share a minimum 
of sT structural similarities, i.e. the sensitivity. These 
measures were calculated for both structural metrics 
(ROCS and CFP) among the selected DTP agents.

Similarity threshold selection to mitoxantrone
Selected cut offs between agent pairs considered similar 
or dissimilar can be tailored to the needs of the actual 
study, considering expected increase and decrease of 
false positives and negatives. Here, we show a possible 
procedure to select actual threshold values to differenti-
ate between low and high similarities.

In order to define a suitable Pearson correlation thresh-
old value, the biological activity of mitoxantrone was 
compared to a set of known Top2 poisons and inhibi-
tors (Fig. 3). The threshold of biological activity similar-
ity was set to be at least 0.44, representing the lowest 
similarity to mitoxantrone among the annotated Top2 
poisons and inhibitors see Additional file  1: Table  S1. 
The procedure to select potential threshold intervals for 
ROCS and CFP similarities was as follows. First, the per-
centiles of molecule pairs displaying 0.44 BA similarities 
were calculated, then structural threshold values cor-
responding to these percentiles were obtained. For each 

(1)F(s = sT |ρ = ρT ) =
N (s ≥ sT ; ρ ≥ ρT )

N (s ≥ sT ; ρ ≥ −1)
,

(2)F(ρ = ρT |s = sT ) =
N (s ≥ sT ; ρ ≥ ρT )

N (s ≥ 0; ρ ≥ ρT )
,

possible combinations of BA, ROCS and CFP threshold 
values, the number of putative scaffold hopping mol-
ecules was determined. The molecules remain the same 
when BA >= [0.53, 0.54] , ROCS >= [0.50, 0.52] and 
CFP < [0.32, 0.34] , the final threshold values were hence 
chosen as 0.54, 0.32 and 0.51 for BA, CFP and ROCS sim-
ilarities respectively (Additional file 1: Table S2).

In silico docking
Human topoisomerase IIb in complex with DNA and 
etoposide, mitoxantrone, ametantrone and amsacrine 
(3QX3, 4G0V, 4G0W and 4G0U in PDB) was analyzed in 
docking calculations [23, 24, 55], using the Small-Mole-
cule Drug Discovery Suite 2017-1 (Schrödinger, LLC, 
New York, NY, 2017) [56]. All four protein structures 
were prepared using the Protein Preparation Wizard, 
H-bonds were optimized with the automated procedure. 
A fifth protein structure was also used during dock-
ing calculations: a 4G0U—etopiside complex structure 
resulting from induced fit docking (IFD) calculations. 
Ligands were prepared by the Ligprep module with 
default parameters except that the maximum number 
of stereoisomers was set to 4. For each target structure, 
the binding site was defined based on the correspond-
ing drug molecule coordinates. For each ligand, the best 
docking score was used in the follow up analysis. The 
decoy library was generated using the DUD-E online tool 
at http://dude.docki​ng.org/gener​ate [57]. Additionally, 
‘3D similarity decoys’ were selected from the DTP agents 
as molecules, whose 3D shape was similar to a published 
Top2 ligand [23, 24], but their biological activity based 
Pearson correlation similarities were low. Conversely, 
‘Pearson similarity decoys’ were selected, whose 3D 
shape was dissimilar, but their drug toxicity profile was 
similar to a published Top2 ligand. Docking calculations 
were performed on all ligand and decoys structures using 
the Glide SP method (Schrödinger, LLC, New York, NY, 
2017) [56]. Figure 6 was created using the PyMOL pro-
gram. (The PyMOL Molecular Graphics System, Version 
1.6, Schrödinger, LLC.)

In vitro decatanation assay
The inhibitory effect of the compounds on the cata-
lytic activity of Top2 was investigated using the decat-
enation assay (TopoGEN, Ohio) [58]. 0.2µg catenated 
kinetoplast DNA (kDNA) was incubated at 37  °C for 
30  min in the presence of the test compounds and 
Top2 in a final volume of 20µl , containing 50  mM 
Tris–Cl (pH 8.0), 150  mM NaCl, 10  mM MgCl2 , 
5  mM ATP, 0.5  mM DTT and 30µg/ml BSA. Mitox-
antrone was used as a positive control. The reaction 
was stopped by a 15 min incubation at 37  °C with 3µl 
SDS containing 1 mg/ml proteinase K. Samples were 

http://dude.docking.org/generate
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separated by 1% agarose gel electrophoresis (100 V, 
30 min). DNA bands were visualized by ethidium bro-
mide. UV-transilluminated gels were documented 
with the Multi-Analyst software. Dose response curves 
were fitted to experimental data using the equation 
ŷ = b+ (t − b)× log( IC50 )n/(log( conc )n + log( IC50 )n) , 
where b = 0 , t = 100.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1332​1-019-0390-3.

Additional file 1: Additional text. Additional Text includes the com-
mands used for the ROCS (OpenEye Scientific Software, Santa Fe, NM) 
and CFP (ChemAxon Ltd., Budapest, Hungary) similarity calculations 
and Additional Figures and Tables. Figure S1. Flowchart depicting the 
selection and comparison of DTP molecules used in this study. Figure S2. 
Histogram of pairwise Pearson correlation values among NSC dupli-
cates (a) and desalted structure duplicates (b). Dashed vertical red line 
represents the Pearson correlation threshold used in this study to select 
scaffold-hopping analogues of mitoxantrone, while continuous red verti-
cal line represents the cut-off for keeping duplicate structures. Figure S3. 
Distribution of the 11,797,653 pairwise similarity values supplemented 
with the bootstrapped distributions (continuous lines), where available. 
The vertical lines show the 95% confidence intervals of the bootstrapped 
distributions. Figure S4. Additional scaffold hopping candicates of either 
mitoxantrone, ametantrone, amsacrine or etoposide. Cf. Fig 3 in main text. 
Figure S5. Example gel photos displaying dose-response Top2 poisoning 
of NSC637992 and mitoxantrone. Dose response curves were calculated 
based on the intensities corresponding to the decatenated DNA (red 
arrow). Figure S6. Scaled density of the docking scores calculated for can-
didate scaffold hopping analogues of mitoxantrone (blue), the ‘3D decoy’ 
and the ‘biological decoy’ sets (orange and red, respectively) and the 
DUDE-E decoys (grey) when the similarity threshold values were chosen as 
the strictest (a) and most lenient (b). Figure S7. NSC660839, the ‘3D decoy’ 
molecule tested in the in vitro decatenation assay. Figure S8. Known 
Top1 inhibitor scaffolds: camptothecins (NSC94600), indenoisoquinolines 
(NSC314622), indolocarbazoles. Figure S9. Scaffold hopping candidates 
of camptothecin obtained using threshold values BA > 0.49, ROCS > 0.51, 
CFP ≤ 0.34. Figure S10. NSC24818 (podofilox). Figure S11. Scaffold hop-
ping candidates of NSC24818 obtained using threshold values BA > 0.41, 
ROCS > 0.48, CFP ≤ 0.30. Table S1. Pearson correlation (BiolAct similarity) 
of the pIC50 values of annotated Top2 poisons to mitoxantrone. Table S2. 
Selected similarity thresholds to identify putative scaffold hopping 
analogues of mitoxantrone. Table S3. Docking scores and rankings (from 
1173 compounds) of mitoxantrone and its scaffold hopping candidates. 
Table S4. Maximum of biological, ROCS and 2D similarities compared to 
mitoxantrone, ametantrone, amsacrine or etoposide. Additionally, docking 
scores of these compounds. Table S5. Similarities compared to published 
Top2 ligands and docking scores of 3D decoy agents. Table S6. Similari-
ties compared to published Top2 ligands and docking scores of biological 
activity decoy agents. Table S7. Docking scores of DUDE-E decoys.
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