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Active matter locally converts chemical energy into mechanical
work and, for this reason, it provides new mechanisms of pat-
tern formation. In particular, active nematic fluids made of protein
motors and filaments are far-from-equilibrium systems that may
exhibit spontaneous motion, leading to actively driven spatiotem-
porally chaotic states in 2 and 3 dimensions and coherent flows
in 3 dimensions (3D). Although these dynamic flows reveal a
characteristic length scale resulting from the interplay between
active forcing and passive restoring forces, the observation of
static and large-scale spatial patterns in active nematic fluids has
remained elusive. In this work, we demonstrate that a 3D solution
of kinesin motors and microtubule filaments spontaneously forms
a 2D free-standing nematic active sheet that actively buckles out
of plane into a centimeter-sized periodic corrugated sheet that is
stable for several days at low activity. Importantly, the nematic
orientational field does not display topological defects in the
corrugated state and the wavelength and stability of the corru-
gations are controlled by the motor concentration, in agreement
with a hydrodynamic theory. At higher activities these patterns
are transient and chaotic flows are observed at longer times. Our
results underline the importance of both passive and active forces
in shaping active matter and demonstrate that a spontaneously
flowing active fluid can be sculpted into a static material through
an active mechanism.
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Active matter is composed of subunits that convert free
energy into mechanical work. It comprises systems com-

posed of objects with very different sizes, from flocks of animals
(1) and bacterial colonies (2) to gels of cytoskeletal proteins (3,
4). Active matter has attracted much attention, both theoreti-
cally and experimentally, because it displays phase transitions
and states that greatly differ from those observed at equilibrium,
such as motile ordered states and spontaneous coherent or inco-
herent flow (5–9). Among the active systems that can be studied
in the laboratory, those composed of the protein filaments and
motors that constitute the cytoskeleton of the eukaryotic cell are
of special interest for 3 reasons: 1) their biological importance
(10, 11), 2) the possibility to make purified systems that can be
easily controlled and studied (3, 4, 12), and 3) their potential to
make self-organizing materials (13).

Depending on the conditions, cytoskeletal active systems dis-
play a wide array of dynamic behaviors. Isotropic systems con-
tract (12, 14–16) and buckle (17) in 3 dimensions (3D). Polar
ones generate density waves (18) and large-scale vortices (19)
in 2D and asters and vortices (3) in 3D. Nematic systems dis-
play spatiotemporally chaotic flows both in 2D (4, 20, 21) and
in 3D (4, 22) and also coherent flow (22) in 3D. This diversity
of behaviors is qualitatively understood by a hydrodynamic the-
ory (5–9). However, we currently do not fully understand why
one behavior is observed in a given experimental system and not
in another and which experimental parameter has to be mod-
ified to switch from one state to another. This is due, on the
one hand, to the difficulty of measuring the phenomenological

parameters of the hydrodynamic theory and, on the other hand,
to the use of 2 experimental systems, actin/myosin and micro-
tubule/kinesin, with very different microscopic properties. In this
regard, the recent demonstration that global contractions (12,
15) and chaotic flows in 2D (4, 21) were present in both sys-
tems and the understanding of the nematic to polar transition
in microtubule/kinesin systems (23) have clarified the design of
these dynamic behaviors. Yet, the 2 aforementioned difficul-
ties remain, hindering the development of controllable active
materials.

In this work, we report the observation of a static patterned
state in an active nematic fluid, we provide a semiquantitative
interpretation to why this state is observed, and we show which
experimental parameters need to be tuned to reach either this
static state or a previously reported flow state. More precisely,
we demonstrate that a microtubule/kinesin nematic fluid that
is known to flow in 3D (4, 22) can be rationally engineered to
form a thin static corrugated sheet in 3 dimensions, a behavior
that has only recently been observed in isotropic and cross-linked
actin/myosin gels (17) that cannot flow. Essentially, the fluid con-
tracts anisotropically along its 2 shortest dimensions to form a
thin sheet of gel that freely floats in the aqueous solution, mainly
due to passive depletion forces. Simultaneously, the extensile
active stress generated by the motors buckles the sheet along
the direction perpendicular to its plane, forming a corrugated
sheet of filaments with a well-controlled wavelength of the order
of 100 µm over an area of 10 mm2. We demonstrate that this
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out-of-plane buckling differs both from classical Euler buckling
in passive gels (24, 25) and from the flow-generating in-plane
buckling that is common in 2D active nematic gels (4, 22, 26,
27). Importantly, nematic topological defects are not observed
and we provide a theoretical prediction of the dependence of the
wavelength with the motor concentration and with the thickness
of the fluid that is in agreement with the experiments. Finally,
we show that the transition between static corrugations and
chaotic flow can be experimentally controlled by 2 parameters,
the motor concentration and the attractive interactions between
microtubule filaments.

Results and Discussion
A 3D Active Nematic Fluid Forms a Static Corrugated Sheet. The
active fluid is constituted of a dense suspension of nongrow-
ing microtubules bundled together by a depletion agent and by
clusters of kinesin-1 motors (Fig. 1A). We use the word fluid,
instead of gel, to underline the fact that the system does not
present irreversible cross-links, as actin gels do (17). It is supple-
mented with ATP and an ATP-regeneration system that drives
the system out of equilibrium by keeping the motor active for
at least 4 h. Additionally, the microtubule bundles are fluores-
cent because they bear a small fraction of fluorescent tubulin,
allowing their observation by fluorescence microscopy. This sys-
tem is similar to previously published active nematic fluids (4)
but it differs in several important ways: The microtubules are
longer (8± 6 µm instead of 1 µm; SI Appendix, Fig. S1); and
the kinesin used here (28), K430, is different from the standard
K401 (it comes from a different organism and forms nonspecific
clusters), and its typical concentration is 2 orders of magnitude
lower (SI Appendix, section 1). The active fluid is prepared inside
a long and shallow channel of rectangular cross-section, with
length L= 22 mm, width W = 1.5 mm, and height H = 0.13 mm.
Initially, the density of microtubule bundles is homogeneous in
3D but they are aligned along the long axis of the channel, paral-

lel to x (Fig. 1 B and C). This nematic order arises spontaneously
during the filling process of the channel by capillarity, the angle
of the director of the nematic with the x axis being 2◦ ± 16◦

(SI Appendix, Fig. S2).
In the presence of 0.5 nM of motors, confocal images recorded

after 300 min show that the active fluid has contracted along z
and buckled in the xz plane to form a corrugated sheet whose
hills and valleys reach the top and bottom walls of the channel
and whose grooves are strikingly parallel to the y axis (Fig. 1D).
The thickness of the sheet is `z = 35± 5 µm and the wavelength
of the corrugations is λ= 285± 15 µm. This periodic pattern
extends along an area of at least 9.5× 1.4 mm2, with disloca-
tions corresponding to the junction of 2 valleys or hills. Notably,
these dislocations in the periodic undulatory pattern do not cor-
respond to defects in the nematic field. The pattern can also be
visualized in epifluorescence, where it appears in the form of
focused and defocused bands (Fig. 1E).

During the Formation of the Corrugations the Fluid Buckles along
z and Contracts along z and y. To elucidate the mechanism of
pattern formation we recorded confocal (Movie S1) and epi-
fluorescence time-lapse images of a buckling fluid at 0.5 nM
motors (Fig. 2). Two processes are observed: buckling along
the z direction and contraction along z and y . These pro-
cesses are quantified by the angle φ between the microtubule
bundles and the x axis in the xz plane and by ∆`z and ∆`y ,
the contracted lengths of the fluid along the z and y axes,
respectively. Buckling initially proceeds at a rate ωφ = 0.3 min−1

but later slows down until reaching a maximal buckling
angle φmax = 32.2◦ ± 0.5◦ (Fig. 2C) and an amplitude hmax =
22± 3 µm after 100 min. Contraction along z and y is sig-
nificantly slower with onset rates ωz = 6.4× 10−2 min−1 and
ωy = 1.5× 10−2 min−1, respectively, to reach maximum ampli-
tudes ∆`max

z = 40 µm and ∆`max
y = 210 µm (Fig. 2D). Note

that the relative contraction amplitudes ∆`max
z /H = 0.40 and
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Fig. 1. At low motor concentration a 3D active nematic fluid creates a thin corrugated sheet of well-defined wavelength. (A) Scheme of the compo-
nents of the active fluid formed by nongrowing microtubules bundled together by a depletion agent and clusters of kinesin motors. (B) Scheme of the
channel where the fluid (in yellow) is observed. (C) Epifluorescence image of the fluid at initial time. (D) Confocal images in 3D (Top) and cross-section
in the xz plane (Bottom) of the fluid after 300 min. (E) Epifluorescence image of the same sample after 24 h and over a 9.5× 1.4-mm2 area. The red
dashed rectangle and the red dotted line respectively indicate the region where Top and Bottom images in D were recorded. (Scale bars, 500 µm; motor
concentration, 0.5 nM.)
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Fig. 2. Dynamics and mechanism of the formation of a thin corrugated sheet at low motor concentration. (A) Time-lapse confocal fluorescence images of
the active fluid in the xz plane (Left) and sketch of the observations indicating the measured quantities ∆`z, φ, h, and `z (Right). (Scale bar, 100 µm.) (B)
Epifluorescence images of the fluid at t = 0 and 90 min (Left) and sketch indicating the measured quantity ∆`y (Right). (Scale bar, 500 µm.) Red lines in A
and B indicate channel walls. (C) Average of φ2 along the x direction vs. time in the presence (solid circles) and in the absence (open circles) of motors. (D)
Offset to the maximum contracted length along the z (red circles) and y (blue crosses) directions. Black lines in C and D are exponential fits. (E) Sketch of
the mechanism for the active buckling of a thin membrane through the negative tension Fa proportional to the active stress ζ(c) and the Laplacian of the
height h(x) of the sheet above its fiducial plane. All data correspond to 0.5-nM motors except open circles in C.

∆`max
y /W = 0.14 are significantly different, indicating that the

final contracted state does not correspond to a nematic liquid
droplet at equilibrium (29).

Buckling Is Active and Contraction Is Passive. Passive gels of various
compositions have been reported to form corrugations through
Euler buckling when they are submitted either to an external
contractile stress or to an extensile stress at constant length
(24, 25). To assess whether this could explain our observations,
we performed experiments that demonstrated, first, that buck-
ling is principally an active process and, second, that a Euler
mechanism is not compatible with the data.

In the absence of motors buckling is undetectable in confo-
cal images with the same field of view in x as above (660 µm)
(Fig. 2C and SI Appendix, Table S1), although it is weak but
detectable in images acquired over a wider field of view (SI
Appendix, Fig. S3). In contrast, contraction is similar in both
passive and active fluids (SI Appendix, Fig. S3). The passive origin
of contraction is further supported by the fact that its amplitude
is strongly dependent on the concentration of depletion agent (SI
Appendix, Fig. S4).

In passive fluids, depletion forces induce the condensation of
microtubules into a dense nematic fluid phase, which, in the
absence of confinement, would relax to a highly anisotropic
tactoid droplet (30). In the geometry of our experiments, this
results in the formation of a quasi-2D sheet that elongates along
the nematic axis x , thereby leading to Euler buckling in the pres-
ence of boundaries. Indeed, a membrane with an excess area,
which in this case arises from the excess length ∆`x = `x −L,
where `x is the length of the membrane along x , will have a
buckled state beyond a critical ∆`cx that depends on H . Note
that this mechanism could in principle also explain active buck-
ling if ∆`x depends on the activity. However, this sort of passive
mechanism, reminiscent of the classic Euler buckling, is possible
only if the membrane had a fixed projected area, i.e., if it were
confined in the x direction. On the contrary, if active buckling

were generated by local extensile forces exerted by the motors,
it would be independent of whether the fluid is constrained in
length or not.

To test these 2 hypotheses, we performed experiments where
one end of the fluid was in contact with an aqueous solution
and thus free to change length. In this configuration (Fig. 3) the
active fluid buckled everywhere except on the tip close to the
free boundary, while the passive one did not buckle at all. We
attribute the lack of buckling on the tip of the active fluid to
a gradient of microtubule concentration across the free bound-
ary arising during the preparation of the fluid (SI Appendix,
section 1). These results suggest that, while the excess area mech-
anism explains passive buckling, it cannot fully account for the
buckling of active films. We thus conclude, first, that passive
buckling and active buckling happen through different mecha-
nisms and, second, that in active fluids buckling is principally
an active mechanism while contractions in y and z are mainly
passive.

A Hydrodynamic Theory That Predicts the Wavenumber of the Corru-
gations. The behavior of active fluids, including those composed
of microtubules and kinesins (4, 22, 31, 32), has been success-
fully described with the hydrodynamic theory of liquid crystals
supplemented with a stress term resulting from activity. We now
demonstrate that this framework applied to a thin film that can
buckle in the third dimension can provide an explanation and
theoretical estimates of the wavenumber q∗= 2π/λ and of the
formation rate ω∗ of the corrugated pattern (Fig. 2E and SI
Appendix, section 2).

To do so, we consider the periodic undulation of the thin sheet
made of microtubules and motors in the xz plane, supposing
that passive forces have already collapsed the 3D fluid into a
thin 2D sheet. The nematic active fluid sheet has bending mod-
ulus K and its director n̂ is on average parallel to the x axis:
n̂0 = x̂ . The fluctuation of the membrane about a fiducial plane
parallel to the xy plane (here, taken to be the midplane of the
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Fig. 3. An active fluid buckles, in contrast with a passive one, in fluids with
1 free boundary. (A) Scheme of the experiment. The red dashed rectangle
indicates the area where the images were recorded. (B and C) Epifluores-
cence images of an active (B) and a passive (C) fluid at the initial and the
final time. The black, dashed rectangles show the zones where the intensity
profiles in D and E were extracted.

channel) is denoted by h(x , y). The deflection of the director in
the xz plane, δnz , leads to a buckling of the membrane in the z
direction: δnz ≈ ∂xhẑ . The passive elasticity of the nematic fluid
∝ (∇n)2 then yields a bending energy ∝ (K/2)(∂2

xh)2 for the
buckling of the thin sheet in the z direction. The standard active
force (5–9) is −ζ(c)∇· (nn), where ζ(c)> 0 is the strength of
the extensile activity that is a function of motor concentration c.
This leads to a force ∝−ζ(c)∂2

xhẑ that tends to destabilize the
flat membrane and that is similar to an effective negative surface
tension (33). The interplay between the negative surface ten-
sion, arising from activity, and the stabilizing bending modulus,
due to nematic elasticity, leads to the selection of a pattern with
wavenumber

q∗∼
√
ζ(c)/K . [1]

The pattern arises with a rate ω whose exact expression is pro-
vided in SI Appendix, section 2. Note that in the absence of
confinement, we expect the pattern to be unstable.

The theory thus shows that an out-of-plane buckling instabil-
ity compatible with our observations results from the interplay
of active forcing ζ(c) and passive elastic restoring forces, K ,
the same ingredients that in previous microtubule/kinesin active
fluid provided dramatically different patterns (4, 31, 32, 34, 35).
Here, the out-of-plane buckling of the active sheet precedes any
planar pattern formation, in contrast to those experiments. In
addition, the instability described here does not result in coher-
ent or incoherent flow, of either the active or the embedding
fluid, in contrast with theories describing 2D or 3D active fluids
that do not form sheets (26, 27, 36).

This qualitative interpretation has 2 advantages. First, it is
parsimonious because a single feature, activity, explains the
3D out-of-plane buckling observed here and the 2D in-plane
buckling (4, 32) and 3D chaotic flows (22) observed previously

in a similar system. Second, it predicts that decreasing deple-
tion forces precludes the formation of the thin sheet and thus
the emergence of out-of-plane buckling in favor of 3D chaotic
flows. In the rest of this paper we analyze these 2 questions
in more detail. However, although hydrodynamic theories, such
as the one just described, provide an informative qualitative
description of the physics of active fluids, they feature phe-
nomenological parameters, such as ζ(c) and K , that are difficult
to measure experimentally. To our knowledge, the only quan-
titative test of such theories in the kinesin-microtubule system
was recently performed by Mart́ınez-Prat et al. (32), where
they obtained ζ(c)∼ c2. Using their scaling, our semiempirical
prediction reads

q∗∼ c/
√
K . [2]

Increasing the Motor Concentration Linearly Increases the Wavenum-
ber of the Corrugations and Destabilizes the Patterns. To test the
prediction q∗∼ c we investigated the behavior of the fluid over a
range of motor concentrations c spanning more than 2 orders
of magnitude (Fig. 4 and Movie S2). Below 0.5 nM motors,
the fluid behaves as described in Fig. 2: buckling in the xz
plane and contractions in the z and y directions. As c increases,
between 1 and 2.5 nM motors, buckling in the xz plane is initially
observed and followed by buckling in the xy plane that distorts
the corrugated pattern without breaking it. Finally, between 5
and 50 nM motors, buckling in the xz plane is still observed at
early times but the pattern breaks into a 3D active chaotic state
similar to the one already reported in this active fluid (4, 22)
(Movies S3 and S4). However, the velocity of this flow state is
significantly lower in our case, possibly because the solution is
more viscous.

The transition to the chaotic state happens qualitatively
through 2 processes: The accumulated tension on the hills and
valleys of the corrugations breaks the microtubule bundles and
the frozen fluid locally flows (Movie S2, 5-nM channel) or the
dislocations in the corrugations become motile, leading to a
shearing of the pattern and its consequent destruction (Movie
S2, 10-nM channel). Note that, in our experiments, the chaotic
state was never observed before the buckled state. However, if
the characteristic time of active transport is much shorter than
the time of passive contraction, one would observe only the
spontaneous flow instability and would not observe the buckling
instability (which happens in ref. 4). Nevertheless, first observing
spontaneous flow instability and then the buckling instability is
unlikely because the first one would destroy the nematic order
that allows passive buckling.

Importantly, the measured wavenumber of the corrugations
is in agreement with the predicted linear scaling (Fig. 4b),
in particular in the range 0.5 to 10 nM. A linear fit q∗=
a1 + a2c of the data yields a1 = 5× 10−3 µm−1 and a2 = 1.4×
10−3µm−1nM−1, where the constant term a1 results from
the weak contribution of Euler buckling in the absence of
motors. Indeed, activity controls the wavenumber only if the
active wavenumber is larger than the one selected by passive
Euler buckling, a crossover that in our experiments happens
at c = 0.5 nM.

The growth rate of the patterns, ω∗, increases slightly with c
in the range 0.1 to 0.5 nM, then increases drastically between 0.5
and 1 nM, and saturates at higher c (Fig. 4C and SI Appendix,
Fig. S5), resulting in ω∗ also increasing and then saturating with
q∗. For the hydrodynamics-dominated approximation, the the-
ory predicts ω∗∼ q3 for q∗H � 1 and ω∗∼ q6 for q∗H � 1,
while our experiments correspond to q∗H = 1.3 to 4. In the
range c = 0.1 to 0.5 nM, the data are compatible with the scal-
ing ω∗∼ q3, although their precision does not allow us to rule
out other scaling laws (SI Appendix, Fig. S6).
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Fig. 4. Dynamics, shape, and stability of the patterns strongly depend on motor concentration. (A) Time-lapse epifluorescence images of fluids with
different motor concentrations c. Red lines indicate channel walls. (Scale bars, 200 µm.) (B) Wavenumber q* of the corrugations vs. motor concentration.
Inset is the lin-lin representation of the main plot and the line corresponds to a linear fit to the data in the range c = 0.1 to 10 nM with regression coefficient
r2 = 0.9. (C) Growth rate vs. motor concentration. Error bars indicate the SD of a triplicate experiment where a single motor/filament mix was distributed
into 3 different channels.

Comparing the results of our out-of-plane instability with
recent measurements of the in-plane buckling instability of
a related system (32), we find similar wavenumbers (1 to 7×
10−2 µm in our case vs. 0.5 to 3× 10−2 µm) but significantly
slower dynamics (1 to 4× 10−2 min−1 vs. 6 to 240 min−1, respec-
tively). In addition, topological defects seem to play no role in the
emergence of our patterns, in contrast with what happens in 2D
active nematic systems (21, 34). We do observe dislocations in
the corrugations that rarely move along the y axis, although they
do so too slowly to play a significant role. In contrast, defects in
the nematic field would create nonperiodic buckled shapes in the
z direction (37, 38) and we never observe this in our conditions.

The Thickness of the Nematic Fluid Influences the Corrugations. To
test the prediction q∗∼ 1/

√
K we varied the thickness and the

aspect ratio of the confinement of the active fluid at low motor
concentration, with the hypotheses K ∼ `z and `z ∼H . First, we
measured `z and q∗ for H in the range 70 to 540 µm and con-
firmed that the data are in agreement with `z ∼H and with
q∗∼ 1/

√
`z , with the exception of this last scaling for the thinnest

fluid (Fig. 5 and SI Appendix, Fig. S7 and Table S2). Second,
reducing the aspect ratio of the channel section resulted in
some portions of the fluid buckling in xz and others in the xy
plane at W /H = 4.6 (SI Appendix, Fig. S8) and no preferen-

BA

Fig. 5. Increasing the thickness of the fluid reduces the wavenumber. (A)
Final thickness `z vs. channel height H. (B) Wavenumber vs. 1/`1/2

z . Error bars
indicate the SD of a triplicate experiment where a single motor/filament mix
was distributed into 3 different channels. Solid lines correspond to linear
fits. Shown are 1-nM motors.

tial direction of buckling at W /H = 1 (SI Appendix, Fig. S9). In
addition, in all of the cases where both xy and xz buckling was
observed, the wavenumbers in the 2 planes were in qualitative
agreement with the aforementioned argument that essentially
yields q∗∼ 1/

√
H > q∗xy ∼ 1/

√
W when H <W and q∗= q∗xy

when H =W .
Another way to influence K is to change the microtubule con-

centration µ. Increasing µ in the range 0.5 to 2 mg/mL decreased
q∗ in agreement with the expectation that K should increase with
µ. In contrast, at µ= 0.25 mg/mL, global contraction, instead of
corrugations, was observed, possibly because the initial nematic
order was reduced (SI Appendix, Fig. S10).

Strong Attractive Interactions between the Microtubules Are Cru-
cial to Form a Corrugated Sheet. To the best of our knowledge,
neither stable nor unstable out-of-plane buckling has been
reported in nematic active fluids. We performed control exper-
iments to determine which of the factors that differentiate our
experiments from previously published 3D microtubule/kinesin
nematics (4, 22, 39) was responsible for the observed phe-
nomenology: the type of motor or the length of the microtubules.
We obtained both stable and unstable xz buckling with the
kinesin K401 used in previous reports (4) (SI Appendix, Fig. S11).
This means that, although the motor K430 is not designed to
form specific multimers, in contrast with K401, it forms nonspe-
cific ones. Our efforts to eliminate these nonspecific multimers
by size exclusion chromatography did not change the observed
patterns (SI Appendix, Fig. S12), suggesting that these clusters
either form rapidly or do so in the working buffer.

In contrast with the nature of the motor, the length of
the microtubules had a strong impact on the observed struc-
tures. When, instead of 8-µm-long taxol-stabilized microtubules,
1.5-µm-long GMPCPP-stabilized ones were used, no contraction
of the fluid was observed along z or y , with or without motors,
precluding the formation of a thin sheet that could buckle out
of plane (SI Appendix, Fig. S13). In this case, chaotic flow was
observed at high activity, in agreement with previous reports
(4). These observations are consistent with the expected linear
dependence of the depletion free energy on filament length (40)
which, in our geometry, makes long microtubules condense into a
thin sheet. To further test this hypothesis we reduced the attrac-
tive force between negatively charged 8-µm-long microtubules by
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lowering either the concentration of the depletion agent or the
ionic strength of the buffer. In agreement with this interpreta-
tion, neither fluid contraction nor buckling in the xz plane was
apparent in these conditions, although the fluid remained active
(SI Appendix, Figs. S14 and S15).

Comparison with Other Out-of-Equilibrium Membrane Buckling. The
active buckling instability described here needs 3 ingredients: a
thin film, nematic order, and extensile activity. We thus expect
any system displaying these properties, such as thin films that
may be composed of living liquid crystals (41)—which are sus-
pensions of living bacteria in an inert nematic solution—to
buckle in a similar manner. Monolayers of polarized living cells
could potentially buckle in the same way, although so far only
buckling due to growth has been reported (42). Interestingly,
a different type of active buckling has recently been observed
in a contractile isotropic film made of a cross-linked actin gel
and myosin (17). Despite their differences, for this contractile
film to buckle, filaments also need to form bundles, motors have
to make aggregates, and the observed thickness and wavelength
were of the same order of magnitude as those reported here.

Finally, we have described our system as an active fluid and not
a gel to stress that there are no permanent cross-links between
the microtubule filaments. This is supported by the low con-
centration of motors relative to tubulin (1:1,000 wt/wt at 1 nM
motors) and by the flows observed by us and others (4, 20–22,
32) at high motor concentration. We believe that the apparent
contradiction of our observations with rheological measurements
that reported the presence of an effective cross-linking in pure
microtubule solutions (43) could be explained, either by the pres-
ence of microtubule bundles or by the longer timescale probed
here (103 s compared with 102 s in ref. 43). Ultimately, precise
rheological measurements of this type of active fluids will provide
a definite answer.

Conclusion
In summary, we demonstrate that in vitro active fluids can
be designed to form static or transient suspended sheets with
periodic corrugated patterns of tunable wavelength. The mech-
anism of pattern formation that we propose combines passive
and active processes that can be controlled physicochemically.
Passive depletion forces, which depend on depletion agent con-
centration, filament length, and ionic strength, induce the spon-
taneous condensation of a 3D nematic fluid into a thin 2D
nematic sheet, and active stresses buckle the fluid sheet out of
plane to form corrugations with well-defined wavelength that can
be controlled by activity.

In addition, we use an active gel theory to demonstrate that
the observed patterns result from an out-of-plane buckling insta-
bility induced by active extensile stresses along the nematic
axis of the fluid sheet, in contrast with in-plane buckling pat-
terns that have been observed in prestressed nematic fluids of
either nongrowing F-actin (44) or growing microtubules (45)
in the absence of motors. Our theory is appealing since it
relies on the same essential physics that lead to 2D patterning
and 2D and 3D spatiotemporal chaos. However, the buckling
instability that we report does not involve filament flows and
therefore fundamentally differs from both contractile instabili-
ties in anisotropic active fluids and spontaneous flow transitions
in nematic active fluids that have been described theoretically
(6, 8, 26, 27, 36, 46) and shown to be characterized by hydro-
dynamic flows and in-plane buckling of the director field in the

case of 2D systems. Such spontaneous flows have been observed
in various active matter systems (4, 31, 32, 34, 35, 41, 47–50),
which in practice yield either chaotic or large-scale coherent
flows, but so far no static spatial patterns. In contrast, our
results show that active matter can be shaped into long-lived
static 3D patterns that can be tuned by activity, which may open
the way to the design of 3D biomimetic materials capable of
morphogenesis (51, 52).

Materials and Methods
Kinesin and Microtubule Preparation. The K430 truncated kinesin-1 from
Rattus norvegicus, containing a C-terminal SNAP tag, was the homodimer
version of the kinesin-1 described in ref. 28. K430 was expressed in
Escherichia coli, purified using a Nickel affinity column due to a His-tag,
dialyzed, and flash frozen. K401 was purified as described in ref. 53. Tubulin
and TRITC-labeled tubulin (Cytoskeleton) were dissolved at 10 mg/mL in 1×
PEM buffer (80 mM Pipes, pH 6.8, 1 mM EGTA, 1 mM MgSO4) supplemented
with 1 mM GTP, flash frozen, and stored at −80 ◦C. They were polymerized
in 1× PEM, 1 mM GTP, 10% (wt/vol) glycerol, and 5 mg/mL tubulin (includ-
ing 2.5% fluorescent tubulin). Taxol-stabilized microtubules were incubated
at 37 ◦C for 15 min followed by the addition of 20 µM paclitaxel and stored
at room temperature for few days. GMPCPP-stabilized microtubules were
polymerized in the presence of 0.5 mg/mL GMPCPP (Jena Bioscience) from
tubulin at 37 ◦C for 30 min and left at room temperature for 5 h. They were
used within the same day. These procedures are described in more detail in
SI Appendix, section 1.

Active Mix. The active mix consisted of 1× PEM buffer, 10 mM K-acetate,
10 mM KCl, 5 mM MgCl2, 2% (wt/vol) Pluronic F-127, 5 µg/mL creatine
kinase, 20 mM creatine phosphate, 20 µM taxol, 2 mM ATP, 1 mg/mL BSA,
1 mM trolox, 20 mM D-glucose, 3 mM DTT, 150 µg/mL glucose oxidase,
25 µg/mL catalase, and 0.5 mg/mL taxol-stabilized microtubules.

Channel Assembly. Channels were assembled using a microscope glass slide
(26 × 75 × 1 mm) and a coverslip (22 × 50 × 0.17 mm) separated by strips
of Parafilm cut with a Graphtec Cutting Plotter CE6000-40. Both microscope
glass slides and coverslips were passivated using an acrylamide brush (54).
The active mix was filled in the flow cell (22× 1.5× 0.130 mm) by capillarity
and sealed with vacuum grease.

Imaging. Epifluorescence images were obtained with a Zeiss Observer 7
automated microscope equipped with a Hamamatsu C9100-02 camera, a
10× objective, and a motorized stage and controlled with MicroManager
1.4. Images were recorded automatically every 3 min using an excitation at
550 nm with a CoolLED pE2. Confocal images were obtained with a Leica TCS
SP5 II confocal microscope with a 25× water-immersion objective or an X-
Light V2 Spinning Disk confocal system mounted on an upright Nikon Eclipse
80i microscope with a 10× objective. Images were recorded automatically
every 1 to 10 min.

Image Analysis. Fluorescent images were binarized to obtain ∆`z and ∆`y .
To measure φ the binarized xz confocal cross-sections were averaged over
x and smoothed along x by applying a moving average filter with a
30-pixel window that was then differentiated. φ was the arctangent of this
derivative.

Note Added in Proof. During the revision process a similar observation was
reported in the arXiv (55).
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