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Resting-state functional magnetic resonance imaging (fMRI) has
provided converging descriptions of group-level functional brain
organization. Recent work has revealed that functional networks
identified in individuals contain local features that differ from the
group-level description. We define these features as network
variants. Building on these studies, we ask whether distributions
of network variants reflect stable, trait-like differences in brain
organization. Across several datasets of highly-sampled individuals
we show that 1) variants are highly stable within individuals, 2)
variants are found in characteristic locations and associate with
characteristic functional networks across large groups, 3) task-
evoked signals in variants demonstrate a link to functional varia-
tion, and 4) individuals cluster into subgroups on the basis of variant
characteristics that are related to differences in behavior. These
results suggest that distributions of network variants may reflect
stable, trait-like, functionally relevant individual differences in func-
tional brain organization.

functional connectivity | resting-state | individual differences | networks

Identifying the nature of individual variability in human brain
function is a central question in many fields of study, including

psychology, psychiatry, neurology, and neuroscience. Many human
neuroimaging studies have identified stable, meaningful individual
differences in functional activations during task performance (1–5)
or volumetric differences (e.g., refs. 6 and 7) within specific brain
regions. However, a number of recent investigations have revealed
substantial individual variability while subjects are at rest not only
in single regions, but also in large-scale networks throughout the
brain (8–16). Here, we examine the characteristics of these indi-
vidual differences in brain networks, asking if they are stable and
systematic features of individual brain organization. Furthermore,
we investigate if the distributions of these differences within an
individual have trait-like aspects that might be linked to trait-like
individual differences in behavior.
Large-scale functional brain networks are composed of dis-

tributed brain areas that demonstrate correlated fluctuations in
their spontaneous (resting-state) activity measured using functional
magnetic resonance imaging (fMRI). Over the last decade con-
vergent descriptions of canonical functional network organization
of the human brain have emerged from fMRI studies (17, 18).
These efforts have revealed that functional networks map onto
known large-scale brain systems, including the motor (19), auditory
(20), and visual systems (21), as well as higher-level systems, such
as those for executive control (22). Furthermore, regions within the
same functional network tend to coactivate during tasks (23).
Most of the aforementioned studies have analyzed data from

large groups of typical adults averaged together in order to de-

lineate group-level descriptions of network organization (17, 18).
However, several recent investigations have revealed variability
in functional network organization across individuals (8, 9, 11,
12), including observations that highly sampled individuals show
focal deviations from the group-level description (10, 13, 14). We
refer to these individual-specific deviations in functional network
organization as “network variants.”
Natural questions raised by the observation of variants are

whether individual differences in functional brain organization
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relate systematically to individual differences in function. Here,
we ask specifically whether: 1) Network variants exhibit stability
over time within an individual, 2) network variants have systematic
spatial distributions or functional network associations, 3) indi-
viduals separate into subgroups with different distributions of
variants, and 4) aspects of network variants relate to individual
differences in brain function and behavior. These questions seek
to address the trait-like nature of distributions of individual dif-
ferences in brain organization.
We investigate these questions using 3 datasets, one composed

of 10 highly sampled individuals from the Midnight Scan Club
(MSC) (13), a second of a single individual scanned over the
course of a year called the MyConnectome dataset (24), and the
third including 384 unrelated individuals with high-quality data
from the Human Connectome Project (HCP) (see Materials and
Methods for exclusion criteria) (25). Furthermore, we split the
HCP dataset into 2 matched samples for within-study replication.
Together, these datasets allow us to examine both the within-
individual stability of network variants as well as the distribu-
tion of network variants across larger samples.

Results
We compared individual resting-state functional correlations (rsFC)
to a group average across the entire cortex. We found that most of
the brain in individuals shows moderate to high correspondence
with group-average rsFC, with a few locations showing large de-
viations, as in ref. 10. We defined network variants as the locations
where individuals’ rsFC differs substantially from the group av-
erage (Fig. 1). Our goal was to examine the nature of these net-
work variants and to determine if they relate to brain function.

Network Variants Are Present and Reliable in Individuals. Network
variants (Fig. 1) were observed in all individuals included in the
study, in the MSC, MyConnectome, and HCP datasets (SI Ap-
pendix, Fig. S1). All individuals have at least one brain region
with low similarity to the group average (defined as r <
0.15 rather than lowest decile for this analysis only). Thus, net-
work variants appear to be a common phenomenon, not just an
idiosyncrasy of a few individuals. However, the location, size, and

network assignments of variants differed across individuals, as
will be described in more detail below.
Next, we asked if network variants were stable within an in-

dividual, rather than reflecting measurement noise, state change,
or sampling variability. We examined session-to-session variability
of variants in the MSC dataset. For each individual, 10 separate
30-min resting-state sessions were available (collected over 3 wk).
The spatial correlation map was robust across sessions (see ex-
ample from MSC02 in Fig. 2A), with high (>0.75) intraclass cor-
relations (ICC) across sessions for 9 of the 10 individuals, and the
distribution of randomly sampled between-subject ICCs was sub-
stantially lower (Fig. 2B; similar results were found with
binarized network variants, as shown in SI Appendix, Fig. S2).
The individual with a relatively low ICC (0.44 for MSC08) had a
substantial amount of high-motion data and self-reported sleeping
during extensive portions of data acquisition, as previously de-
scribed (13, 26). Thus, this subject was excluded from all fur-
ther analyses. Furthermore, we found that network variants were
stable over a year in the individual from the MyConnectome
dataset (SI Appendix, Fig. S3), which is a more ecologically valid
timeframe. Finally, we examined the amount of data required
to identify network variants reliably (SI Appendix, Fig. S4), and
demonstrated that ∼40 min of high-quality (low-motion) data are
needed (10, 13).

Variants Occur Mostly in Frontal and Temporo-Parietal Cortex and
Often Associate with Higher-Level Functional Networks. The loca-
tion, size, and network associations of variants differed across
individuals. If variants relate to a limited number of trait-like
features, we might expect them to show characteristic patterns of
variation across the population. Thus, in our next analysis we
examined the characteristic spatial distribution and functional
network associations of variants across individuals. We expanded
on previous measurements of individual variability in brain net-
works (8, 11, 12) by characterizing the distribution of network
variants across both highly sampled (MSC) and large-group (HCP)
datasets.
In both datasets we found common locations for network

variants near the temporo–occipito–parietal junction and in the
lateral frontal cortex, especially in the right hemisphere, with
overlaps peaking around 33% of subjects in both datasets (3 of
9 highly sampled individuals, 127 of 384 HCP subjects). In the
group average, these regions overlap with association networks,
including the frontoparietal (FP) and ventral attention networks.
Conversely, network variants occur rarely in the insula, superior
parietal lobe, posterior cingulate, and primary sensory and motor
cortical areas, with an exception around the occipital pole (Fig.
3A). Thus, there appears to be a characteristic distribution of
network variants across individuals, with more network variants
occurring in specific regions of the association cortex. Notably,
this common distribution was found using separate datasets
collected from 2 different scanners (3T Trio vs. custom 3T HCP
Skyra) with different acquisition parameters (e.g., spatial reso-
lution of 4-mm isotropic voxels vs. 2-mm isotropic voxels, tem-
poral resolution of 2.5 s vs. 0.72 s, anterior-to-posterior vs. left-to-
right and right-to-left phase encoding, and single-band vs. multiband
acquisition).
To determine whether network variants are driven by indi-

vidual differences in gross anatomical features, we examined the
overlap between network variants and deformations that oc-
curred during surface registration for each individual, following
Gordon et al. (11). We observed extremely low overlap between
network variants and deformations due to surface registration (SI
Appendix, Fig. S5) (mean dice overlap = 0.0001).
In addition to their location, we examined the functional net-

work with which each variant was associated (i.e., idiosyncratically
“assigned to”). After identifying the location of the variant, we
implemented a modified winner-take-all template matching

Fig. 1. Identification of network variants. We computed a spatial correlation
between an individual’s seed map and the group-average seed map at every
vertex on the cortical surface. An example is shown here for a seed in the
dorsal medial frontal cortex (white seed indicated by the black arrows). We
compare the pattern of correlations for subject MSC02 with the group average
and the pattern of correlations for subject MSC06 with the group average.
Notably, MSC02’s seedmap differs substantially from the group average, while
MSC06’s seed map agrees well. Hence, the spatial correlation at that vertex is
low in MSC02 (blue arrow, top brain, Right) and high in MSC06 (red arrow,
bottom brain, Right). Network variants are defined as contiguous cortical re-
gions where this spatial correlation measure is low (dark blue areas on the
brains, Right), excluding brain areas with low signal (see Materials and
Methods for additional details).
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approach to determine the resting-state functional network to which
the variant is most similar (see Materials and Methods for details)
(12). For example, consider that the canonical (group-average) FP
network is the network in which variants are most often located
(e.g., dorsolateral prefrontal cortex in Fig. 3A). Thus, variants in
this part of the brain are non-FP by definition (e.g., the default
mode variants shown in Fig. 4B). We observed that variants are
often assigned to the default mode, cingulo-opercular (CO), and
other attention/control networks and infrequently assigned to
networks related to sensorimotor and memory functions (Fig.
3B). Thus, variants often “switch” from one association net-
work to another.
Altogether, network variants’ anatomical distribution and

typical functional network assignments show characteristic and
systematic distributions, largely related to alterations in associ-
ation systems, suggesting that they may be particularly linked to
individual differences in higher-level functions.

Task-Evoked Signals in Variants Correspond to Network Association,
Not Location. To further validate whether network variants are
related to changes in task function, next we asked if variants
exhibit task fMRI activations consistent with their novel network
assignments. To address this question, we focused on default
mode network (DMN) variants as a test case because 1) all MSC
subjects had examples of DMN variants and 2) the activation
profile of the DMN is well described and distinct from other
networks, with a robust propensity to show de-activations during
most tasks (27). Thus, we examined whether DMN variants follow
the expected patterns of de-activations during task performance,
despite being located in regions outside of the canonical DMN.
To this end, we measured the average blood-oxygen level-

dependent (BOLD) activations across all task conditions in the
set of mixed-design tasks (semantic, visual coherence) collected
in the MSC dataset. We found that DMN variants show signif-
icantly stronger de-activations than canonical nondefault regions
of the brain [t(8) = 3.33, P = 0.01] (Fig. 4A, red vs. gray lines),
approaching the level of de-activation shown by canonical regions

of the DMN (Fig. 4A, blue lines). This pattern of de-activations
in variants is notable, given that variants, per our working defi-
nition, occur in locations remote from canonical DMN locations
(see Fig. 4B for an example of variants and task de-activations
from one individual). Indeed, DMN variants in a given individual
show significantly lower activations than the same location in
other subjects [t(8) = 7.86, P < 0.001] (SI Appendix, Fig. S6C).
Fig. 4C and SI Appendix, Fig. S6 A and B show examples of DMN
variant alignments to de-activations within and across subjects,
including in a region of the dorsolateral prefrontal cortex that is
typically associated with positive activations in these tasks.
Importantly, de-activation was not a generic characteristic of

all variants, as variants associated with many other networks
show activations (e.g., variants assigned to task-activated net-
works, such as the FP, dorsal attention [DAN], and visual) (Fig.
4A), approaching the activations shown by canonical regions in
each network with these contrasts. To supplement this finding,
we conducted a related analysis on sustained task activations in
CO network variants. Group studies have suggested that sus-
tained activations are fairly selective to the CO network, rather
than other control-related networks, like the FP network (22, 28–
30). We found a descriptive result for sustained activation in CO
network variants (SI Appendix, Fig. S7). Since only a small number
of participants exhibited CO variants in the MSC dataset (6 of 9),
we describe the result without formal statistics. These findings
provide initial evidence that network variants carry task-evoked
variations in their functional signals related to their idiosyn-
cratic network identity at locations not expected from group-
activation maps.

Distinct Subgroups of Individuals Clustered by Properties of Network
Variants. An additional hypothesis regarding the trait-like nature
of network variants is that common distributions of variants may
be present across individuals, much as eye color or blood type
present in common clusters across individuals. To address this
question, we examined whether individuals could be clustered
into separate subgroups on the basis of the distributions of

Fig. 2. Within-subject reliability of network variants. (A) The spatial correlation values at each cortical surface vertex for all 10 independent resting-state
fMRI sessions from subject MSC02 are shown. Locations with low spatial correlations correspond to network variants (e.g., black circles; similar results were
seen for the medial surface and right hemisphere). (B) The ICC of the spatial correlation maps (for the entire cerebral cortex) computed across each session
within each individual in the MSC dataset is shown. The ICC reflects the test–retest reliability of network variants identified via data from each session in-
dependently for an individual. The open black circles represent the correlation between 2 randomly selected spatial correlation maps from different subjects
(one session per subject; 1,000 random permutations performed). Subject MSC08 (the excluded high-motion subject) is the only individual with a relatively
low ICC that overlaps the distribution of between-subject correlations.
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network variants using a data-driven approach (InfoMap) (Ma-
terials and Methods) (31). Given the exploratory nature of this
analysis, we first examined different clustering possibilities in the
MSC dataset, and then used 2 matched split-halves in the inde-
pendent HCP dataset to validate the MSC results.
No clustering via anatomical location of variants. First, we examined
whether individuals could be clustered according to the anatomi-
cal locations of their network variants (irrespective of functional
identity). We constructed a binary map of variant locations for
each subject. Then, we computed the spatial similarity of the an-
atomical distribution of variants between all pairs of individuals,
and applied InfoMap to this spatial similarity matrix (seeMaterials
and Methods for details). Across InfoMap thresholds, individuals
generally grouped into a single large cluster or were unassigned to
a group (e.g., for the full 384 HCP subjects the average number of
individuals in the large cluster was 201 ± 130) (SI Appendix, Fig.
S8). Thus, individuals were not classified into large subgroups of
common anatomical locations of network variants.
Distinct clusters of individuals via functional network of variants. Next,
we tested if individuals could be clustered according to the func-
tional properties (network assignment) of their variants. To this
end, we examined the similarity between the seed map of each

variant to standard templates of canonical functional networks
(14 template functional networks were derived from a separate
dataset, the WashU 120 group average; see ref. 12 for more de-
tails). This procedure produced 14 correlation coefficients per
network variant, conveying the extent to which a variant is default-
like, visual-like, and so forth. The mean template similarity across
variants (averaged across all variants within an individual)
revealed 2 distinct patterns across individuals in the MSC dataset
(Fig. 5A). Importantly, we replicated the result in 2 independent,
matched HCP split-halves (Fig. 5B). Again, this is notable given
the differences in the subjects [e.g., IQs are much higher in the
MSC dataset (13)], scanner, and acquisition parameters. Fur-
thermore, we validated the 2-group clustering solution via a
modularity-based null model as well as hierarchical clustering (SI
Appendix, Fig. S9). The 2-subgroup solution was the most robust
across datasets, with some evidence for a 4-subgroup solution (SI
Appendix, Fig. S10).
The first subgroup consisted of individuals (NMSC = 3 of 9,

NHCP,1 = 92 of 192, NHCP,2 = 91 of 192) whose variants exhibited
stronger correlations to the CO, DAN, and sensorimotor net-
works (Fig. 5, gray), suggesting that network variants in these
individuals associated more strongly with control and processing

Fig. 3. Distribution of network variants across individuals. (A) The overlap of network variant locations across individuals is displayed, with brighter colors
indicating increasing levels of overlap for the MSC (Left) and HCP (Center) datasets. Network variants occur commonly in lateral frontal cortex and near the
temporo–occipito–parietal junction, and are rarely found in primary sensorimotor areas, the insula, superior parietal lobule, or posterior cingulate cortex. (B)
In addition to occurring in characteristic locations, network variants were also typically associated with a characteristic set of networks. The mean proportion
of variant functional network assignments to 14 canonical networks (12) across individuals in the MSC (Left) and HCP (Right) datasets (error bars = SEM) is
displayed. A plurality of variants was assigned to the DMN (red) and CO (purple) networks across individuals in both datasets.
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systems. The second subgroup consisted of individuals whose
variants exhibited stronger correlations to the DMN, among
others (NMSC = 4 of 9, NHCP,1 = 83 of 192, NHCP,2 = 80 of 192)
(Fig. 5, pink). The 2 subgroups were strongly anticorrelated (see
the matrices on the left in Fig. 5), indicating that functional
characteristics of variants in these subgroups differed substan-
tially from one another. We observed a similar but weaker pat-
tern of subgroups when individuals were clustered based on the
overall size of each functional network relative to the group
average (SI Appendix, Fig. S11).
Moreover, we observed a small but significant difference be-

tween the 2 HCP subgroups in terms of neuropsychological
measures of behavior (SI Appendix, Fig. S12). We found that
individuals in the control and processing subgroup had a higher
score [t(344) = 2.04, P < 0.05] in the positive life-experience
factor and a lower score [t(344) = 2.04, P < 0.05] in the history
of drug abuse factor. Both differences were significant after false-
discovery rate-correction (see SI Appendix for full details).
Jointly, these findings suggest that individuals cluster into

subgroups based on the network assignment of each variant, with
one subgroup exhibiting more control and processing-like vari-
ants and the other subgroup exhibiting more default-like vari-
ants. Importantly, these findings provide evidence for systematic

variation of network variants across individuals that replicated
across 3 independent samples, with potential implications for
behavior.
As noted above, when we examined cluster solutions across

alternate thresholds (Materials and Methods and SI Appendix,
Fig. S9), we observed subpatterns within each of the 2 primary
clusters in the large HCP samples at lower (sparser) thresholds.
There was some evidence for a 4-subgroup solution (SI Appendix,
Fig. S10), but it was less reliable than the 2-subgroup solution
across HCP split-halves. The presence of more fine-grained
subgroups suggests that greater sample size, as well as the inclu-
sion of additional measures and data from clinical populations,
might yield further clusters of individuals not yet characterized,
and potentially more fine-grained relationships between variants
and behavior.

Discussion
The present study deepens our understanding of individual dif-
ferences in the systems-level organization of the human brain
by demonstrating that these differences reflect stable, trait-like
features with systematic properties that cluster across individ-
uals. Specifically, our results demonstrate that network vari-
ants: 1) Show high session-to-session stability in highly sampled

Fig. 4. Functional activation of network variants. (A) The average task-evoked activations are displayed for variants (red) assigned to different networks
(x axis) and contrasted with the average activation for canonical regions in each network (blue) and for canonical regions in other networks (black). Mean de-
activations are significantly stronger for DMN variants than in non-DMN canonical regions, and approach the levels of deactivation seen for canonical DMN
locations (error bars = SEM across individuals). De-activations were not present across all variants; variants from task-activated networks, like visual, FP, and
DAN, show activations during the task, approaching levels for canonical regions in each network. (B) Example de-activations (t < 0) are displayed for subject
MSC02 with outlines of the individual’s network variants overlaid. Note that there is strong de-activation in DMN variants (red arrows), whereas there is no
deactivation in other variants (e.g., FP variant, yellow arrow). The group-average networks with the same variants overlaid are displayed below for reference,
and the righthand image shows an enlarged view of 2 DMN variants in right lateral frontal cortex. (C) The same variant from MSC02 (red outline) is overlaid
on an activation map from MSC02 (mostly de-activated), as well as other example subjects (MSC03-05) and the group average. In other individuals, this
location exhibits activations. Indeed, across DMN variants in all subjects, activations were significantly lower for DMN variants than the matched location in
other subjects. See SI Appendix, Fig. S6 for more extended examples.
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individuals, suggesting that they are trait-like; 2) occur com-
monly in lateral frontal and temporoparietal regions and often
associate with the DMN, CO, and other control networks,
suggesting a systematic linkage to higher-level functions; 3) are
related to functional variations during tasks, displaying brain (de-)
activations consistent with their novel network reassignment and
validating their putative network function; and 4) have a system-
atic patterning across individuals, allowing for the clustering of
individuals into subgroups, with small differences in behavior be-
tween subgroups. Jointly, these findings suggest that network
variants are promising candidates for endo-phenotypic markers
of systems-level brain variability.

Network Variants Are Stable, Trait-Like Components of Individual
Functional Brain Organization. Our primary goal was to investi-
gate properties of network variants. We hypothesized that they
might show trait-like differences, including stability over time
within individuals and systematic variation across individuals.
We found that all individuals across 2 independent datasets

(with separate scanners and scan parameters, n = 393) showed

characteristic focal deviations from the group-level description
of functional brain organization. This indicates that network
variants are standard components of typical adult functional
network organization, as hinted at by the strong individual var-
iation reported in previous research (10–15). Moreover, we ex-
pand upon these findings by showing that network variants are
stable within an individual, appearing consistently across 10 in-
dependent resting-state fMRI sessions in highly sampled individ-
uals. These findings extend previous evidence that resting-state
correlations are sensitive to individual differences in brain orga-
nization, given sufficient data and adequate control for nuisance
sources of variance (10, 15, 32–34).
Our results also indicate that group-average functional net-

works represent a mixture of individuals from distinct subgroups
(Fig. 5). However, we demonstrate that network variants are
highly localized to particular portions of the cortex. In other
words, individuals showed substantial similarity to the group-
average networks at most cortical locations. Since the maximum
spatial overlap of network variants is ∼33%, the group average
may be a reasonable description for the majority of individuals in

Fig. 5. Separable groups of individuals via network associations of variants. The figure displays groups of individuals in the (A) MSC and (B) HCP datasets
clustered by the network associations of their variants. Network associations were computed for each variant as their similarity to templates of 14 canonical
functional networks (Materials and Methods) (11). The matrices on the left show the correlation between pairs of individuals in terms of variant network
associations; each row/column represents a single individual’s correlation to all other individuals. The matrices were clustered in a data-driven fashion using
InfoMap. The gray and pink colors or bars along the edges of the matrices denote individuals in the same subgroup. These groupings were used to create the
averages (line graphs) on the right. The line graphs show the average similarity of variants to each functional network template for individuals within the
control and processing subgroup (gray) and the default subgroup (pink; error bars = SEM across individuals).
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most brain locations. Thus, group-average functional networks
provide an adequate description of the expected pattern of brain
organization, but the group average is not a good representation
of any given person and is, therefore, limited in inferences that can
be drawn about brain–behavior relationships.
Taken together, the presence of network variants in all indi-

viduals and their robustness over sessions provides compelling
evidence that they act as stable variations in the systems-level
organization of the human brain. These features may prove to be
useful substrates in understanding individual differences in brain
function and behavior across many domains.

Network Variants Have Characteristic Distributions and Functional
Network Associations Across Individuals. We observed that net-
work variants are found commonly near the temporo–occipito–
parietal junction and in the lateral prefrontal cortex. We rarely
detected network variants in primary sensorimotor cortical areas,
the insula, superior parietal lobe, or posterior cingulate cortex.
This finding not only replicates across independent datasets, but
also converges with previous studies of individual differences in
functional network organization reporting high individual dif-
ferences in association networks (8, 11, 34, 35), with a few spe-
cific differences. For example, compared to Mueller et al. (8), we
found more network variants near the inferior frontal gyrus and
fewer near angular gyrus and supramarginal gyrus. Differences in
data processing and registration (surface-based, here) may have
contributed to some of these discrepancies. This idea is sup-
ported by the similarity of the results here and those reported by
Kong et al. (35).
Interestingly, the distribution of common locations for net-

work variants does not appear to be symmetric between the 2
hemispheres, as we found generally more variants in the right
hemisphere. Lateralization in the brain is a well-established phe-
nomenon, in terms of both anatomy and function (e.g., refs. 36
and 37), even at the level of individual rsFCs (9). The significance
and implications of potential network variant lateralization is a
topic for future work to explore.
Furthermore, we found that variants tend to associate with the

DMN, CO, and other association networks more often than other
functional networks. Networks like the CO and FP network are
thought to be important for control functions and performance
monitoring (22, 28, 38–41), and the DMN has been proposed to
be involved in numerous domains, including autobiographical
memory, internal monitoring, and theory of mind (42–44). Net-
work variants occur most often in these “association” networks,
and they tend to reassign from one higher-level functional network
to another. Together, these results suggest that flexibility in
functional network organization may relate more closely to
higher-level functions typically associated with these regions.

Network Variants Exhibit Functional Variations during Tasks. We
observed that network variants coincide with locations of func-
tional variations during tasks in the MSC dataset. Specifically, we
demonstrated that variants that associate with the DMN exhibit
decreases in activity during task performance, as has been ro-
bustly observed for canonical DMN regions in most externally
directed tasks (27). This was the case even in DMN variants in
the dorsolateral prefrontal cortex, a brain region that canonically
shows robust positive activity during tasks in most individuals.
Moreover, this de-activation was not a general property of all
variants; variants associated with task-activated systems like the
visual, DAN, and FP networks showed (positive) activations.
Similarly, CO network variants showed a trend toward higher
levels of sustained activation, consistent with a role of the CO
network in the stable maintenance of task set (22, 28–30). This
finding provides initial validation that network variants shift to-
ward the response characteristics of their functional network
assignment during task performance, providing corroborating

evidence that variants reflect true deviations in the functional
organization of individual human brains that impact task function.
This result converges with work from Tavor et al. (45), who

built a model that was able to predict individual differences in
task activations on the basis of individual differences in resting-
state data. Their model did not specifically operate on network
variants, although the presence of network variants would cer-
tainly impact the training of the model. Similarly, Gordon et al.
(13) demonstrated that individual specific task-related activation
patterns map onto that individual’s resting-state functional net-
works better than they map onto different individuals’ networks.
Here, we build on these findings by showing that network vari-
ants specifically show improved task–rest alignment in individuals
compared with canonical network assignments. Finally, seminal
work from Miller and colleagues revealed stable, meaningful in-
dividual differences in brain activations during task performance
(1–4). These investigations led to the idea that individual-specific
activation patterns reflect, or are potentially determined by, subject-
specific information-processing strategies. The results presented
herein suggest that if these hypotheses are true, this trait-like brain
activity may be localized to network variant regions, specifically.

Individuals Cluster into Discrete Groups on the Basis of Network
Variant Characteristics. We found evidence for subgroups of in-
dividuals within a normative sample with similar forms of net-
work variants, suggesting that variants demonstrate systematic
variation across individuals. Intriguingly, it was the network as-
signment of variants, rather than their anatomical location, that
appeared to be the driving force behind these distinct subgroups.
That is, it appears as though group-level variation of network
variants is more related to functional assignment than location.
We observed 2 subgroups across individuals that were con-

sistent in both datasets. The 2 subgroups were composed of in-
dividuals with more control and processing-like variants and
individuals with more default-like variants. The strong distinc-
tion between the subgroups may relate to the specific functional
networks onto which the variants map, which generally activate
and de-activate, respectively, during externally directed tasks (46,
47). A related possibility is that the distinction between the
subgroups may be due to changes in the relative size of the
aforementioned networks. In other words, individuals with more
default-like variants may have an expanded DMN, which could
be achieved via “trading” anatomical space canonically occupied
by control and processing functional networks for DMN network
variants (and vice-versa). Any of these possibilities relates to the
trait-like status of the distributions of variants across individuals.
While our work provides initial evidence for groups of indi-

viduals with similar network variants across 2 different samples,
it appears likely that additional subgroups will be found in future
studies. Some additional subgroups may be associated with other
properties of network variants (e.g., specific locations, networks,
and their interactions), while others may emerge with a more
behaviorally diverse range of individuals (e.g., those with neu-
rologic or psychiatric disorders). Notably, in the larger HCP
dataset we observed some evidence of further clustering, with the
2 initial groups dividing further into 4 subgroups of individuals.
The current work presents a starting point for future investiga-
tions into systematic variation in individual functional brain or-
ganization, an area that merits substantial additional exploration.

Network Variants May Relate to Behavior. The trait-like nature of
network variant distributions raises the question of whether or
not network variants relate to individual differences in behavior.
It is possible that these individual differences in brain organi-
zation reflect different manners of instantiating the same be-
havior, a behavioral phenocopy (48), or functional degeneracy
(49, 50). In other words, network variants may reflect individual
differences in processing organization that ultimately lead to
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similar functional outcome. Conversely, there may be systematic
relationships between network variants and measures of behav-
iors, either in a categorical (e.g., differences between network
variant subgroups and behavior) or continuous fashion.
We observed a small but significant relationship between net-

work variant subgroups and behavior. Individuals in the DMN
subgroup had a lower life satisfaction and higher history of drug
abuse, on average. Previous investigations revealed that indi-
vidual differences in rsFCs are related to a positive and nega-
tive “mode” of lifestyle (51, 52) as well as measures of executive
function (35, 53).
In addition to the subgroup analysis presented herein, there

may be continuous relationships between network variants and
measures of behavior, such as those observed by Bijsterbosch
et al. (52). Connections between network variants and behavior
should be pursued by future studies with more specialized be-
havioral measures and a broader range of network variant
properties and subgroups. By extending behavioral relationships
to network variants specifically, future investigations should have
more precise targets: That is, variant locations, for both basic
experimentation and potential medical intervention (e.g., via
stimulation-based methods). It is possible that our approach of
identifying network variants may provide a rich source of targets
to better understand the neurobiological sources of individual
differences in behavior.

Neurobiological Interpretations of Network Variants. In the present
study, we demonstrate that individuals stably vary in specific el-
ements of their functional network organization. This observation
raises the question of what neural mechanisms underlie these in-
dividual differences. Any network variant could represent: 1) A
regional border shift, in which a neighboring brain area is en-
larged, contracted, or displaced; 2) a relative shift in the func-
tional and connectivity properties of an existing area, leading to
reassignment to a distinct network; or 3) a de novo brain area
unique to an individual or small group.
The appearance of completely novel cortical areas in indi-

viduals seems unlikely. Most studied cortical areas (i.e., visual
areas, motor areas, attention-related areas) are found reliably in
essentially every individual primate (54–56). Variations in the
size of brain areas have been observed previously, such as a 2-fold
difference in the size of some visual areas (57). In cases of per-
turbations, larger changes can be seen. For example, area V1 in
congenitally blind individuals is significantly decreased in size
(58–60) and genetic manipulations can affect the size and posi-
tion of areas; for example, primary sensory and motor areas are
expanded and shifted rostro-laterally in mice that overexpress
Emx2 (61, 62). Cortical areas may also be displaced along the
cortex, as was observed for area 55b by Glasser et al. (63), leading
to the appearance of variant pieces in nonoverlapping locations.
As a conceptual example (Fig. 6), consider the frontal eye

fields (FEF), an area that lies close to regions where network
variants are frequently found across individuals (in the right
hemisphere, at least). Essentially every human likely has at least
one FEF per hemisphere (64). If an individual has a larger (or
smaller) FEF than the average, the expanded (or contracted)
portion of the cortex will appear as a network variant. Similarly, if
the FEF is displaced in an individual relative to the typical cortical
location of the FEF, it will be identified as a network variant.
While these more local variations likely occur (and account for
some network variants), previous work has demonstrated that
individually variable network assignments can occur at regions re-
mote from network borders (12).
One potential explanation for remote network variants is al-

tered functional response and connectivity properties of those
areas in certain individuals. For example, individual FEF neu-
rons code for saccades, visual stimuli, attention in space, and
combinations of these 3 properties (65). Depending on the relative

proportion of these various types of FEF neurons, individuals may
have different functional connectivity and task-evoked BOLD
signals in this area relative to the group average. Whereas a typical
individual’s FEF may have a high proportion of eye movement
and attention neurons, thus producing the usual association with
the DAN, another individual’s FEF might contain an unusually
large number of neurons coding visual stimuli (e.g., due to genetics
and accumulated experience) and, thus, associate with the visual
functional network. Therefore, one possibility is that an area may
appear like a network variant not because it is truly a novel area,
but because the distribution or function of its neurons is shifted
systematically in that individual.
This last idea is supported by the observed task-related acti-

vations in network variants. For several functional networks, we
showed that the level of (de-)activation in those network variants
is between the level of (de-)activation seen typically for that lo-
cation and what would be expected given the network variant’s
reassignment (Fig. 4A). Moreover, a related paper by Arcaro
et al. (66) provided an example of functional reassignment based
on lifetime experience, such that the portion of the inferotemporal
cortex that is typically face-selective becomes body- and hand-
selective in monkeys reared without exposure to faces. The neu-
rons in this region of the cortex are innately retinotopic and biased
toward the scale and curvature of visual stimuli (i.e., biased to
respond to faces). However, due to the monkeys’ atypical envi-
ronment and experience, the response properties of the region
changed (even for face stimuli), suggesting that the area may
appear as a network variant compared to typical monkeys.
Each network variant may be due to one or more of the

abovementioned mechanisms, and future work is necessary to
determine the consequences of these different types of network
variants. While the mechanisms are difficult to disambiguate
precisely in humans, studies with animal models may be well
equipped to examine this question and to expand our under-
standing of the sources of individual variability in large-scale
brain networks.

Conclusion
We find that network variants are stable components of typical
adult functional network organization. The organization and
arrangement of network variants across individuals appears to
be systematic. Specifically, they tend to occur in the lateral pre-
frontal cortex and near the temporo–occiptio–parietal junction
and are often reassigned to association networks, suggesting a link

Fig. 6. Schematic of potential neural mechanisms underlying network
variants. A schematic of the typical (group-average) FEF is displayed on the
left. Neurons coding for saccades, attention in space, and visual stimuli are
color-coded (light blue, green, and dark blue, respectively). An individual’s
FEF may be identified as a network variant if its border has shifted relative to
its typical location, via either contraction/expansion in size (contraction dis-
played Center Left) or displacement along the cortex (Center Right). Another
possibility is that the underlying functional and connectivity properties of
the individual’s FEF are different from the group average, for example, more
neurons that code for visual stimuli (Right).
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to higher-level cognitive functions. Moreover, network variants are
related to functional variations during tasks. Finally, individuals
cluster into subgroups on the basis of these variants and these
subgroups demonstrate small differences in behavior. Taken in
sum, our data support the idea that network variant distributions
are trait-like and their patterning across individuals is functionally
relevant.

Materials and Methods
Datasets, Acquisition Parameters, and Exclusion Criteria. Three datasets are
analyzed in this report: The MSC (13), MyConnectome (24), and HCP (25)
datasets. In addition, for group-average comparisons, a previously collected
dataset of 120 typical adults was used as the group-level referent (17), re-
ferred to in the text as the WashU 120. All data collection was approved by
the Washington University and University of Texas Internal Review Boards
and all procedures complied with ethical regulations for studies involving
human research participants. Dataset composition, acquisition parameters,
and exclusion criteria have been described in detail previously (10, 13, 24, 25)
for all datasets (see SI Appendix for a brief description).

Data and Code Availability. All data and data-processing code used in the
manuscript are publicly available (MSC and code: https://openneuro.org/
datasets/ds000224/versions/00002 MyConnectome: myconnectome.org/wp/;
HCP: https://db.humanconnectome.org/app/template/Login.vm; WashU 120:
https://legacy.openfmri.org/dataset/ds000243/). Code for network variant
analyses (custom MATLAB scripts) are available at https://github.com/
MidnightScanClub.

Resting-State Data Processing. All data processing has been described in detail
previously for each dataset. For extended details, see ref. 13 for MSC, ref. 10
for MyConnectome, ref. 67 for HCP, and ref. 68 for WashU 120. We briefly
review relevant details for each type of processing below.
Anatomical processing. First, FreeSurfer 5.3 automatic segmentation was ap-
plied to the T1-weighted images to create masks of the gray matter, white
matter, and ventricles for each subject (69). Then, FreeSurfer’s default recon-
all pipeline was used to reconstruct each subject’s native anatomical surface.
These native surfaces were aligned to the fsaverage surface using a shape-
based spherical registration (70–73). The 2 hemispheres were registered to
each other using a landmark-based algorithm (74, 75). The final resolution
of each subject’s surface was 32,492 vertices per hemisphere.
Functional processing. For each subject, standard preprocessing procedures
were applied (slice-timing correction, functional realignment, mode 1,000
normalization, atlas registration and resampling, and distortion correction) in
addition to further preprocessing to remove motion-related artifacts (frame-
wise displacement for frame censoring, regression of nuisance signals, including
the whole-brain mean, interpolation over censored frames, and bandpass
filtering) (68). See SI Appendix for full details.
Volume-to-surface mapping and functional connectivity processing. After pre-
processing, a CIFTI was created for each subject. Preprocessed BOLD time
series data were mapped to the surface following the procedure of Gordon
et al. (76). Before computing the correlations, all previously censored frames
were discarded to account for distance-dependent motion artifacts (68).
Pairwise correlations between time series from every pair of cortical surface
vertices from both hemispheres (59,412 × 59,412) were computed to con-
struct an individual-specific vertex-to-vertex correlation matrix, which was
then Fisher-transformed. For the WashU 120 dataset, the individual corre-
lation matrices were averaged together. See SI Appendix for full details.

Task Data Processing. In this study, we focus on activations in the 2 mixed
design (77) tasks from the MSC dataset: The semantic task and the coherence
task. Tasks and their analyses are described in detail in Gordon et al. (13).
Task activations were modeled with in-house imaging analysis software (IDL)
using a general linear model approach, as previously described (13, 15). See
SI Appendix for a brief description.

The DMN has been consistently linked to task-deactivations. To determine
whether network variants (see next section) associated with the DMN also
show the same functional profile, we examined network variant activations in
all conditions (cues, trials, and sustained activations) vs. implicit baseline. We
conducted this comparison for variants associatedwith eachnetwork, canonical
(i.e., nonvariant, group) regions associatedwith each network, and the average
of canonical regions associatedwith all other networks. In addition, the average
activation of each DMN variant in a single individual was compared with the
average activation of that same location in other individuals. In all cases,
statistical comparisons were carried out using paired 2-sided t tests.

In addition, we added a complementary supplementary analysis of task
activations associated with the CO system. The CO network has been con-
sistently linked to sustained activations, especially during resource-limited
tasks, unlike other control systems such as the FP network (22, 29, 30). To
examine whether variants associated with the CO network displayed sus-
tained activations, we examined activations associated with the sustained
block regressor during a resource-limited semantic task (28).

Identification of Network Variants. To identify network variants, individual
subject correlation matrices were compared (independently) to a group-
average correlation matrix generated from the WashU 120. For each indi-
vidual, the spatial similarity between the individual’s and the group’s pattern
of correlations (seed map) at each cortical surface vertex was computed.
More precisely, each row of an individual’s matrix was correlated with the
corresponding row in the group-average matrix, resulting in one spatial
correlation per vertex. Susceptibility regions were masked out using a
vertex-wise measure of signal quality derived from the group-average data.
All vertices with a mean BOLD signal less than 750 (as computed in ref. 78)
were set to 0. Then, the spatial similarity was binarized such that all cortical
vertices with a spatial correlation value in the lowest decile of the individ-
ual’s distribution were considered for further analyses (these vertices were
set to 1, and all others were set to 0). Network variants were defined as
regions of the cortex in which sets of at least 50 contiguous vertices were
below the spatial correlation threshold. As an alternative to allowing the
threshold for network variants to vary across individuals (lowest decile of the
individual’s spatial correlation distribution), the threshold was fixed at a
spatial correlation value of 0.3. Results were extremely consistent between
analysis procedures, given that the mean lowest decile cutoff value is
0.32 ± 0.03.

Functional Network Assignment of Network Variants. A winner-take-all pro-
cedure was implemented to assign functional networks to each network
variant in each individual. To do so, 14 template networks were created from
the 14 group-average networks, as described previously (12). The templates
are the group-average resting-state correlation pattern (seed map) of each
canonical functional network in the WashU 120 (e.g., the group-average DMN
seed map, the group-average visual network seed map, and so forth). Then,
for each unique network variant, the following matching procedure was
applied: 1) A seed map was computed from the average BOLD time series
from all vertices within the network variant; 2) the similarity between that
variant seed map and each template network was computed (i.e., the spatial
correlation between the template seed map and the variant seed map); 3)
the template network with the highest similarity was assigned to the net-
work variant; 4) any network variants where the winning template system
had low similarity (i.e., r < 0.3) were reassigned as “unknown system”; and
finally, 5) we ensured that the variant did not match the group-average
network at that cortical location. In other words, we removed the variant
if it overlapped (spatially) with its assigned group-average functional net-
work by 50% or more (this occurred infrequently: 5 of 129 = 4% in the MSC
dataset, 276 of 7,498 = 3.7% in the HCP dataset).

Overlap of Network Variants Across Individuals. In order to examine the spatial
overlap of network variants across individuals, binary versions of the final
maps of network variants (after functional network assignment) were summed
across individuals to create an overlap map within each dataset. These were
divided by the number of people within each dataset, to express the frequency
of network variants at each cortical vertex.

Within-Subject Reliability of Network Variants. To measure within-subject
reliability of network variants, we compared variants across different days
from the same participant. Each MSC subject had 10 independent 30-min
resting-state sessions collected on separate days. We processed each ses-
sion separately (as described above) in order to assess within-subject session-
to-session variability of network variants. For each session, we generated the
spatial correlation map used for identifying network variants (seed maps
from the session vs. seed maps from the group average). Then, we measured
the ICC of each map within an individual. In addition, this entire analysis was
repeated with binarized network variant maps, but computing themean dice
coefficient instead of ICCs (since the maps are binary). The latter analysis
allowed for a focused reliability measure of variant regions only. For the
binarized variants analysis, we generated a null model of between-subject
variant overlaps for comparison. We performed 1,000 random permuta-
tions of pairs of sessions drawn from 2 different MSC individuals (with re-
placement) and computed the mean dice coefficient of the binary network
variant maps from those sessions. For the MyConnectome dataset, we
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compared the stability of network variants from sequential 3-wk blocks of
data (i.e., variants identified from 6 sessions concatenated together for each
3-wk block). All possible pairs of variant spatial correlation maps (from each
3-wk block of time) were correlated with one another.

Patterns of Network Variants Across Individuals. Next, we turned our atten-
tion to whether similar types of network variants were seen across subgroups
of individuals. We tested 2 options: 1) Whether subgroups of individuals
exhibited variants at similar anatomical locations and, 2) whether subgroups
of individuals exhibited variants with similar network associations.
Anatomical. To determine whether subgroups of individuals exhibited variants
at similar anatomical locations, we compared the binary maps of (final)
network variants between each pair of individuals using dice coefficients. This
resulted in a symmetric dice overlap matrix with a size of N by N (9 × 9 for the
MSC dataset and 192 × 192 for each HCP split-half), with each entry repre-
senting the degree to which a given pair of individuals covaries in terms of
the spatial distribution of network variants (i.e., the degree to which the
pair both have variants 1, 2, and 3 and they both do not have variants 4, 5,
and 6). A clustering algorithm (InfoMap) (31) was applied to this dice overlap
matrix. Before clustering, we applied a threshold to the matrix to create a
sparse network on which to operate. We examined a wide range of density
thresholds from the top 2 to 30% of correlations in increments of 1%.
Functional. To determine whether subgroups of individuals exhibited variants
with similar network associations, we compared their match to 14 standard
network templates. Specifically, during functional network assignment of
variants, we compute the similarity (i.e., spatial correlation) between each
variant and each template functional network. This results in a 14 × 1 vector
of correlations (to the 14 template networks) for each variant. This measure
represents the degree to which a variant is default mode-like, visual-like,
and so forth. Then, we computed the variant-size-weighted mean similarity
for all variants within an individual to each template network (indicating the
degree to which all of that individual’s variants are default mode-like, visual-
like, and so forth). This mean measure was correlated across subjects, and
the same clustering algorithm (InfoMap) was implemented to identify
groups of individuals with similar patterns of network variants. We used a
range of thresholds from 2 to 10% in increments of 1%.

Conceptually, the functional measure discussed above calculates the av-
erage similarity of variants to canonical networks, producing a quantitative
estimate of the (for example) DMN-like characteristics of all variants in an

individual. To complement this measure, we also clustered individuals based
on the amount of the cortex (number of surface vertices) assigned to each
functional network. The WashU 120 group-average functional networks were
used as a referent to compare the relative expansion or reduction of each
individual’s functional networks. Thus, we calculated the number of expanded
or contracted surface vertices for each network (relative to the group-average)
using the variants’ network assignments; for example, a given individual may
have +1,000 CO vertices, −75 default mode vertices, and so on.

Analysis of Behavior. Arguably, an important aspect of network variants is
their relation to behavior. As a proof-of-concept, and given network variants’
distributions and reassignment to association networks, we examined rela-
tionships to the HCP behavioral measures (79). We used exploratory factor
analysis (EFA) for data reduction and to identify latent constructs in the HCP
data. We focused on behavior categories that included multiple instruments
or that did not already have summary measures available, which included
demographics, cognition, emotion, and substance use variables. Age, sex,
and handedness were not considered in the EFA to allow flexibility to in-
clude or exclude these variables in analyses of brain–behavior relationships
(e.g., as covariates). Data from all HCP subjects (n = 1,206) were included in
the EFA. EFA factors were then compared across subgroups using multiple
linear regression. Details about the results of the EFA and the regression
analysis between HCP subgroups of individuals are in SI Appendix, Supple-
mental Methods and Fig. S12.
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