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Cortical microcircuits exhibit complex recurrent architectures that
possess dynamically rich properties. The neurons that make up
these microcircuits communicate mainly via discrete spikes, and
it is not clear how spikes give rise to dynamics that can be
used to perform computationally challenging tasks. In contrast,
continuous models of rate-coding neurons can be trained to per-
form complex tasks. Here, we present a simple framework to
construct biologically realistic spiking recurrent neural networks
(RNNs) capable of learning a wide range of tasks. Our framework
involves training a continuous-variable rate RNN with important
biophysical constraints and transferring the learned dynamics
and constraints to a spiking RNN in a one-to-one manner. The
proposed framework introduces only 1 additional parameter to
establish the equivalence between rate and spiking RNN mod-
els. We also study other model parameters related to the rate
and spiking networks to optimize the one-to-one mapping. By
establishing a close relationship between rate and spiking mod-
els, we demonstrate that spiking RNNs could be constructed to
achieve similar performance as their counterpart continuous rate
networks.

spiking neural networks | recurrent neural networks |
rate neural networks

Dense recurrent connections common in cortical circuits sug-
gest their important role in computational processes (1–3).

Network models based on recurrent neural networks (RNNs)
of continuous-variable rate units have been extensively studied
to characterize network dynamics underlying neural computa-
tions (4–9). Methods commonly used to train rate networks to
perform cognitive tasks can be largely classified into 3 cate-
gories: recursive least squares (RLS)-based, gradient-based, and
reward-based algorithms. The first-order reduced and controlled
error (FORCE) algorithm, which utilizes RLS, has been widely
used to train RNNs to produce complex output signals (5) and
to reproduce experimental results (6, 10, 11). Gradient descent-
based methods, including Hessian-free methods, have also been
successfully applied to train rate networks in a supervised man-
ner and to replicate the computational dynamics observed in
networks from behaving animals (7, 12, 13). Unlike the previous
2 categories (i.e., RLS-based and gradient-based algorithms),
reward-based learning methods are more biologically plausi-
ble and have been shown to be as effective in training rate
RNNs as the supervised learning methods (14–17). Even though
these models have been vital in uncovering previously unknown
computational mechanisms, continuous rate networks do not
incorporate basic biophysical constraints, such as the spiking
nature of biological neurons.

Training spiking network models where units communicate
with one another via discrete spikes is more difficult than train-
ing continuous rate networks. The nondifferentiable nature of
spike signals prevents the use of gradient descent-based methods
to train spiking networks directly, although several differentiable
models have been proposed (18, 19). Due to this challenge,
FORCE-based learning algorithms have been most commonly

used to train spiking recurrent networks. While recent advances
have successfully modified and applied FORCE training to
construct functional spike RNNs (8, 20–23), FORCE training
is computationally inefficient and unstable when connectivity
constraints, including separate populations for excitatory and
inhibitory populations (Dale’s principle) and sparse connectivity
patterns, are imposed (21).

Due to these limitations, computational capabilities of spiking
networks that abide by biological constraints have been chal-
lenging to explore. For instance, it is not clear if spiking RNNs
operating in a purely rate-coding regime can perform tasks as
complex as the ones rate RNN models are trained to perform.
If such spiking networks can be constructed, then it would be
important to characterize how much spiking-related noise not
present in rate networks affects the performance of the net-
works. Establishing the relationship between these 2 types of
RNN models could also serve as a good starting point for design-
ing power-efficient spiking networks that can incorporate both
rate and temporal coding.

To address the above questions, we present a computa-
tional framework for directly mapping rate RNNs with basic
biophysical constraints to leaky integrate-and-fire (LIF) spik-
ing RNNs without significantly compromising task performance.
Our method introduces only 1 additional parameter to place
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the spiking RNNs in the same dynamic regime as their coun-
terpart rate RNNs and takes advantage of the previously estab-
lished methods to efficiently optimize network parameters while
adhering to biophysical restrictions. These previously established
methods include training a continuous-variable rate RNN using a
gradient descent-based method (24–27) and connectivity weight
matrix parametrization method to impose Dale’s principle (13).
The gradient descent learning algorithm allowed us to easily opti-
mize many parameters, including the connectivity weights of the
network and the synaptic decay time constant for each unit. The
weight parametrization method proposed by Song et al. (13) was
utilized to enforce Dale’s principles and additional connectivity
patterns without significantly affecting computational efficiency
and network stability.

Combining these 2 existing methods with correct parame-
ter values enabled us to directly map rate RNNs trained with
backpropagation to LIF RNNs in a one-to-one manner. The
parameters critical for mapping to succeed included the net-
work size, the nonlinear activation function used for training rate
RNNs, and a constant factor for scaling down the connectivity
weights of the trained rate RNNs. Here, we investigated these
parameters along with other LIF parameters and identified the
range of values required for the mapping to be effective. We
demonstrate that, when these parameters are set to their optimal
values, the LIF models constructed from our framework can per-
form the same tasks that the rate models are trained to perform
equally well.

Results
Here, we provide a brief overview of the 2 types of RNNs that
we used throughout this study (more details are in Materials
and Methods): continuous-variable firing rate RNNs and spiking
RNNs. The continuous-variable rate network model consisted of
N rate units with firing rates that were estimated via a nonlinear
input–output transfer function (4, 5). The model was governed
by the following set of equations:

τdi
dxi
dt

=−xi +
N∑

j=1

w rate
ij r rate

j + Iext [1]

r rate
i =φ(xi), [2]

where τdi is the synaptic decay time constant for unit i , xi is the
synaptic current variable for unit i , w rate

ij is the synaptic strength
from unit j to unit i , and Iext is the external current input to unit
i . The firing rate of unit i (r rate

i ) is given by applying a nonlin-
ear transfer function [φ(·)] to the synaptic current variable. Since
the firing rates in spiking networks cannot be negative, we chose
the activation function for our rate networks to be a nonnega-
tive saturating function (standard sigmoid function) and parame-
trized the connectivity matrix (w rate

ij ∈W rate) to enforce Dale’s
principle and additional connectivity constraints (Materials
and Methods).

The second RNN model that we considered was a network
composed of N spiking units. Throughout this study, we focused
on networks of LIF units with membrane voltage dynamics that
were given by

τm
dvi
dt

=−vi +
N∑

j=1

w spk
ij r spk

j + Iext, [3]

where τm is the membrane time constant (set to 10 ms through-
out this study), vi is the membrane voltage of unit i , w spk

ij is the
synaptic strength from unit j to unit i , r spk

j represents the synap-

tic filtering of the spike train of unit j , and Iext is the external
current source. The discrete nature of r spk

j (Materials and Meth-
ods) has posed a major challenge for directly training spiking
networks using gradient-based supervised learning. Even though
the main results presented here are based on LIF networks, our
method can be generalized to quadratic integrate-and-fire (QIF)
networks with only a few minor changes to the model parameters
(SI Appendix, Table S1).

Continuous rate network training was implemented using
the open source software library TensorFlow in Python, while
LIF/QIF network simulations along with the rest of the analyses
were performed in MATLAB.

Training Continuous Rate Networks. Throughout this study, we
used a gradient-descent supervised method, known as backprop-
agation through time (BPTT), to train rate RNNs to produce
target signals associated with a specific task (13, 24). The method
that we used is similar to the one used by previous studies (13, 25,
27) (more details are in Materials and Methods) with 1 major dif-
ference in synaptic decay time constants. Instead of assigning a
single time constant to be shared by all of the units in a network,
our method tunes a synaptic constant for each unit using BPTT
(Materials and Methods). Although tuning of synaptic time con-
stants may not be biologically plausible, this feature was included
to model diverse intrinsic synaptic timescales observed in single
cortical neurons (28–30).

We trained rate RNNs of various sizes on a simple task mod-
eled after a Go-NoGo task to demonstrate our training method
(Fig. 1). Each network was trained to produce a positive mean
population activity approaching +1 after a brief input pulse
(Fig. 1A). For a trial without an input pulse (i.e., NoGo trial),
the networks were trained to maintain the output signal close to
0. The units in a rate RNN were sparsely connected via W rate and
received a task-specific input signal through weights (Win) drawn
from a normal distribution with 0 mean and unit variance. The
network output (orate) was then computed using a set of linear
readout weights:

orate(t)=W rate
out · rrate(t), [4]

where W rate
out is the readout weights and rrate(t) is the firing rate

estimates from all of the units in the network at time t . The recur-
rent weight matrix (W rate), the readout weights (W rate

out ), and the
synaptic decay time constants (τ d) were optimized during train-
ing, while the input weight matrix (Win) stayed fixed (Materials
and Methods).

The network size (N ) was varied from 10 to 400 (9 different
sizes), and 100 networks with random initializations were trained
for each size. For all of the networks, the minimum and maxi-
mum synaptic decay time constants were fixed to 20 and 50 ms,
respectively. As expected, the smallest rate RNNs (N =10) took
the longest to train, and only 69% of the rate networks with
N =10 were successfully trained (Fig. 1C; SI Appendix has
training termination criteria).

One-to-One Mapping from Continuous Rate Networks to Spiking Net-
works. We developed a simple procedure that directly maps
dynamics of a trained continuous rate RNN to a spiking RNN
in a one-to-one manner.

In our framework, the 3 sets of the weight matrices (Win ,
W rate, and W rate

out ) along with the tuned synaptic time constants
(τ d) from a trained rate RNN are transferred to a network of
LIF spiking units. The spiking RNN is initialized to have the
same topology as the rate RNN. The input weight matrix and the
synaptic time constants are simply transferred without any mod-
ification, but the recurrent connectivity and the readout weights
need to be scaled by a constant factor (λ) in order to account
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Fig. 1. Rate RNNs trained to perform the Go-NoGo task. (A) Schematic
diagram illustrating a continuous rate RNN model trained to perform the
Go-NoGo task. The rate RNN model contained excitatory (red circles) and
inhibitory (blue circles) units. (B) Distribution of the tuned synaptic decay
time constants (mean ± SD, 28.2 ± 9.4 ms; Left) and the average trained
rate RNN task performance (Right) from an example rate RNN model. The
mean± SD output signals from 50 Go trials (dark purple) and from 50 NoGo
trials (light purple) are shown. The green box represents the input stimulus
given for the Go trials. The rate RNN contained 200 units (169 excitatory
and 31 inhibitory units). (C) Rate RNNs with different network sizes trained
to perform the Go-NoGo task. For each network size, 100 RNNs with ran-
dom initial conditions were trained. All of the networks successfully trained
performed the task almost perfectly (range from 96 to 100%; Left). As the
network size increased, the number of training trials decreased (mean± SD
is shown; Right).

for the difference in the firing rate scales between the rate model
and the spiking model (Materials and Methods and Fig. 2A). The
effects of the scaling factor are clear in an example LIF RNN
model constructed from a rate model trained to perform the Go-
NoGo task (Fig. 2B). With an appropriate value for λ, the LIF
network performed the task with the same accuracy as the rate
network, and the LIF units fired at rates similar to the “rates” of
the continuous network units (SI Appendix, Fig. S1). In addition,
the LIF network reproduced the population dynamics of the rate
RNN model as shown by the time evolution of the top 3 prin-
cipal components extracted by the principal component analysis
(SI Appendix, Fig. S2).

Using the procedure outlined above, we converted all of the
rate RNNs trained in the previous section to spiking RNNs. Only
the rate RNNs that successfully performed the task (i.e., training
termination criteria met within the first 6,000 trials) were con-
verted. Fig. 2C characterizes the proportion of the LIF networks
that successfully performed the Go-NoGo task (≥ 95% accuracy;
same threshold used to train the rate models) (SI Appendix)
and the average task performance of the LIF models for each
network size group. For each conversion, the scaling factor (λ)
was determined via a grid search method (Materials and Meth-

ods). The LIF RNNs constructed from the small rate networks
(N =10 and N =50) did not perform the task reliably, but the
LIF model became more robust as the network size increased,
and the performance gap between the rate RNNs and the LIF
RNNs was the smallest for N =250 (Fig. 2C).

In order to investigate the effects of the synaptic decay time
constants on the mapping robustness, we trained rate RNNs
composed of 250 units (N =250) with different maximum time
constants (τdmax). The minimum time constant (τdmin) was fixed
to 20 ms, while the maximum constant was varied from 20 to
1,000 ms. For the first case (i.e., τdmin = τdmax =20 ms), the synaptic
decay time constants were not trained and fixed to 20 ms for all
of the units in a rate RNN. For each maximum constant value,
100 rate RNNs with different initial conditions were trained, and
only successfully trained rate networks were converted to spiking
RNNs. For each maximum synaptic decay condition, all 100 rate
RNNs were successfully trained. As the maximum decay constant
increased, the average tuned synaptic decay constants increased
sublinearly (Fig. 2D). For the shortest synaptic decay time con-
stant considered (20 ms), the average task performance was the
lowest at 93.91± 7.78%, and 65% of the converted LIF RNNs
achieved at least 95% accuracy (Fig. 2E). The LIF models for
the rest of the maximum synaptic decay conditions were robust.
Although this might indicate that tuning of τ d is important for
the conversion of rate RNNs to LIF RNNs, we further inves-
tigated the effects of the optimization of τ d in Analysis of the
Conversion Method.

Our framework also allows seamless integration of addi-
tional functional connectivity constraints. For example, a com-
mon cortical microcircuitry motif where somatostatin-expressing
interneurons inhibit both pyramidal and parvalbumin-positive
neurons can be easily implemented in our framework (Materi-
als and Methods and SI Appendix, Fig. S3). In addition, Dale’s
principle is not required for our framework (SI Appendix,
Fig. S4).

LIF Networks for Context-Dependent Input Integration. The Go-
NoGo task considered in the previous section did not require
complex cognitive computations. In this section, we consider a
more complex task and probe whether spiking RNNs can be con-
structed from trained rate networks in a similar fashion. The task
considered here is modeled after the context-dependent sensory
integration task used by Mante et al. (7). Briefly, Mante et al.
(7) trained rhesus monkeys to integrate inputs from one sen-
sory modality (dominant color or dominant motion of randomly
moving dots) while ignoring inputs from the other modality (7).
A contextual cue was also given to instruct the monkeys which
sensory modality they should attend to. The task required the
monkeys to utilize flexible computations, as the same modality
can be either relevant or irrelevant depending on the contextual
cue. Previous works have successfully trained continuous rate
RNNs to perform a simplified version of the task and replicated
the neural dynamics present in the experimental data (7, 13, 15).
Using our framework, we constructed a spiking RNN model that
can perform the task and capture the dynamics observed in the
experimental data.

For the task paradigm, we adopted a similar design as the one
used by the previous modeling studies (7, 13, 15). A network
of recurrently connected units received 2 streams of noisy input
signals along with a constant-valued signal that encoded the con-
textual cue (Materials and Methods and Fig. 3A). To simulate a
noisy sensory input signal, a random Gaussian time series signal
with 0 mean and unit variance was first generated. Each input sig-
nal was then shifted by a positive or negative constant (“offset”)
to encode evidence toward the (+) or (−) choice, respectively.
Therefore, the offset value determined how much evidence for
the specific choice was represented in the noisy input signal. The
network was trained to produce an output signal approaching
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Fig. 2. Mapping trained rate RNNs to LIF RNNs for the Go-NoGo task. (A) Schematic diagram illustrating direct mapping from a continuous rate RNN
model (Upper) to a spiking RNN model (Lower). The optimized synaptic decay time constants (τ d ) along with the weight parameters (Win, W rate, and W rate

out )
were transferred to a spiking network with LIF units (red and blue circles with dashed outlines). The connectivity and the readout weights were scaled by a
constant factor, λ. (B) LIF RNN performance on the Go-NoGo task without scaling (λ= 1; Left), with insufficient scaling (Center), and with appropriate scaling
(Right). The network contained 200 units (169 excitatory and 31 inhibitory units). Mean ± SD over 50 Go and 50 NoGo trials. (C) Successfully converted LIF
networks and their average task performance on the Go-NoGo task with different network sizes. All of the rate RNNs trained in Fig. 1 were converted to LIF
RNNs. The network size was varied from N = 10 to 400. (D) Average synaptic decay values for N = 250 across different maximum synaptic decay constants.
(E) Successfully converted LIF networks and their average task performance on the Go-NoGo task with fixed network size (N = 250) and different maximum
synaptic decay constants. The maximum synaptic decay constants were varied from 20 to 1,000 ms.

+1 (or −1) if the cued input signal had a positive (or negative)
mean. For example, if the cued input signal was generated using
a positive offset value, then the network should produce an out-
put that approaches +1 regardless of the mean of the irrelevant
input signal.

Rate networks with different sizes (N =10, 50, . . . , 450, 500)
were trained to perform the task. As this is a more complex
task compared with the Go-NoGo task considered in the pre-
vious section, the numbers of units and trials required to train
rate RNNs were larger than those in the models trained on the
Go-NoGo task (Fig. 3 B and C). The synaptic decay time con-
stants were again limited to a range of 20 and 50 ms, and 100
rate RNNs with random initial conditions were trained for each
network size. For the smallest network size (N =10), the rate
networks could not be trained to perform the task within the first
6,000 trials (Fig. 3B).

Next, all of the rate networks successfully trained for the task
were transformed into LIF models. Example output responses
along with the distribution of the tuned synaptic decay con-
stants from a converted LIF model (N =250, τdmin =20 ms,
τdmax =50 ms) are shown in Fig. 4 A and B. The task perfor-
mance of the LIF model was 98% and comparable with the rate
RNN used to construct the spiking model (Fig. 4C). In addi-
tion, the LIF network manifested population dynamics similar
to the dynamics observed in the group of neurons recorded by
Mante et al. (7) and rate RNN models investigated in previous
studies (7, 13, 15): individual LIF units displayed mixed repre-
sentation of the 4 task variables (modality 1, modality 2, network
choice, and context) (SI Appendix, Fig. S5A), and the network
revealed the characteristic line attractor dynamics (SI Appendix,
Fig. S5B).

Similar to the spiking networks constructed for the Go-NoGo
task, the LIF RNNs performed the input integration task more
accurately as the network size increased (Fig. 4D). Next, the net-
work size was fixed to N =250, and τdmax was gradually increased
from 20 to 1,000 ms. For τdmin = τdmax =20 ms, all 100 rate net-
works failed to learn the task within the first 6,000 trials. The
conversion from the rate models to the LIF models did not
lead to significant loss in task performance for all of the other
maximum decay constant values considered (Fig. 4E).

Analysis of the Conversion Method. Previous sections illustrated
that our framework for converting rate RNNs to LIF RNNs is
robust as long as the network size is not too small (N ≥ 200), and
the optimal size was N =250 for both tasks. When the network
size is too small, it is harder to train rate RNNs, and the rate
models successfully trained do not reliably translate to spiking
networks (Figs. 2D and 4D). In this section, we further inves-
tigate the relationship between rate and LIF RNN models and
characterize other parameters crucial for the conversion to be
effective.
Training synaptic decay time constants. As shown in Fig. 5, train-
ing the synaptic decay constants for all of the rate units is not
required for the conversion to work. Rate RNNs (100 mod-
els with different initial conditions) with the synaptic decay
time constant fixed to 35 ms (average τd value for the net-
works trained with τdmin =20 ms and τdmax =50 ms) were trained
on the Go-NoGo task and converted to LIF RNNs (Fig. 5).
The task performance of these LIF networks was not signif-
icantly different from the performance of the spiking models
with optimized synaptic decay constants bounded between 20
and 50 ms. The number of the successful LIF models with
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the fixed synaptic decay constant was also comparable with the
number of the successful LIF models with the tuned decay
constants (Fig. 5).
Other LIF parameters. We also probed how LIF model param-
eters affected our framework. More specifically, we focused on
the refractory period and synaptic filtering. The LIF models con-
structed in the previous sections used an absolute refractory
period of 2 ms and a double-exponential synaptic filter (Materials
and Methods). Rate models (N =250 and τdmax =100 ms) trained
on the sensory integration task were converted to LIF networks
with different values of the refractory period. As the refrac-
tory period became longer, the task performance of the spiking
RNNs decreased rapidly (Fig. 6A). When the refractory period
was set to 0 ms, the LIF RNNs still performed the integration
task with a moderately high average accuracy (92.8 ± 14.3%),
but the best task performance was achieved when the refrac-
tory period was set to 2 ms (average performance, 97.0 ± 6.6%)
(Fig. 6A, Inset).

We also investigated how different synaptic filters influenced
the mapping process. We first fixed the refractory period to its
optimal value (2 ms) and constructed 100 LIF networks (N =
250) for the integration task using a double synaptic filter (Mate-
rials and Methods and Fig. 6B, light blue). Next, the synaptic filter
was changed to the following single-exponential filter:

τdi
dr spk

i

dt
=−r spk

i +
∑
tki <t

δ(t − tki ),

where r spk
i represents the filtered spike train of unit i and tki

refers to the k th spike emitted by unit i . The task performance
of the LIF networks with the above single-exponential synaptic
filter was 95.7 ± 7.3%, and it was not significantly different from
the performance of the double-exponential synaptic LIF models
(97.0 ± 6.6%) (Fig. 6B).

Initial connectivity weight scaling. We considered the role of
the connectivity weight initialization in our framework. In the
previous sections, the connectivity weights (W rate) of the rate
networks were initialized as random, sparse matrices with 0 mean
and an SD of g/

√
N ·Pc , where g =1.5 is the gain term that con-

trols the dynamic regime of the networks and Pc =0.20 is the
initial connectivity probability (Materials and Methods). Previous
studies have shown that rate networks operating in a high gain
regime (g > 1.0) produce chaotic spontaneous trajectories, and
this rich dynamics can be harnessed to perform complex compu-
tations (6, 11). By varying the gain term, we determined if highly
chaotic initial dynamics were required for successful conversion.
We considered 6 different gain terms ranging from 0.5 to 3.5, and
for each gain term, we constructed 100 LIF RNNs (from 100 rate
RNNs with random initial conditions) (Fig. 6C) to perform the
contextual integration task. The LIF models performed the task
equally well across all of the gain terms considered (no statistical
significance detected).
Transfer function. One of the most important factors that deter-
mines whether rate RNNs can be mapped to LIF RNNs in a
one-to-one manner is the nonlinear transfer function used in
the rate models. We considered 3 nonnegative transfer functions
commonly used in the machine learning field to train rate RNNs
on the Go-NoGo task: sigmoid, rectified linear, and softplus
functions (Fig. 7A and SI Appendix). For each transfer func-
tion, 100 rate models (N =250 and τdmax =50 ms) were trained.
Although all 300 rate models were trained to perform the task
almost perfectly (Fig. 7B), the average task performance and the
number of successful LIF RNNs were highest for the rate mod-
els trained with the sigmoid transfer function (Fig. 7C). None of
the rate models trained with the rectified linear transfer function
could be successfully mapped to LIF models, while the spiking
networks constructed from the rate models trained with the soft-
plus function were not robust and produced incorrect responses
(SI Appendix, Fig. S6).
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Fig. 4. LIF network models constructed to perform the contextual integration task. (A) Example output responses and spike raster plots from an LIF network
model for 2 different input stimuli (rows) and 2 contexts (columns). The network contained 250 units (188 excitatory and 62 inhibitory units), and the noisy
input signals were scaled by 0.5 vertically for better visualization of the network responses (purple lines). (B) Distribution of the optimized synaptic decay
time constants (τ d ) for the example LIF network (mean ± SD, 38.9 ± 9.3 ms). The time constants were limited to range between 20 and 50 ms. (C) Average
output responses of the example LIF network. Mean± SD network responses across 100 randomly generated trials are shown. (D) Successfully converted LIF
networks and their average task performance across different network sizes. The network size was varied from N = 10 to 500. The rate RNNs trained in Fig.
3 were used. (E) Successfully converted LIF networks with N = 250 and their average task performance across different maximum synaptic decay constants
(varied from 20 to 1,000 ms).

Discussion
In this study, we presented a simple framework that harnesses
the dynamics of trained continuous rate network models to
produce functional spiking RNN models. We identified a set
of parameters required to directly transform trained rate RNNs
to LIF models, thus establishing a one-to-one correspondence
between these 2 model types. Despite of additional spiking-
related parameters, surprisingly only a single parameter (i.e.,
scaling factor) was required for LIF RNN models to closely
mimic their counterpart rate models. Furthermore, this frame-
work can flexibly impose functional connectivity constraints and
heterogeneous synaptic time constants.

We investigated and characterized the effects of several model
parameters on the stability of the transfer learning from rate
models to spiking models. The parameters critical for the map-
ping to be robust included the network size, choice of activation
function for training rate RNNs, and a constant factor to scale
down the connectivity weights of the trained rate networks.
Although the softplus and rectified linear activation functions are
popular for training deep neural networks, we demonstrated that
the rate networks trained with these functions do not translate
robustly to LIF RNNs (Fig. 7). However, the rate models trained
with the sigmoid function were transformed to LIF models with
high fidelity.

Another important parameter was the constant scaling factor
used to scale W rate and W rate

out before transferring them to LIF
networks. When the scaling factor was set to its optimal value
(found via grid search), the LIF units behaved like their coun-

terpart rate units, and the spiking networks performed the tasks
that the rate RNNs were trained to perform (Fig. 2). Another
parameter that affected the reliability of the conversion was the
refractory period parameter of the LIF network models. The LIF
performance was optimal when the refractory was set to 2 ms
(Fig. 6A). Training the synaptic decay time constants, choice of
synaptic filter (between single- and double-exponential filter),
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Fig. 5. Optimizing synaptic decay constants is not required for conversion
of rate RNNs. The Go-NoGo task performance of the LIF RNNs constructed
from the rate networks with a fixed synaptic constant (τd = 35 ms; blue)
was not significantly different from the performance of the LIF RNNs with
tuned synaptic decay time constants (τd

min = 20 ms, τd
max = 50 ms; green).
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Fig. 6. Effects of the refractory period, synaptic filter, and rate RNN
connectivity weight initialization. (A) Average contextual integration task
performance of the LIF network models (N = 250) with different refractory
period values. The refractory period was varied from 0 ms (i.e., no refrac-
tory period) to 50 ms. Inset shows the average task performance across finer
changes in the refractory period. Mean ± SD is shown. (B) Average contex-
tual integration task performance of the LIF network models (N = 250 and
refractory period of 2 ms) with the single-exponential synaptic filter (dark
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shown. (C) Average contextual integration task performance of the LIF net-
work models (N = 250, refractory period of 2 ms, and double-exponential
synaptic filter) with different connectivity gain initializations. Mean ± SD
is shown.

and connectivity weight initialization did not affect the mapping
procedure (Figs. 5 and 6 B and C).

The type of approach used in this study (i.e., conversion of
a rate network to a spiking network) has been previously used
in neuromorphic engineering to construct power-efficient deep
spiking networks (31–36). These studies mainly used feedforward
multilayer networks or convolutional neural networks aimed to
accurately classify input signals or images without placing too
much emphasis on biophysical limitations. The overarching goal
in these studies was to maximize task performance while min-
imizing power consumption and computational cost. However,
the main aim of this study was to construct spiking recurrent
network models that abide by important biological constraints
in order to relate emerging mechanisms and dynamics to exper-
imentally observed findings. To this end, we have carefully
designed our continuous rate RNNs to include several biologi-
cal features. These include 1) recurrent architectures, 2) sparse
connectivity that respects Dale’s principle, and 3) heterogeneous
synaptic decay time constants.

For constructing spiking RNNs, recent studies have proposed
methods that built on the FORCE method to train spiking RNNs
(8, 20–22). Conceptually, our work is most similar to the work by
DePasquale et al. (21). The method developed by DePasquale
et al. (21) also relies on mapping a trained continuous-variable
rate RNN to a spiking RNN model. However, the rate RNN

model used in their study was designed to provide dynamically
rich auxiliary basis functions meant to be distributed to over-
lapping populations of spiking units. Due to this reason, the
relationship between their rate and spiking models is rather
complex, and it is not straightforward to impose functional con-
nectivity constraints on their spiking RNN model. An additional
procedure was introduced to implement Dale’s principle, but this
led to more fragile spiking networks with considerably increased
training time (21). The one-to-one mapping between rate and
spiking networks used in our method solved these problems
without sacrificing network stability and computational cost: bio-
physical constraints that we wanted to incorporate into our
spiking model were implemented in our rate network model first
and then, transferred to the spiking model.

While our framework incorporated the basic yet important
biological constraints, there are several features that are also
not biologically realistic in our models. The gradient-descent
method used to tune the rate model parameters, including the
connectivity weights and the synaptic decay time constants, in a
supervised manner is not biologically plausible. Although tuning
of the synaptic time constants is not realistic and has not been
observed experimentally, previous studies have underscored the
importance of the diversity of synaptic timescales both in silico
and in vivo (8, 29, 30). In addition, other works have validated
and uncovered neural mechanisms observed in experimental set-
tings using RNN models trained with backpropagation (7, 13,
37), thus highlighting that a network model can be biologically
plausible even if it was constructed using nonbiological means.
Another limitation of our method is the lack of temporal cod-
ing in our LIF models. Since our framework involves rate RNNs
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with 3 nonnegative activation functions. (A) Three nonnegative transfer
functions were considered: sigmoid, softplus, and rectified linear (ReLU)
functions. (B) All 300 rate RNNs (100 networks per activation function) were
successfully trained to perform the Go-NoGo task. (C) Of the 100 sigmoid
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that operate in a rate-coding scheme, the spiking RNNs that
our framework produces also use rate coding by nature. Previ-
ous studies have shown that spike coding can improve spiking
efficiency and enhance network stability (20, 38, 39), and recent
studies emphasized the importance of precise spike coordination
without modulations in firing rates (40, 41). Lastly, our frame-
work does not model nonlinear dendritic processes, which have
been shown to play a significant role in efficient input integration
and flexible information processing (22, 42, 43). Incorporating
nonlinear dendritic processes into our platform using the method
proposed by Thalmeier et al. (22) will be an interesting next
step to further investigate the role of dendritic computation in
information processing.

In summary, we provide an easy-to-use platform that converts
a continuous recurrent network model with basic biological con-
straints to a spiking model. The tight relationship between rate
and LIF RNN models under certain parameter values suggests
that spiking networks could be put together to perform com-
plex tasks traditionally used to train and study continuous rate
networks. Future work needs to focus on why and how such a
tight relationship emerges. The framework along with the find-
ings presented in this study lay the groundwork for discovering
principles on how neural circuits solve computational problems
with discrete spikes and for constructing more power-efficient
spiking networks. Extending our platform to incorporate other
commonly used neural network architectures could help design
biologically plausible deep learning networks that operate at a
fraction of the power consumption required for current deep
neural networks.

Materials and Methods
The implementation of our framework and the codes to generate all of the
figures in this work are available at https://github.com/rkim35/spikeRNN.
The repository also contains implementation of other tasks, including
autonomous oscillation and delayed match-to-sample tasks.

All of the trained models used in this study have been deposited into
Open Science Framework (44).

Continuous Rate Network Structure. The continuous rate RNN model con-
tains N units recurrently connected to one another. The dynamics of the
model is governed by

τ
d dx

dt
=−x + W raterrate

+ Iext , [5]

where τ d ∈R1×N corresponds to the synaptic decay time constants for the
N units in the network (Training Details discusses how these are initialized
and optimized), x ∈R1×N is the synaptic current variable, W rate ∈RN×N is
the synaptic connectivity matrix, and rrate ∈R1×N is the output of the units.
The output of each unit, which can be interpreted as the firing rate estimate,
is obtained by applying a nonlinear transfer function to the synaptic current
variable (x) elementwise:

rrate
=φ(x).

We use a standard logistic sigmoid function for the transfer function to
constrain the firing rates to be nonnegative:

φ(x) =
1

1 + exp(−x)
. [6]

The connectivity weight matrix (W rate) is initialized as a random, sparse
matrix drawn from a normal distribution with 0 mean and an SD of
1.5/
√

N · Pc, where Pc = 0.20 is the initial connectivity probability.
The external currents (Iext) include task-specific input stimulus signals (SI

Appendix) along with a Gaussian white noise variable:

Iext = Winu +N (0, 0.01),

where the time-varying stimulus signals (u∈RNin×1) are fed to the net-
work via Win ∈RN×Nin , a Gaussian random matrix with 0 mean and unit
variance. Nin corresponds to the number of input signals associated with
a specific task, and N (0, 0.01)∈RN×1 represents a Gaussian random noise
with 0 mean and variance of 0.01.

The output of the rate RNN at time t is computed as a linear readout of
the population activity:

orate(t) = W rate
out rrate(t),

where W rate
out ∈R1×N refers to the readout weights.

Eq. 5 is discretized using the first-order Euler approximation method:

xt =

(
1−

∆t

τ d

)
xt−1 +

∆t

τ d
(W raterrate

t−1 + Winut−1)

+N (0, 0.01),

where ∆t = 5 ms is the discretization time step size used throughout this
study.

Spiking Network Structure. For our spiking RNN model, we considered a
network of LIF units governed by

τm
dv

dt
=−v + W spkrspk

+ Iext. [7]

In the above equation, τm = 10 ms is the membrane time constant shared
by all of the LIF units, v ∈R1×N is the membrane voltage variable, W spk ∈
RN×N is the recurrent connectivity matrix, and rspk ∈R1×N represents the
spike trains filtered by a synaptic filter. Throughout the study, the double-
exponential synaptic filter was used to filter the presynaptic spike trains:

drspk
i

dt
=−

rspk
i

τd
i

+ si

dsi

dt
=−

si

τr
+

1

τrτd
i

∑
tk
i <t

δ(t− tk
i ),

where τr = 2 ms and τd
i refer to the synaptic rise time and the synaptic decay

time for unit i, respectively. The synaptic decay time constant values (τd
i ∈

τ d) are trained and transferred to our LIF RNN model (Training Details). The
spike train produced by unit i is represented as a sum of Dirac δ functions,
and tk

i refers to the kth spike emitted by unit i.
The external current input (Iext) is similar to the one used in our con-

tinuous model (Continuous Rate Network Structure). The only difference is
the addition of a constant background current set near the action potential
threshold (see below).

The output of our spiking model at time t is given by

ospk(t) = W spk
out rspk(t).

Other LIF model parameters were set to the values used by Nicola and
Clopath (23). These include the action potential threshold (−40 mV), the
reset potential (−65 mV), the absolute refractory period (2 ms), and the
constant bias current (−40 pA). The parameter values for the LIF and
the QIF models are listed in SI Appendix, Table S1.

Training Details. In this study, we only considered supervised learning tasks.
A task-specific target signal (z) is used along with the rate RNN output
(orate) to define the loss function (L), which our rate RNN model is trained
to minimize. Throughout the study, we used the root mean squared error
defined as

L=

√√√√( T∑
t=1

(z(t)− orate(t))2

)
, [8]

where T is the total number of time points in a single trial.
In order to train the rate model to minimize the above loss function (Eq.

8), we used the adaptive moment estimation stochastic gradient descent
algorithm. The learning rate was set to 0.01, and the TensorFlow default
values were used for the first and second moment decay rates. The gradi-
ent descent method was used to optimize the following parameters in the
rate model: synaptic decay time constants (τ d), recurrent connectivity matrix
(W rate), and readout weights (W rate

out ).
Here, we describe the method to train synaptic decay time constants

(τ d) using backpropagation. The time constants are initialized with random
values within the specified range:

τ
d

=σ(N (0, 1)) · τstep + τ
d
min,
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where σ(·) is the sigmoid function (identical to Eq. 6) used to con-
strain the time constants to be nonnegative. The time constant values
are also bounded by the minimum (τd

min) and the maximum (τd
max = τd

min +

τstep) values. The error computed from the loss function (Eq. 8) is then
backpropagated to update the time constants at each iteration:

∂L
∂τ d

=
∂L
∂r
·
∂r

∂x
·
∂x

∂τ d
.

The method proposed by Song et al. (13) was used to impose Dale’s prin-
ciple and create separate excitatory and inhibitory populations. Briefly, the
recurrent connectivity matrix (W rate) in the rate model is parametrized by

W rate
= [W rate

]+ ·D, [9]

where the rectified linear operation ([·]+) is applied to the connectivity
matrix at each update step. The diagonal matrix (D∈RN×N) contains +1 for
excitatory units and −1 for inhibitory units in the network. Each unit in the
network is randomly assigned to 1 group (excitatory or inhibitory) before
training, and the assignment does not change during training (i.e., D stays
fixed).

To impose specific connectivity patterns, we apply a binary mask (M∈
RN×N) to Eq. 9:

W rate
=
(

[W rate
]+ ·D

)
�M,

where � refers to the Hadamard operation (elementwise multiplication).
Similar to the diagonal matrix (D), the mask matrix stays fixed throughout
training. For example, the following mask matrix can be used to create a
subgroup of inhibitory units (Group A) that do not receive synaptic inputs
from the rest of the inhibitory units (Group B) in the network (SI Appendix,
Fig. S3):

mij =

{
0 i∈Group A, j∈Group B
1 otherwise

,

where mij ∈M establishes (if mij = 1) or removes (if mij = 0) the connection
from unit j to unit i.

Transfer Learning from a Rate Model to a Spiking Model. In this section,
we describe the method that we developed to perform transfer learning
from a trained rate model to an LIF model. After the rate RNN model
is trained using the gradient descent method, the rate model parame-
ters are transferred to an LIF network in a one-to-one manner. First, the
LIF network is initialized to have the same topology as the trained rate
RNN. Second, the input weight matrix (Win) and the synaptic decay time
constants (τ d) are transferred to the spiking RNN without any modifi-
cation. Third, the recurrent connectivity matrix (W rate) and the readout
weights (W rate

out ) are scaled by a constant number, λ, and transferred to the
spiking network.

If the recurrent connectivity weights from the trained rate model are
transferred to a spiking network without any changes, the spiking model
produces largely fluctuating signals (as illustrated in Fig. 2B), because the
LIF firing rates are significantly larger than 1 (whereas the firing rates of
the rate model are constrained to range between 0 and 1 by the sigmoid
transfer function).

To place the spiking RNN in the similar dynamic regime as the rate
network, we first assume a linear relationship between the rate model
connectivity weights and the spike model weights:

W spk
=λ ·W rate

.

Using the above assumption, the synaptic drive (d) that unit i in the LIF
RNN receives can be expressed as

dspk
i (t) =

N∑
j=1

wspk
ij · r

spk
j (t)

≈
N∑

j=1

(λ ·wrate
ij ) · rspk

j (t)

=

N∑
j=1

wrate
ij · (λ · r

spk
j (t)), [10]

where wspk
ij ∈W spk is the synaptic weight from unit j to unit i.

Similarly, unit i in the rate RNN model receives the following synaptic
drive at time t:

drate
i (t) =

N∑
j=1

wrate
ij · r

rate
j (t). [11]

If we set the above 2 synaptic drives (Eqs. 10 and 11) equal to each other,
we have

dspk
i (t) = drate

i (t)

N∑
j=1

wrate
ij · (λ · r

spk
j (t)) =

N∑
j=1

wrate
ij · r

rate
j (t). [12]

Generalizing Eq. 12 to all of the units in the network, we have

rrate(t) =λ · rspk(t).

Therefore, if there exists a constant factor (λ) that can account for the firing
rate scale difference between the rate and the spiking models, the connec-
tivity weights from the rate model (W rate) can be scaled by the factor and
transferred to the spiking model.

The readout weights from the rate model (W rate
out ) are also scaled by the

same constant factor (λ) to have the spiking network produce output signals
similar to the ones from the trained rate model:

orate(t) = W rate
out · r

rate(t)

≈W rate
out · (λ · r

spk(t))

= (λ ·W rate
out ) · rspk(t) = ospk(t).

In order to find the optimal scaling factor, we developed a simple grid
search algorithm. For a given range of values for 1/λ (ranged from 20 to 75
with a step size of 5), the algorithm finds the optimal value that maximizes
the task performance.
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