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Abstract

Schizophrenia is associated with amotivation and reduced goal-directed behavior, which have been 

linked to poor functional outcomes. Motivational deficits in schizophrenia are often measured 

using effort-based decision-making (EBDM) paradigms, revealing consistent alterations in effort 

expenditure relative to controls. While these results have generally been interpreted in terms of 

decreased motivation, the ability to use trial-by-trial changes in reward magnitude or probability of 

receipt to guide effort allocation may also be affected by cognitive deficits. To date, it remains 

unclear whether altered performance in EBDM primarily reflects deficits in motivation, cognitive 

functioning, or both. We applied a newly developed computational modeling approach to the 

analysis of EBDM data from two previously collected samples comprising 153 patients and 105 

controls to determine the extent to which individuals did or did not use available information about 

reward and probability to guide effort allocation. Half of the participants with schizophrenia failed 

to incorporate information about reward and probability when making effort-expenditure 

decisions. The subset of patients who exhibited difficulties using reward and probability 

information were characterized by greater impairments across measures of cognitive functioning 

relative to those patients who did not. Interestingly, even within the subset of patients who 

successfully used reward and probability information to guide effort expenditure, higher levels of 
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negative symptoms related to motivation and avolition were associated with greater effort aversion 

during the task. Taken together, these data suggest that prior reports of aberrant EBDM in 

schizophrenia patients are related to both cognitive function and individual differences in negative 

symptoms.

General scientific summary:

Individuals with schizophrenia show reductions in willingness to exert effort for rewards relative 

to healthy controls, but it is unclear whether this difference is related to cognitive functioning or 

reduced motivation. We use a novel analysis approach to identify individuals who systematically 

allocate effort based on reward and probability, finding that individuals with schizophrenia are less 

likely to systematically allocate effort. Our results suggest that observed patterns of reduced effort 

expenditure in schizophrenia are related to both cognitive functioning and individual differences in 

motivation.
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A cardinal feature of schizophrenia is the reduction of motivation and goal-directed 

behavior. Importantly, negative symptoms such as amotivation have been linked to poor 

psychosocial functioning (Fervaha, Foussias, Agid, & Remington, 2013) and are particularly 

difficult to treat (Sarkar, Hillner, & Velligan, 2015), necessitating a better understanding of 

the mechanisms that underlie this behavior. While early conceptualizations viewed reduced 

motivation as a manifestation of anhedonia (Chapman, Chapman, & Raulin, 1976; Meehl, 

1975), an emerging body of work suggests that schizophrenia is not associated with blunted 

hedonic capacity (Abler, Greenhouse, Ongur, Walter, & Heckers, 2008; Aghevli, Blanchard, 

& Horan, 2003; Barch et al., 2017; Cohen & Minor, 2010; Dowd & Barch, 2012; Gilleen, 

Shergill, & Kapur, 2015; Llerena, Strauss, & Cohen, 2012). These deficits in motivation may 

instead be related to altered decision-making (Gold, Waltz, Prentice, Morris, & Heerey, 

2008; Heerey, Bell-Warren, & Gold, 2008), particularly regarding cost-benefit decisions of 

effort expenditure (Barch, Treadway, & Schoen, 2014; Gard et al., 2014).

Consistent with this latter hypothesis, recent studies using effort-based decision-making 

(EBDM) paradigms have produced remarkably stable results. In 11 published studies testing 

a combined 499 individuals with schizophrenia or schizoaffective disorder and 245 matched 

controls (Barch et al., 2014; Fervaha et al., 2015; Fervaha, Graff-Guerrero, et al., 2013; Gold 

et al., 2013; Hartmann et al., 2014; Huang et al., 2016; McCarthy, Treadway, Bennett, & 

Blanchard, 2016; Moran, Culbreth, & Barch, 2017; Reddy et al., 2015; Treadway, Peterman, 

Zald, & Park, 2015; Wang et al., 2015), individuals with schizophrenia were consistently 

less willing than healthy controls to exert effort for rewards, particularly when reward values 

and probability of receipt were highest (Barch et al., 2014; Fervaha, Graff-Guerrero, et al., 

2013; Gold et al., 2013; Gold, Waltz, & Frank, 2015; McCarthy et al., 2016; Reddy et al., 

2015; Treadway et al., 2015). While highly replicable across paradigms and labs, these 

findings have been somewhat difficult to interpret relative to other research on negative 

symptoms and reward processing in schizophrenia. Moreover, associations between EBDM 
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behavior and individual differences in negative symptoms have been highly variable (Barch 

et al., 2014; Fervaha et al., 2015; Fervaha, Graff-Guerrero, et al., 2013; Gold et al., 2013; 

Strauss et al., 2016; Treadway et al., 2015; Wolf et al., 2014; See Culbreth et al., 2017 for 

review).

A possible explanation for this pattern of findings is that multiple mechanisms may 

contribute to alterations in effort expenditure. While they have been traditionally viewed as a 

measure of motivation, many EBDM tasks may be affected by cognitive performance as 

well; EBDM tasks typically require participants to make choices regarding effort 

expenditure across multiple trials in which the magnitude of reward varies (Gold et al., 2013; 

Pessiglione, Vinckier, Bouret, Daunizeau, & Le Bouc, 2017; Treadway, Buckholtz, 

Schwartzman, Lambert, & Zald, 2009). This trial-by-trial change in the expected reward is 

intended to assess the subjective cost of effort expenditure for each person. Importantly, 

however, the ability to use trial-by-trial changes in reward magnitude (or probability 

information, in the case of the EEfRT) to guide effort allocation may be affected by 

cognitive deficits in schizophrenia. Although motivational impairments and other aspects of 

negative symptoms have traditionally been viewed as minimally related to cognitive deficits, 

recent work has suggested possible associations between self-reported measures of 

motivation and cognitive performance (Fervaha et al., 2014), leading researchers to 

hypothesize that the observed differences in effort allocation in people with schizophrenia 

relative to healthy control participants may be driven by disruptions in cognitive functioning 

(Culbreth, Moran, & Barch, 2017). To date, however, empirical evidence for the role of 

cognitive deficits in effort-related behavior in schizophrenia is still needed.

In prior EBDM studies, associations between cognitive functioning and effort allocation, 

assessed as the proportion of high-effort choices, have been highly variable—while some 

studies have found no significant relationship between willingness to exert effort and 

cognitive functioning (Hartmann et al., 2014; McCarthy et al., 2016), others have found 

weak positive associations (Horan et al., 2015), or have only observed relationships at the 

highest levels of reward (Gold et al., 2013). The current work examines the association 

between motivation and cognition in schizophrenia by comparing the fit of computational 

models that vary in terms of their utilization of trial-wise information to guide decisions, 

allowing us to assess whether trial-by-trial changes in reward magnitude or probability were 

systematically used to guide choices. By “systematic use” of reward or probability 

information, we mean that individuals incorporate these values into their choices in a 

consistent way over the course of the task. Importantly, this question is largely independent 

from the proportion of high or low effort choices made. For example, someone who is effort 

averse but who uses reward systematically may choose to complete the high effort option 

only when the reward magnitude is at the highest levels, while someone else who does not 

find the high effort option to be particularly burdensome (less effort averse) might have a 

lower reward threshold for choosing to perform the high effort option. These individuals 

would have a very different proportion of high effort options (the traditional dependent 

variable of EBDM tasks), but both make choices that are systematically consistent with 

regard to the reward information presented. In contrast, an individual could choose a high 

proportion of hard task choices with little regard for trial-wise changes in reward, selecting 

the hard option on all trials or in a seemingly random way. For example, they may choose 
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the high effort option for trials with a reward of $2.00 or $2.50, but then choose the low 

effort option when the reward is $3.00 or $4.00 (See Figure 2). The computational modeling 

approach presented in this paper allows us to quantify different strategies for incorporating 

trial-wise reward and probability information when allocating effort, and to test whether the 

use of particular strategies is associated with cognitive functioning. In essence, our focus 

here is to determine how individuals made choices (with or without systematic utilization of 

probability and reward information) as opposed to the more traditional focus on what 
choices individuals made (proportion of high and low effort options selected). We 

additionally examine whether controlling for individual differences in the use of trial-by-trial 

information can clarify the associations between EBDM and motivational impairments.

METHODS

Participants

Participants included 153 individuals with schizophrenia or schizoaffective disorder and 105 

healthy controls. Sample 1 (schizophrenia, n = 59, controls n = 39) was collected at 

Washington University at St. Louis (2008– 2013) and the behavioral findings were 

previously published (Barch et al., 2014). Three subjects from Sample 1 were excluded for 

response rates 2.5 standard deviations below the mean (Mean = 44 trials, SD = 9.24; 

Excluded participants only responded on 2, 3, and 15 trials. After exclusion, Mean = 45.19, 

SD = 6.41). Sample 2 (schizophrenia, n = 94, controls n = 66) was collected at the Greater 

Los Angeles VA (GLA) (2013 −2015) and some of the data (n = 134) were previously 

published (Reddy et al., 2015). No participants were excluded from Sample 2. All study 

procedures were approved by the Washington University or GLA IRB, respectively, and all 

subjects provided written informed consent. Analysis was conducted at Emory University 

(2017–2019). See Supplementary Materials for full inclusion criteria.

Task and Data

Models were fit to data from a variant of the Effort Expenditure for Rewards Task (EEfRT; 

Treadway et al., 2009; Figure 1A), which has been widely used with schizophrenia patients 

(Barch et al., 2014; Fervaha, Graff-Guerrero, et al., 2013; McCarthy et al., 2016; Moran et 

al., 2017; Reddy et al., 2015; Treadway et al., 2015). On each trial, participants were asked 

to choose between an easy task for $1 or a hard task for a variable amount of reward. In 

Sample 1, the easy task required participants to make 30 button presses in a period of 7s 

with their dominant index finder, while the hard task required 100 button presses within 21 

seconds with non-dominant pinky finger. In Sample 2, the number of presses required for the 

hard and easy tasks were individually calibrated for each participant. The number of presses 

for the hard task was 85% of the participant’s maximum press speed for 30s, while the 

number of presses for the easy task was one-third of the amount of presses required for the 

hard task for 7s. Both studies utilized a reward range of $1-$4.30 for the hard task. 

Participants were told that they would not always win the reward, but were explicitly given 

the likelihood that they would “win” if they successfully completed the chosen task. The 

probability levels were 50% and 88%. Each trial started with a fixation cross (1s), followed 

by a choice period. Participants collected in Sample 1 were given 5 seconds to respond 

before a task was randomly chosen and made choices over a 15 minute period, while 
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participants in Sample 2 did not have a decision time limit and completed 50 trials. 

Following the choice, participants were shown the word “Ready” for 1 second, then 

completed the required number of button presses while a bar on the screen showed their 

progress. Participants were then told whether they successfully completed the task and 

whether or not they won money for the trial. As with previous samples, only the first 50 

trials were analyzed. Demographic information and measures of symptom expression 

collected in each sample are in Table 1 and further described in Supplementary Materials.

Modeling Approach—Each trial of the EEfRT provides subjects with two pieces of 

information to consider when making a selection between the high and low effort options: 

the reward magnitude for the high effort option and the probability of winning. Prior studies 

of the EEfRT suggest that healthy participants generally adopt a strategy that incorporates all 

three pieces of information (reward, probability, effort) when performing the EEfRT (e.g., 

Treadway, Bossaller, Shelton, & Zald, 2012; Treadway et al., 2009). In the current study, we 

compared three models that reflected different strategies for allocating effort: a “full 

subjective value (SV) model” that assumes subjects consistently incorporate both trial-wise 

reward and probability, a “reward only SV model” that assumes subjects only attend to 

reward magnitude when allocating effort, and a “bias model” that assumes subjects do not 

consider reward or probability information.

We note that similar models have long been used to evaluate preferences with varying 

temporal delay and probability (Frederick, Loewenstein, & O’donoghue, 2002; L. Green & 

Myerson, 2004) and have recently been applied to EBDM (Hartmann, Hager, Tobler, & 

Kaiser, 2013; Klein-Flugge, Kennerley, Saraiva, Penny, & Bestmann, 2015; Prévost, 

Pessiglione, Météreau, Cléry-Melin, & Dreher, 2010). While the value of this approach has 

been highlighted in recent theoretical work (Chong, Bonnelle, & Husain, 2016; Pessiglione 

et al., 2017), applications of these approaches to examine EBDM in schizophrenia have been 

limited (Hartmann et al., 2014; Pessiglione et al., 2017). Detailed descriptions of each model 

are provided below.

Model 1 – Full Subjective Value Model

The full SV model will fit best for subjects who consistently incorporate trial-wise reward 

and probability information when allocating effort. For this model, the subjective value of a 

given trial is calculated by taking the objective reward, R ($1-$4.30), and reducing it by the 

amount of effort required to obtain it (.3 or 1). Individual differences in the extent to which 

reward should be discounted by effort are captured by allowing the components to be 

weighed with free parameters (Eq 1).

SV = R * Ph − kE Eq 1

Effort perceived as extremely costly is reflected in a higher value of k, while weighting of 

probability is captured by the value of h. These SVs are transformed into probabilities of 

selecting each option using the Softmax decision rule (Sutton & Barto, 1998), where t is an 

inverse temperature parameter that reflects a tendency to favor options with higher SVs:
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p(hard) = eSVhard ⋅ t

eSVhard ⋅ t + eSVeasy ⋅ t Eq 2

Thus, the full subjective value (SV) model that we fit to our data has three free parameters: 

k, h, and t. The k parameter reduces subjective value based on the amount of effort required, 

the h parameter modifies subjective value according to the probability that the reward will be 

received, and the t parameter guides choices toward options with higher subjective values.

An additional consideration is some subjects who integrate reward, effort, and probability to 

guide their decision may be better described by a subjective value model that does not distort 

probability (i.e. Eq 2 where free parameter h is held constant at 1), and may be over-

penalized for the additional free parameter h. To account for this possibility, we fit a variant 

of the full SV model with h constrained to 1. Participants best-fit by the full SV model with 

a flexible parameter h or SV model with h = 1 are all included in the “full SV model” group, 

as being fit by either model supports the integration of reward, effort, and probability to 

guide choice.

Model 2 – Reward Only Subjective Value Model

Although it is common for participants to integrate the information about reward and 

probability presented on each trial, some participants allocate effort based only on available 

rewards (See Figure 2). For these subjects, a simpler model that does not incorporate a free 

parameter for scaling probability information will likely capture their behavior more 

accurately. The resulting “reward only” SV model is identical to the full model when h 
assumes a value of zero (Eq 3), and will describe behavior as well as the full SV model for 

participants who modulate their responses very little based on probability, but are 

nevertheless systematically guiding effort allocation on the basis of reward magnitude.

SV = R − kE Eq 3

Although this model and the full SV model with h=1 both hold h constant and have the same 

number of free parameters, the interpretation of the two models is very different. Restricting 

h to be 0 represents choice behavior that does not modulate choice based on probability of 

receipt, while h = 1 allows for probability to affect subjective value.

Model 3 – Bias Model

In addition to the SV models, we examined a “bias” model. This model is the least complex 

model that we fit and provides a similar or better fit than the SV models for participants who 

highly favor one option, respond randomly, or make choices inconsistent with the 

assumptions of the SV models (i.e. favoring effort allocation for low reward). This model 

has one free parameter, b, which represents a bias towards the low-effort option. The 

probability of selecting the high-effort option is simply 1-b. The bias model assumes a 

consistent probability of choosing low effort across trials, regardless of probability or 

reward, similar to a consistent subjective value for exerting effort. Critically, comparing the 
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fit of these models can identify participants who systematically allocate effort based on all 

available information, those who primarily allocate effort based on reward, and those who 

make decisions that are not strongly or consistently influenced by trial-specific information.

Model Fitting

All models were fit in Matlab using maximum likelihood estimation with the optimization 

function fminsearch. Models were fit individually to each subjects’ data, and parameters 

were selected for each participant that optimized the likelihood of the behavioral data. For 

subjective value models, k and h parameters were constrained to be between 0 and 10, while 

t was constrained between 0 and 100. All models were fit with 200 random parameter 

initializations.

The SV models benefit from the flexibility of additional free parameters—while the bias 

model only has one parameter, the reward-only SV model has two free parameters, and the 

full SV model has three free parameters (though in the variant with h constrained to 1 the 

SV model has only two free parameters). To account for this difference in flexibility, we 

compared model fit using Bayesian Information Criterion (Schwarz, 1978). Importantly, 

BIC penalizes models that have additional flexibility, favoring more parsimonious models 

when log-likelihood is the same or similar. BIC incorporates goodness of fit (likelihood, Li), 

number of free parameters (Vi), and the number of observations (i.e. number of trials, n) 

using the following equation:

BICi = − 2ln Li + V iln(n) Eq 4

We compared the BIC value for each model to categorize each subject as being better fit by 

the full SV model (either with 3 free parameters or with h constrained to 1), reward-only SV 

model, or bias model. The approach of classifying participants based on model fit (BIC) has 

been referred to as “computational phenotyping” (Lefebvre, Lebreton, Meyniel, Bourgeois-

Gironde, & Palminteri, 2017). Figure 2 shows the performance of three patients with similar 

overall willingness to exert effort (P(hard) ranging from 60 to 64%) best-fit by each of the 

three models.

While comparing goodness-of-fit allows us to identify participants as being best-fit by one 

of our candidate models, we are also interested in examining relationships between cognitive 

functioning and systematic allocation of effort as a continuous measure. We additionally 

calculated a BIC difference measure (ΔBIC; Dai, Kerestes, Upton, Busemeyer, & Stout, 

2015; Lefebvre et al., 2017) to quantify the improvement in goodness-of-fit that the SV 

model provides over the bias model. Models provide a better fit than baseline models (such 

as the bias model) only when the more complex model can account for the dependency of 

choices on trial-wise information (Ahn, Busemeyer, Wagenmakers, & Stout, 2008; Dai et al., 

2015). In other words, the ABIC allows us to quantify the fit improvement obtained by 

including the available information on each trial.
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Δ BIC = BICBIAS − BICSV Eq 5

Subjects with a positive ΔBIC are better fit by the SV model, and their choices are better 

explained by incorporating trial-by-trial variability in reward and probability, while subjects 

with a negative ABIC exhibit behavior that is better explained by the simpler model.

We conducted simulation analyses to verify that best-fitting parameters were precise enough 

to be recovered from simulated data. Fitting models to simulated data establishes the ability 

to identify and recover parameters, and is a necessary step before interpreting parameters 

(Huys, 2018). For these details and additional assessments of model fit, see Supplementary 

Materials.

RESULTS

SV and Bias Model Fit Comparison

While the of majority of participants (70%) in the control group were best-fit (lower BIC) by 

the SV models (full-SV 49%, reward-only 21%, bias 30%), the majority of participants with 

schizophrenia were best-fit by the bias model (full-SV 29%, reward-only 21%, bias = 50%), 

2 (patient/control) x 3 (model fit) chi-square test X2(2, N=255)=12.253, p=.002, Cramer’s 

V=.219a. These results (Figure 1C) indicate that the behavior of healthy control participants 

was more frequently captured by models that incorporate trial-by-trial variation, while the 

behavior of participants with schizophrenia was better explained by the simplest model that 

does not incorporate trial-by-trial variation in reward and probability. Overall, these results 

suggest that individuals with schizophrenia were less likely than healthy controls to integrate 

reward magnitude and probability information to guide effort allocation. However, half of 

the participants with schizophrenia were best-fit by the SV models, suggesting systematic 

utilization of reward information to guide effort allocation for these individuals.

As expected, behavioral results (proportion of high-effort choices) across patients and 

controls were consistent with previous results when aggregated across the two samples, 

(Figure 1B). Across all subjects, repeated-measures ANOVA on the proportion of high-effort 

choices with two levels of probability and four levels of reward support main effects of 

probability F(1, 253)=114.76, p<.001, ηp2=31 90% CI [.24, .38] and reward 

F(3,759)=199.14, p<.001, ηp2=44 90% CI [.40, .48], non-significant main effect of patient 

group F(1, 253)=2.51, p=.114, np2=01 90% CI [0, .04], as well as interactions between 

patient group and probability F(1, 253)=9.12, p=.003, ηp2=04 90% CI [.01, .08], and patient 

group and reward F(3,759)=5.79,p=.005, ηp2=02 90% CI [.01, .04]. The pattern of results 

from this combined sample were consistent with prior reports; participants with 

schizophrenia and healthy controls differed in their willingness to exert effort for rewards at 

high levels of probability t(253)=2.64,p=.009, d=.33 90% CI [.13,.55] but not at low 

probability, t(253)=.53, p=.597, d = .067 90% CI [−.14,.28], and only differed in their 

willingness to exert effort at the highest levels of rewards tlevel3(253)=2.39, p=.018, d=.30 

aThese results were consistent when using AIC, see Supplementary Materials.
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90% CI [.093,.51], tlevel4(253)=2.38,p=018, d=.30 90% CI [.092,.51]. The performance of 

each model-defined group can be seen in Figure 1D.

Associations between model-based subtype, cognitive function, and negative symptoms

Given that our initial modeling analysis identified sub-groups, or “computational 

phenotypes”, of individuals in terms of their systematic allocation of effort, we next sought 

to determine if these groups differed in cognitive function, demographic characteristics or 

symptom severity including negative symptom subscales. In Sample 1, sub-groups of 

individuals with schizophrenia based on model fit (full-SV, reward-only, and bias) differed in 

their scores on WAIS-III Matrix Reasoning, F(2,53)=4.59,p=015, ηp2=148 90% CI [ 018, 

27] (Figure 2A), SANS negative symptoms F(2,53)=4.36, p=.018, ηp2=141 90% CI [.

015,.27], and years of education F(2. 53) = 7.73, p=.001, ηp2=226 90% CI [.064,.36], and 

showed marginal differences in SANS avolition F(2,53)=2.47, p=.094, ηp2=085 90% CI 

[0,.20]. However, the groups did not differ in the anhedonia or disorganization subscales of 

the SANS, SAPS positive symptoms, age, reaction time, completion rate of chosen effort, or 

medication type (see Table S2 and Supplementary Materials for additional details).

In Sample 2, sub-groups of individuals with schizophrenia based on model fit (full-SV, 

reward-only, and bias) showed differences in cognition as assessed with the MCCB 

composite score, F(2,91) = 4.27, p=.017, ηp2=09 90% CI [.009,.17]. Participants in Sample 

2 did not differ in negative symptoms, positive symptoms, CAINS-MAP, demographic 

characteristics, completion rate of chosen effort, or medication type (see Table S2 and 

Supplementary Materials for additional details). Sub-groups in Sample 2 showed significant 

differences in reaction time, F(2,91) = 10.53,p<.001, ηp2= 19 90% CI [.072,.29], with 

participants in the full SV group taking longer to respond. In both samples, being best-fit by 

more complex models was associated with increased cognitive functioning.

In addition to comparing groups based on the best-fitting model, one can also examine 

individual differences in the magnitude of difference in model fit across two models, thereby 

permitting a dimensional analysis as a complement to the categorical analyses presented 

above. To this end, we conducted a stepwise linear regression analysis with ΔBIC as the 

dependent variable, where ΔBIC indicates the extent to which the full SV model (i.e. the 

addition of trial-by-trial information) improved goodness of fit relative to the bias model. 

Here, we compare the fit of the full SV model, as the reward-only SV model (h=0) and full 

SV model with h = 1 are nested within this model.

For Sample 1, independent variables included group membership (schizophrenia or control), 

age, sex, years of education, WAIS matrix reasoning, SANS avolition, SANS anhedonia, and 

SAPS positive symptoms. The model that best predicted ΔBIC only included WAIS matrix 

reasoning, t(93) = 3.58, p = .001. Demographic characteristics, group membership, positive 

and negative symptoms and symptom subscales (avolition, anhedonia) were not retained in 

the regression (See Table S3 for statistics for excluded variables).

For Sample 2, independent variables included demographic characteristics (age/sex/

education), MCCB composite score, PANSS positive symptoms, PANSS negative 

symptoms, and motivation and pleasure subscales derived from the CAINS-MAP. Although 
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motivation and pleasure in the CAINS are combined into a single scale (CAINS-MAP), 

prior work has demonstrated that individual items from the CAINS-MAP may be combined 

to assess specific difficulties in motivation (avolition) and hedonic experience (anhedonia) 

(Strauss & Gold, 2016; See Table 1 note for specific items included in the motivation and 

pleasure subscales). For Sample 2, only participants with schizophrenia were included in the 

model as symptom scores were not available for control participants. The model that best 

predicted ΔBIC only included the MCCB composite score t(91) = 3.55, p = .001. 

Demographic characteristics, positive and negative symptoms and symptom subscales 

(motivation, pleasure) were not retained in the regression.

An important consideration is that the relationship between cognitive functioning and ΔBIC 

in individuals with schizophrenia may reflect an underlying reduction in motivation, as 

reduced motivation has been found to relate to cognitive test performance (Fervaha et al., 

2014). To assess this possibility, we examined the partial correlations between cognitive 

functioning and ABIC controlling for individual differences in SANS avolition and 

anhedonia in Sample 1, r(52) = .277, p = .043, and both CAINS motivation and pleasure in 

Sample 2, r(90) = .320, p = .002 (Figure 3b). Overall, these results indicate that the extent to 

which effort was systematically allocated was related to cognitive functioning in both 

samples of individuals will schizophrenia independent of negative symptom severity.

Associations between model-parameters, cognitive function, and negative symptoms

While model-fitting yielded evidence for subgroups of individuals in terms of systematic 

allocation of effort and cognitive function, we also wanted to examine whether our model-

based approach would help uncover associations between effort discounting and symptom 

severity. We conducted a stepwise linear regression analysis with free parameter k from the 

subjective value model as the dependent variable, where the k parameter represents the 

extent to which available rewards are discounted based on the effort required to obtain them. 

For Sample 1, independent variables included group membership (schizophrenia or control), 

age, sex, years of education, WAIS matrix reasoning, SANS avolition, SANS anhedonia, and 

SAPS positive symptoms. The model that best predicted k only included SANS avolition, 

t(93) = 2.98, p = .004. For Sample 2, independent variables included demographic 

characteristics (age/sex/education), MCCB composite score, PANSS positive symptoms, 

PANSS negative symptoms, and motivation and pleasure subscales derived from the CAINS. 

For this sample, no variables were retained in the stepwise regression.

An important consideration is that the effort sensitivity obtained from the subjective value 

model (parameter k) may relate to negative symptoms only in individuals who 

systematically allocate effort (i.e. those best-fit by one of the SV models). Among 

individuals with schizophrenia who were best fit by a subjective value model, k was 

positively associated with SANS avolition in Sample 1, r(25) = .395, p = .041 and with 

CAINS motivation in Sample 2, r(46) = .297, p =. 040. In both samples, greater impairments 

in functioning (i.e. less motivation/more avolition) were associated with increased effort 

discounting. When controlling for differences in cognitive functioning (WAIS matrix in 

Sample 1, MCCB composite in Sample 2) the partial correlation between k and SANS 

avolition remained significant in Sample 1, r(24) = .395, p = .046, and the relationship 
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between k and MCCB composite remained marginally significant in Sample 2, r(45) = .281, 

p =. 056 (Figure 3c).

Overall, this pattern of results suggests that within the subgroup of people with 

schizophrenia who were better fit by the SV model (and therefore systematically allocated 

effort) computationally-derived measures of effort sensitivity may be associated with 

clinically-rated measures of motivational impairment, although this should be further 

examined in larger samples.

DISCUSSION

In this paper, we examined whether well-established patterns of aberrant effort-expenditure 

in participants with schizophrenia relative to healthy controls reflected a single deficit in 

motivation, or was partially driven by cognitive impairments. By adopting a novel 

computational modeling approach to the analysis of an EBDM task, we examined three 

computational subtypes for effort allocation. As a whole, individuals with schizophrenia 

were less likely to favor strategies that incorporated trial-by-trial reward and probability 

information in a consistent way over the course of the task, suggesting a core deficit in 

“systematic” effort allocation. Further analysis found that failure to utilize trial-wise 

information was characterized by deficits in cognitive functioning. Importantly, however, our 

modeling approach also identified that half of the participants with schizophrenia did not 

exhibit impairment in the systematic allocation of effort based on reward information 

(including 29% who also incorporated probability information). Within these individuals, 

model-estimated parameters were associated with severity of motivational impairment. 

Taken together, our findings highlight the importance of cognitive variables in determining 

behavior in EBDM tasks and suggest that only a subset of individuals with schizophrenia-

those best fit by the bias model-fail to employ a strategy that considered trial-wise reward 

and probability information, consistent with dysfunctional effort allocation.

Unlike those participants best fit by the SV or reward only models, participants who were 

better characterized by the bias model-the simplest model that we fit-exhibited a pattern of 

responding that showed very little modulation of choice behavior as a function of available 

reward or probability information (Figure 1D). Critically, participants with schizophrenia 

were more likely to be better fit by this simple model than healthy controls. While prior 

work found that individuals with schizophrenia modulated their choices as a function of 

reward information, the subset of individuals best-fit by the bias model showed a general 

insensitivity to reward and probability information that was not localized to high reward 

values. Consequently, this analysis suggests that for half of participants with schizophrenia 

(those fit by the bias model) the magnitude of impairment in effort allocation may be more 

severe than previously understood.

Participants with schizophrenia who were best fit by the bias model also showed reductions 

in measures of cognitive functioning. This finding is consistent with the idea that 

systematically incorporating reward, probability, and effort information to guide choices is 

cognitively demanding, suggesting an important role for cognitive processing in effortful 

goal-directed behavior and its assessment. An emerging body of research has examined the 
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interaction between motivation and cognition in shaping decision-making and goal-directed 

behavior (see (Braver et al., 2014, for a review), highlighting the idea that allocation of 

working memory and cognitive resources is a motivated process. Thus, the observed reliance 

on simple strategies for making choices in a subset of people with schizophrenia may be a 

manifestation of reduced motivation. Consistent with this hypothesis, a recent study of 

reinforcement learning with variable working memory demands in patients with 

schizophrenia found that working memory capacity and reliability could account entirely for 

putative learning deficits (Collins, Brown, Gold, Waltz, & Frank, 2014). As with the current 

results, this finding highlights the extent to which apparent performance differences in a 

reward-related symptom domain may be driven by symptoms related to cognition for some 

individuals. Thus, some individuals who were best fit by the bias model may have simply 

lacked the motivation to put forth the mental effort required to develop a systematic 

allocation strategy with regard to reward and probability information. While this possibility 

does diminish the interpretability of participants’ choices, it still suggests that when placed 

in a context where they were able to exchange effort for reward, these individuals were 

uninterested in or unable to exert the requisite mental effort to develop a systematic strategy.

Interestingly, among the subsets of participants who were better fit by the SV models, 

individuals with schizophrenia allocated effort at rates very similar to healthy controls 

(Figure 1D). Variability in effort sensitivity across individuals-as reflected by model 

parameters-was associated with levels of amotivation. Thus, even within participants 

showing systematic effort allocation at the group level, the application of computational 

models was useful for characterizing individual differences in effortful behavior related to 

negative symptoms. Moreover, the association with negative symptoms was specific to 

avolition and items of the MAP scale assessing low motivation. This dissociation is 

consistent with a large amount of prior preclinical and theoretical work suggesting that 

impairments in effort expenditure should be distinct from deficits associated with hedonic 

capacity (Barch & Dowd, 2010; Berridge, 2007; Kring, Gur, Blanchard, Horan, & Reise, 

2013; Salamone & Correa, 2012; Treadway & Zald, 2011; Treadway & Zald, 2013).

While the associations between our model-derived effort aversion parameter and negative 

symptom severity are intriguing, the appropriate interpretation of this result is unclear. Effort 

aversion in Sample 1 was associated with avolition across all participants, while motivation 

in Sample 2 was only associated with effort aversion in patients who were best-fit by a 

subjective value model. While one possibility is that SANS avolition measures a construct 

closer to behavioral effort aversion, the possibility that we consider to be more likely is that 

the value of effort discounting parameter k is more meaningful in participants who are better 

fit by the model (and who systematically integrate effort). The isolation of participants who 

were well fit by the SV models may also reduce a key source of “noise” in the data: these 

individuals likely met the cognitive and motivational requirements to understand and comply 

with the task, and the relatively higher degree of cognitive function in these participants may 

have resulted in more accurate reporting of negative symptoms, as retrospective reporting of 

negative symptoms requires intact executive function (Strauss & Gold, 2012). Consequently, 

the construct validity and measurement sensitivity of the task is likely enhanced for these 

participants, thereby resulting in clearer associations with negative symptoms. It should be 

reiterated that this association between negative symptom severity and model-derived effort 
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aversion will require replication. A sizeable number of prior studies have reported 

inconsistent relationships between EBDM and negative symptom assessments (Barch et al., 

2014; Fervaha et al., 2015; Fervaha, Graff-Guerrero, et al., 2013; Gold et al., 2013; Strauss 

et al., 2016; Treadway et al., 2015; Wolf et al., 2014), lowering the degree to which a single 

result can be interpreted with confidence.

Limitations and Future Directions

While we believe this work to be informative, several limitations and directions of 

improvement should be noted. First, while the EEfRT task has several levels of reward, the 

inclusion of only two levels of effort obscures our ability to confidently disentangle 

increased sensitivity to effort from decreased sensitivity to reward. As such, the application 

of similar modeling methods to other tasks (e.g. Arulpragasam, Cooper, Nuutinen, & 

Treadway, 2018; Le Bouc et al., 2016), or the addition of a wider range of effort levels to the 

EEfRT would be useful in future studies to dissociate these constructs. The application of 

paradigms that have been adapted for neuroimaging would also be useful in dissociating 

whether those fit by the bias model show differences in neural representation of subjective 

value, or whether subjective values are similar represented but ultimately not used to guide 

choice, possibly suggesting difficulties in the association of these values with motor 

responses. Future work may also benefit from a simplified design, specifically equated 

temporal requirements for hard and easy tasks and consistent probability, to measure effort 

discounting in the absence of possible temporal discounting or risk sensitivity.

It should also be highlighted that approximately one third of healthy controls were best-fit 

by the bias model. While individuals within this group are characterized by a failure to 

modulate choice based on this available information, there are several different behavioral 

profiles within this group that should be parsed in future work. Better fit of the bias model 

may include individuals who respond randomly, who allocate effort for reward in suboptimal 

ways (i.e. being more willing to exert effort for lower rewards or lower probabilities), or who 

select all one option. While a participant who exclusively selects the easy option may 

genuinely have a high reward threshold for exerting effort, it is also possible that they failed 

to understand the task. The inclusion of debriefing questions regarding self-reported strategy 

implemented by the participant would be critical in future studies to allow for the 

identification of participants who show a full understanding of the task. Debriefing 

questionnaires may also be useful in identifying other valuation strategies implemented by 

participants in this task that could aid in the development of new models.

This work advances previous methods of analysis of EBDM tasks to address how individuals 

make choices rather than focusing exclusively on what choices are made. Our results suggest 

that the failure to systematically allocate effort occurs more frequently in individuals with 

schizophrenia than healthy controls, that many participants with schizophrenia exhibit 

systematic effort allocation, and that disrupted effort allocation is related to cognitive 

functioning. These data underscore the importance of considering patient heterogeneity 

when evaluating task performance on experimental paradigms, and highlight the advantages 

of computational models to help identify potential sub-groups that may be characterized by 

distinct underlying pathophysiology. Moreover, only after controlling for differences in 
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systematic allocation were we able to detect clear relationships between effort aversion and 

negative symptoms across both samples. Future work in several domains is needed to fully 

understand the implications of these results, their extension to daily life, and their specificity 

to schizophrenia relative to other diagnoses that are associated with aberrant effort 

expenditure.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A. Task schematic. B. Proportion of subjects best-fit by the subjective value and bias 

models, measured using Bayesian Information Criterion. The proportion of individuals 

(within the bias model) who highly favored one option (i.e. who selected over 90% hard and 

90% easy) are also indicated. C. Overall proportion of hard task selection by people with 

schizophrenia and healthy controls at each reward and probability level. D. Performance of 

patients with schizophrenia and controls within each subgroup.
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Figure 2. 
Behavioral data from three sample patients with similar cumulative behavior (each chose 

high effort on 60–64% of trials). On the left, participant’s observed choices (hard or easy) 

are plotted by reward value. On the right, observed choices are overlaid with model-

predicted probabilities of choosing high effort for 88% probability trials from the SV model, 

50% probability trials from the SV model, and bias model (all probabilities). The participant 

best-fit by the full-SV model (top) chooses high-effort more frequently as reward increases, 

with different rates for 88% and 50% probability trials. The participant best-fit by the 

reward-only SV model shows similar effects of reward, but with little effect of probability 

(note that the lines for 88% and 50% probability conditions exhibit complete overlap). The 

bottom panel represents data from a patient best-fit by the bias model, where the percentage 

of high effort choices does not increase as reward increases and choices show little effect of 

probability.
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Figure 3. 
Relationship between cognitive measures and model fit in participants with schizophrenia. 

A. Differences in cognitive functioning between individuals with schizophrenia in each 

subgroup. B. Correlation between ΔBIC and measures of cognition in both samples of 

individuals with schizophrenia (all patients), controlling for negative symptoms. WAIS: 

Wechsler Adult Intelligence Scale, MCCB: MATRICS Consensus Cognitive Battery, BIC: 

Bayesian Information Criterion. C. Effort-sensitivity parameter (k) association with negative 

symptoms in people with schizophrenia best-fit by the subjective value models (full or 
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reward only), controlling for cognitive functioning. CAINS: Clinical Assessment Interview 

for Negative Symptoms, SANS: Scale for the Assessment of Negative Symptoms. Higher 

scores indicate greater impairment.
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TABLE 1:

Participant Demographic, Clinical, and Self-report Measures

Sample 1

Schizophrenia Control t

n=56 (59% M) n=39 (49% M)

Age 38.92 (8.13) 37.35 (9.25) 0.87

Education (Years) 13.00 (2.12) 13.85 (2.79) 1.68

WAIS Matrix Reasoning 9.70 (3.52) 11.41 (2.58) 2.59*

SAPS Positive 3.89 (2.76) .03 (.16) 8.72**

SANS Negative 8.05 (1.59) 1.59 (2.33) 10.63**

SANS Avolition 2.95 (.94) .79 (1.22) 9.70**

SANS Anhedonia 2.55 (.93) .67 (1.03) 9.27**

SAPS Disorganization 3.38 (2.85) 1.41 (1.25) 4.04**

Sample 2

Schizophrenia Control t

n=94 (69%M) n=66 (59% M)

Age 48.77 (11.56) 47.00 (7.80) 1.01

Education 13.24 (1.82) 14.79 (1.64) 5.22**

MCCB 31.59 (12.23) 46.48 (8.58) 8.01**

PANSS Positive 18.45 (7.46) NA -

PANSS Negative 15.96 (6.96) NA -

CAINS Motivation 1.77 (.85) NA -

CAINS Pleasure 1.70 (.84) NA -

Note. Standard deviations in parentheses. Demographic table does not include subjects who were excluded from analysis (see Methods). 
Demographic information was not available for 10 healthy control subjects in Sample 2. SAPS = Scale for the Assessment of Positive Symptoms 
(Andreasen, 1984); SANS = Scale for the Assessment of Negative Symptoms (Andreasen, 1989); WAIS = Wechsler Adult Intelligence Scale 
(Wechsler, 2014); MCCB = MATRICS Consensus Cognitive Battery (M.F. Green & Nuechterlein, 2004); PANSS = Positive and Negative 
Syndrome Scale (Kay, Fiszbein, & Opfer, 1987); CAINS = Clinical Assessment Interview for Negative Symptoms (Kring, Gur, Blanchard, Horan, 
& Reise, 2013). CAINS motivation is the average of the motivation-related items (motivation for close family/spouse/partner relationships, 
motivation for close friendships and romantic relationships, motivation for work and school activities; motivation for recreational activities) while 
CAINS pleasure is the average of pleasure-related items (frequency of expected pleasure social activities-past week; frequency of expected pleasure 
social activities-next week; frequency of expected pleasurable work & school activities-next week; frequency of pleasurable recreational activities-
past week; frequency of expected pleasurable recreational activities-next week).

*
p < .05,

**
p < .01.
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