
The role of archaeal chromatin in transcription.

Travis J. Sanders1,a, Craig J. Marshall1,a, Thomas J. Santangelo2,a

a -Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, 
Colorado, 80523, USA

Abstract

Genomic organization impacts accessibility and movement of information processing systems 

along DNA. DNA-bound proteins dynamically dictate gene expression and provide regulatory 

potential to tune transcription rates to match ever-changing environmental conditions. Archaeal 

genomes are typically small, circular, gene dense, and organized either by histone proteins that are 

homologous to their eukaryotic counterparts, or small basic proteins that function analogously to 

bacterial nucleoid proteins. We review here how archaeal genomes are organized and how such 

organization impacts archaeal gene expression, focusing on conserved DNA-binding proteins 

within the clade and the factors that are known to impact transcription initiation and elongation 

within protein-bound genomes.
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Introduction

The regulation imposed on gene expression by chromatin or nucleoid structures in Eukarya 

and Bacteria, respectively, has a long and rich history [1–10]. Organization of the genome 

can facilitate or impair the ability of the transcription apparatus to recognize promoter 

elements, to form an open complex and to transition into stable elongation. Once 

transcription elongation complexes (TECs) are established, they must traverse a protein-

bound template [11–14]. The dynamic associations of DNA-bound proteins and the resultant 

larger structures formed by cooperative interactions of such hinder translocation. Both 

bacterial nucleoid and eukaryotic chromatin structures involve the formation of loops, 

connecting spatially distant locations on the genome via protein-DNA interactions [15,16], 

and the formation and stability of such topologically-constrained regions can be controlled 

to alter expression of single loci or very large regions of the genome. Regulation of gene 
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expression through alteration of genomic architecture offers the potential to tailor gene 

expression to maximize fitness gains in changing environments.

The role of genomic architecture in modulating gene expression in archaeal species has only 

more recently been investigated with the scrutiny applied to bacterial and eukaryotic 

systems. Archaeal genomes are typically circular, small (< 5 Mbp), gene dense (~ 80–90% 

coding sequence), and many genes are organized within operons [17–21]. Despite sharing 

many hallmarks of typical bacterial genomes, archaeal genomes are expressed with a single 

RNA polymerase (RNAP) that shares more similarity in overall structure, subunit 

composition, and basal-transcription factor requirements with eukaryotic RNAPs, in 

particular Pol II [22–34]. The archaeal RNAP lacks the C-terminal repeats found on Pol II 

and is not known to be post-translationally modified, but the archaeal RNAP is still directed 

to the transcription start site in a manner comparable to Pol II. The archaeal transcription 

system is a component simplified version of the Pol II apparatus, requiring only interactions 

with Transcription Factor B (TFB - TFIIB in Eukarya), Transcription Factor E (TFE - TFIIE 

in Eukarya) and TATA Binding Protein (TBP) to recognize core archaeal promoter elements 

– TATA box and BRE – that share sequence conservation with eukaryotic promoter elements 

[34–38]. Minimal evidence for long-range interactions between transcription factors and 

promoter elements is known, and substantial evidence has instead emerged that 

demonstrates that most archaeal promoters are regulated by bacterial-like repressors or 

activators that bind immediately adjacent to or overlapping core promoter elements [39–49]. 

Studies suggest that core promoters are generally devoid of organized chromatin structures 

[50,51], and that when present, the binding affinity of transcription regulators outcompetes 

the binding of histones or nucleoid-associated proteins to permit regulation within an 

organized and protein-bound genome [40,43,47,52].

Following transcription initiation, TECs must stably associate with and transcribe the 

template for long periods (e.g. minutes or hours at ~40 nt/sec), necessarily displacing DNA-

bound proteins that impede translocation. Transcription initiation and elongation in 

eukaryotes is facilitated by the combinatorial activities of transcription factors and chromatin 

remodeling and modification machinery. Given the absence of obvious chromatin 

remodeling and modification machinery in archaeal genomes, transcription factors likely 

play the dominant role in aiding archaeal transcription during initiation and elongation. The 

rates of elongation and pausing of archaeal transcription are regulated by conserved 

archaeal-eukaryotic factors Spt4/Spt5 and TFS (TFIIS in eukaryotes) [13]. Spt5, 

homologous to bacterial NusG, is the only universally conserved transcription factor. Spt5-

RNAP interactions facilitate formation of the closed-clamp configuration of RNAP that aids 

in processive elongation. Pausing is inevitable, and when collisions with DNA-bound 

proteins stalls forward translocation of RNAP, reverse translocation can inactivate RNAP. 

The cleavage-stimulatory activity of TFS/TFIIS [53] – analogous to the cleavage stimulatory 

activities of GreA and GreB in Bacteria [54,55]– helps rescue such backtracked complexes, 

and the activity of TFS is essential for archaeal species [13].

In this review, we discuss recent advancements in archaeal chromatin and genome 

organization in the context of transcription regulation. We first examine the architectural 

mechanisms and regulatory implications of genome compaction dominated by archaeal 
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histone proteins. Most archaeal clades encode histone proteins that generate DNA structures 

remarkably similar to eukaryotic nucleosomes, albeit with only the core histone-fold and 

often with only a single histone isoform. We next identify and outline important 

advancements in the identification of transcription factors and basal transcription 

mechanisms that facilitate transcription in the context of an archaeal histone-based 

chromatin landscape. We then focus on the archaeal clades that lack histone proteins and 

instead encode a suite of small basic proteins that presumably function like bacterial 

nucleoid-associated proteins to condense and organize the archaeal genome. Finally, we 

consider the major bottlenecks within the archaeal transcription field in the context of 

chromatin organized genomic architectures. We conclude with discussion of current debates 

within the field and highlight the future potential of studies investigating the influence of 

genomic architecture on archaeal gene expression.

Archaeal histone-based chromatin

Structure of archaeal histone-based chromatin

Whole genome sequencing of many cultured and many-more environmentally-isolated, but 

not yet cultured Archaea suggests that most archaeal lineages encode one or more histone 

proteins (Figure 1) [56–64] – six histone isoforms can be identified in Methanocaldococcus 
jannaschii [65] – that are likely to organize the genome into structures that mimic DNA 

organization by eukaryotic nucleosomes [56,66,67]. Although not universally encoded 

(typically to the exclusion of Crenarchaeota [56,64]), in archaeal species with histone 

proteins, a chromatin landscape presents barriers to initiation [42,52,65,68–70], elongation 

[12,13], and likely influences termination. Archaeal histones are composed of only the core-

histone fold and lack the N- and C-terminal tails and extensions common to the canonical 

eukaryotic histones [66,67,71–75] (e.g. H2A, H2B, H3, and H4). Archaeal genomes do not 

encode obvious linker histones (e.g. H1), nor chromatin-remodeling complexes that are 

abundant and essential for gene expression in eukaryotes. Unlike the mandatory eukaryotic 

histone heterodimer partnerships, archaeal chromatin can be spontaneously assembled with a 

single histone protein [51,66,67,72,76,77], and there is currently no evidence for post-

translational modification of archaeal histones.

Despite this minimalist approach to histone-based chromatin architecture, archaeal histone-

DNA interactions align to the same nucleosome positioning code that was established for 

Eukarya [10,51,63], and the constrained structure of DNA bound by archaeal histones is 

nearly identical to the structure of DNA in the eukaryotic nucleosome (Figure 2) 

[66,67,78,79]. The superhelically-wrapped DNA shares the geometry, diameter, pitch, and 

writhe of the eukaryotic nucleosomal superhelix, and specific protein-DNA contacts that 

stabilize archaeal histone-based chromatin are conserved in eukaryotes [56,66,67,79]. The 

structure of archaeal histone-based chromatin suggests the architectural function of histones 

(i.e. the ability to bend DNA into the nucleosomal superhelix) was established long (>1 bya) 

ago, and that the ‘signaling functions’ (i.e. addition of histone extensions and epigenetic 

modifications) were a secondary addition that came with the expansion to four canonical 

histones in eukaryotes [66,67].
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Local histone-binding is known to sterically compete with binding of transcription 

components and offers regulatory potential [12,40,42,43,80], and the extended structure of 

archaeal histone-based chromatin may also offer regulatory potential. Perhaps the most 

striking feature of the structure of archaeal histone-based chromatin is the continuous helical 

ramp of histone dimers and the close association of adjacent layers of the complex that result 

in a tightly-packed 3D chromatin structure [66,67]. The extensions common to eukaryotic 

histones normally radiate into solution and facilitate nucleosome-nucleosome interactions. 

The absence of such extensions on archaeal histones in part permits the close association of 

adjacent layers of archaeal chromatin. The resultant superstructure places the L1 loops of 

histone-dimers 1 and 4 along the helical ramp in closest-proximity to each other. Apart from 

four helix-bundles that link the histone dimers, the only region of close contact between the 

adjacent layers of archaeal chromatin is where the L1 regions of dimers 1 & 4 meet. L1 

sequences almost always retain a central glycine at the point of closest approach and 

substitution of this glycine with larger side-chains impedes tight packing of archaeal 

chromatin, impairs gene expression in vivo, and reduces overall fitness [67].

Extension of the structure by one additional histone-dimer extends the length of DNA 

protection by ~30 bp, resulting in extended polymers that protect DNA from minimally ~60 

bp (two histone dimers) to ~480 bp, in 30bp increments [81]. Comparisons of archaeal 

histone sequences with the atomic-resolution structure of archaeal chromatin reveals that 

most archaeal histones retain the residues that directly interact with the DNA backbone, use 

nearly identical residues to stabilize histone-histone and histone- DNA interactions, and that 

close association of chromatin gyres is likely possible due to minimal side chains in the L1-

L1 interface. The eukaryotic nuclear RNA polymerases (RNAPs) and the archaeal RNAP 

thus regularly encounter – and must overcome – nearly identical histone-DNA contacts that 

present barriers to transcription elongation [67,82–85].

In contrast to eukaryotic histones, there is no evidence of post-translational modifications to 

archaeal histones. Although there are many acetyl- and methyl-transferases encoded 

throughout the Archaea, no activity towards histone proteins has been reported, and the bulk 

of characterized acetyl- and methyl-transferases are active on DNA or RNA [86–88]. A 

minority of archaeal organisms encode histones which contain sequences beyond the core 

histone fold. Excluding single histone isoforms that contain a fused second histone fold 

(effectively a histone-dimer within a single polypeptide) extended histone sequences are 

rarely observed [56]. Such extensions are not homologous to those found in eukaryotes but 

are ‘eukaryote-like’ in being rich in charged residues, especially lysine. Investigation of one 

such extended archaeal histone variant, MJ1647, a C-terminal extension-containing histone 

in M. jannaschii, demonstrated that the C-terminal extension was critical for DNA binding 

and the formation of higher order structures [89]. Modeling the C-terminal extension of 

MJ1647 into the atomic structure of archaeal histone-based chromatin suggests that the C-

terminal extension might impair continued polymerization and impact the global structure of 

archaeal chromatin. The discovery of new histone variants and histone proteins with 

extensions in the Heimdallarchaeota and ASGARD archaeal clades hints at the expansion to 

four canonical histones, the exchange of a histone-polymer for discrete nucleosome 

particles, and the regulation imposed by post-translational modifications of the histone 

proteins in all Eukarya [56,57,61,66,67]. Structural modeling of Heimdall LC 3 histones, 
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which contain tails similar in length and sequence composition to extensions on eukaryotic 

H4, suggests that the extended archaeal histone-based chromatin structure will not be 

impacted by inclusion of such tails [56]. It will now be important to elucidate the expression, 

abundance, and function of these archaeal histone variants, included extended-histone 

variants, in controlling genomic architecture and gene expression.

Global regulation of transcription by archaeal histone-based chromatin

A consensus surrounding the role of archaeal histones in transcription regulation is dubious. 

This is highlighted by the varying essentiality of histone proteins across archaeal species. 

Controversy on the role of archaeal histones in controlling gene expression exists at the total 

transcriptome level when genetically-accessible archaeal species have their histone-encoding 

loci deleted or modified. In the euryarchaeaon Thermococcus kodakarensis, two histone 

variants are encoded, and while each individually is not essential, attempts at deleting both 

histones have been unsuccessful indicating histone-based chromatin is critical for regulation 

of cellular processes. The importance of regulated genomic architecture was revealed by 

changes – up to ~10-fold – in the expression of ~5% of genes upon deletion of either histone 

isoform [90]. The importance of tightly-packed 3D archaeal histone-based chromatin was 

demonstrated by introduction of histone variants with specific mutations to residues in the 

L1-L1 interface [67]. Replacing G17 with bulkier amino acid residues does not disrupt local 

DNA binding but does disrupt extended chromatin structures that in turn impact gene 

expression. Disruption of extended histone-based chromatin structures also abrogates 

adaptive gene expression necessary to respond to changing environmental conditions. 

Histone-proteins are not encoded in all species (Figure 1) and histones are not essential for 

some extant histone-encoding archaeal species. The sole histone encoded in the methanogen 

Methanosarcina mazei is dispensable but deletion results in reduced growth, increased 

sensitivity to DNA damaging agents, reduced overall transcription for many genes, and an 

altered overall transcriptome [91]. Thus, although non-essential, deletion of the histone-

encoding locus, and thus the presumptive loss of histone-based genomic organization – does 

significantly impact global transcription. Changes to global gene expression and growth 

were restored upon complementation of M. mazei strains with exogenously produced 

histone protein, suggesting that histone-based genomic architecture is important, but not 

essential in some archaeal species. A potentially different view of the role of archaeal 

histones emerges from studies of halophilic (e.g. salt-loving) archaea. Halobacterium 
salinarum encodes just one histone protein with several unique attributes. Unlike the typical 

basic pI of most histone proteins, the high-intracellular salt concentrations of halophiles (~ 4 

M) has likely resulted in retention of a histone with an acidic pI. The halophilic histone 

proteins are also typically a single polypeptide containing two tandemly-repeated histone 

folds. The single H. salinarum histone, like the single M. mazei histone, is dispensable and 

deletion results in globally significant, but mild fold-changes in gene expression [91]. 

Interestingly, these mild changes are growth-phase dependent and, although often small at 

the transcriptome level, result in significant changes in overall cell morphology. These 

results were interpreted as indicating a transcription factor-like function of histone proteins 

in Halobacterium, with global architecture imparted by histone-proteins as largely 

unimportant to regulating transcriptome-wide expression but select loci with critical histone-
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binding positions displaying differential expression due to loss of histone production in 

deletion strains.

Regulation of transcription initiation and elongation with archaeal histone-based 
chromatin.

Genome-wide impacts of archaeal histone-based chromatin on regulation of gene expression 

implies that histones are important, often essential, and that changes in histone expression, 

or histone-induced genomic architecture, impact cellular fitness [9]. To determine how the 

histone-based landscape directly impacts gene expression, most studies have taken 

advantage of purified transcription systems and the capacity of archaeal histones to 

spontaneously bind DNAs in vitro at the same positions utilized in vivo and to form 

structures that match in vivo 3D chromatin architectures. Early in vitro transcription 

experiments using components from Methanothermobacter thermautotrophicus 
demonstrated a repressive effect of histone-addition on transcript production, with complete 

inhibition of transcription when histone proteins were provided at levels that would 

theoretically saturate DNA binding (~1 histone dimer per 30 bp of DNA) [12,52,72,92]. 

These in vitro results were later extended and confirmed using components from Pyrococcus 
furiosus [69].

Transcription regulation must normally occur within a chromatin landscape. Most archaeal 

transcription regulators mimic bacterial transcription regulators and bind within or 

immediately adjacent to core promoter elements to impact formation of initiation complexes. 

DNA binding positions upstream of the rb2 gene in M. jannaschii were shown to act as 

histone-nucleating sites, localizing histones whose binding reduces transcription by blocking 

formation of pre-initiation complexes [65]. Histones are non-specific DNA binding proteins, 

and unsurprisingly, precision in vitro hydroxyl radical footprinting revealed that the site-

specific DNA binding transcription factor Ptr2 effectively competes with localized histone 

binding – even at saturating histone levels – to activate transcription.

Transcription elongation is also affected by archaeal histone-based chromatin. In vitro 
transcription assays have been used to establish that the archaeal RNAP is unable to achieve 

elongation rates that are physiologically relevant through an archaeal chromatin barrier 

[12,13]. Using DNA templates capable of binding M. thermautotrophicus histone proteins, 

the M. thermautotrophicus RNA polymerase transcribed template DNA at a rate of ~20 

nts/sec in the absence of histone, but just ~2–5 nts/sec when archaeal histones were added to 

template. The initial collision between the TEC and the histone-barrier results in the greatest 

obstacle, causing RNA polymerase to pause and likely backtrack. The duration of the initial 

pause is much greater than subsequent pauses which occur every ~10–15 bp after the 

transcription elongation complex (TEC) escapes the initial collision. The rate limiting step 

of transcription through these archaeal histone-based barriers is translocation through the 

initial DNA-histone contacts.

The first data supporting factors that facilitate elongation through chromatin barriers is 

supportive of the congruent nature of the simplified archaeal transcription system and the 

more component complex Pol II apparatus [13]. In vitro transcription experiments, using 

factors purified from T. kodakarensis, demonstrate that the activities of the conserved 
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transcription factor TFS (TFIIS in Eukarya), and an Spt4/5 complex (also termed Spt4/5 in 

Eukarya) accelerate the archaeal transcription apparatus through histone-bound templates. 

The archaeal RNAP often backtracks due to downstream chromatin barriers, and archaeal 

TFS stimulated endonucleolytic cleavage of transcripts within backtracked complexes 

results in formation of a new RNA 3’-OH in the active center of RNAP [93–96]. 

Reactivation of backtracked TECs permits elongation restart and another opportunity for the 

TEC to transcribe up to and through a downstream chromatin barrier. The Spt4/5 complex, 

but neither factor individually, also aided in vitro transcription through archaeal histone-

based chromatin, presumably due to their stabilizing effects of a closed-clamp configuration 

of the TEC in aiding proper alignment and retention of the 3’-OH in the RNAP active center 

[32,95,97–99].

Given the observations of archaeal histone-based chromatin controlling the initiation and 

elongation aspects of transcription, it is likely that the local chromatin environment also 

plays a role in termination and proper 3’ end formation of transcripts.

Nucleoid-Associated Proteins (NAPs) in Archaea

The regulation imposed by genomic architecture in archaeal species that do not encode 

histone proteins has also been investigated in diverse clades. Perhaps the best studied protein 

is the well-conserved Alba (Sac10b-homologues), but abundant small basic proteins are 

encoded in both histone- and non-histone encoding archaea that likely impact genomic 

architectures. We focus first on Alba, then on more recently identified and emerging NAPs 

in diverse species.

Alba, a conserved chromatin protein, with controversial roles in genomic architecture

Substantial and contentious debate surrounds the Sac10b family of proteins, commonly 

termed Alba for ‘acetylation lowers binding affinity’, which dominates studies of the non-

histone-based organization and regulation of archaeal genomes [100]. Sac10b is a general 

nucleic-acid binding protein, with affinity for both single-stranded and double-stranded 

RNA and DNA. Evidence for Sac10b-mediated roles in DNA compaction and organization 

are recognized, although near equal evidence supports a role for Sac10b in RNA metabolism 

and binding. A contentious debate surrounds Sac10b, its role in DNA versus RNA binding, 

and whether acetylation or methylation is the post-translational modification that may 

impact function of Sac10b proteins in vivo. The focus of many studies was the modification 

of lysine 16, a well-conserved residue in Sac10b homologues, and identification of proteins 

that could add or remove a reported acetyl group to impact Sac10b activity. Post-

translational modification of K16 within Sac10b proteins was initially described as an 

acetylation event, hence the common Alba acronym (acetylation lowers binding affinity), but 

this modification has more recently been identified as a trimethylation [101]. Due to the 

limited research regarding other nucleoid associated proteins, examination of this paradox is 

presented here from a historical perspective in the context of newer findings and argues for 

the further examination of other potential chromatin protein targets.

The Sac10b family of nucleic acid-binding proteins are highly conserved within Archaea, 

especially species that thrive in (hyper)thermophilic environments. Sac10b family members 
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are encoded in both histone-encoding and non-histone-encoding archaea and are thought to 

play a major structural role in archaeal chromatin. Most research has focused within the 

Crenarchaeota, specifically the Sulfolobales. Much of the initial biochemical analyses 

focused on Alba-DNA interactions. The Sac10b homologue from Sulfolobus shibatae 
(Ssh10b) is a highly abundant protein (~4% of total protein), was shown to bind dsDNA and 

influence DNA topology at physiological temperatures [102]. Both electron microscopy 

(EM) and atomic force microscopy (AFM) experiments revealed an Alba concentration-

dependent compaction of archaeal DNA [103–105].

Sac10b proteins are typically encoded in archaeal genomes in the form of Alba1 but some 

species encode an additional paralog (Alba2) that is typically expressed at lower steady-state 

protein levels [103]. More detailed investigations detailed that Sac10b bound DNA as a 

homodimer, and when Alba2 isoforms were present, that Alba heterodimers could also bind 

and compact DNA [103–105]; Alba2 forms obligate heterodimers with Alba1 and is found 

exclusively associated with Alba1 in vivo. At lower Alba:DNA ratios, Alba1 homodimers 

bridge DNA duplexes, slightly compacting DNA by promoting the formation of loop 

structures [104,105]. At higher concentrations Alba1 homodimers form rigid protein-bound 

DNA structures [105]. Much like Alba1 homodimers at low concentration, Alba1/Alba2 

heterodimers form looped, slightly contracted DNA structures [103]. However, at higher 

Alba:DNA ratios, the Alba1/Alba2 heterodimers induced highly compacted DNA structures 

that differed significantly from the rigidified linear chromatin structure of Alba1 

homodimers [105]. Crystal structures of Sac10b protein homologues from Aeropyrum 
pernix K1, Sulfolobus solfataricus, and Pyrococcus horikoshii OT3 all confirm a dimeric 

mode of nucleic acid interaction [106–111].

In addition to forming distinct protein:DNA complexes that impact DNA topology based on 

concentration and dimeric partnerships, Sac10b proteins were shown to have high affinity 

for RNA [112,113]. In Eukarya, Alba-like proteins have diverse RNA metabolism roles 

[112], suggesting Sac10b proteins may be involved in RNA stability or degradation 

pathways. Localization of Sac10b to the cytoplasm with no observable association with the 

nucleoid suggested interaction with RNA rather than DNA in vivo [114]. This suggestion 

was corroborated by in vivo cross-linking studies with Ssh10b that resulted in the co-

purification of primarily ribosomal RNA and mRNA over DNA [113]. Finally, addition of 

Ssh10b was demonstrated to directly destabilize RNA secondary structure in vitro [115]. 

The in vitro binding affinity of Sac10b is comparable between RNA, ssDNA, and dsDNA 

and Sac10b can protect both RNA and DNA from RNase and DNase digestion.

Phyla specific modes of action have also been observed for Sac10b homologues, and 

particular notice should be taken to studies in mesophilic species versus (hyper)thermophilic 

archaea. Current evidence suggests that the biological role of Sac10b proteins may have 

diverged between mesophilic and thermophilic archaea. In contrast to the abundance of 

Sac10b in (hyper)thermophiles, studies of the Sac10b protein homolog Mmo10b in the 

mesophilic species Methanococcus maripaludis revealed that Mmo10b is present only in low 

abundance and bound specific DNA sequences rather than displaying general DNA affinity 

[116,117]. Deletion of a Sac10b homolog from Methanococcus voltae resulted in changes to 

protein expression patterns that overlapped with a histone B deletion in the same species 
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[116] and in T. kodakarensis deletion of histone B resulted in altered Sac10b homolog 

expression [90]. Taken together, these results suggest Sac10b homologues may share an 

overlapping regulatory role with histones in archaea, and that the presence of histones may 

reduce the impact of Sac10b regulation of genomic architecture.

Post-translational modification of Alba may impact genomic architecture and gene 
expression in vivo.

The post-translational modification (PTM) of Sac10b was shown to impact DNA binding 

affinity and was extrapolated to suggest that PTM of Alba provided regulation akin to PTMs 

of histone residues common in eukaryotes [100,107]. Recombinant preparations of Alba 

lacking PTMs displayed greater affinity for DNA than natively purified, PTM-Alba 

populations. The increased affinity of unmodified Alba also impeded transcription 

elongation to a greater extent than native, PTM-Alba preparations, consistent with Alba-

mediated regulation of genomic structure based on PTM of Alba.

Initial MALDI-TOF mass spectrometry analysis identified lysine 16 (K16) in the Sac10b 

protein from Sulfolobus solfataricus P2 as the primary site of acetylation. In vitro acetylation 

by protein acetyltransferase 1 (Pat1) and in vitro deacetylation by the silent information 

regulator (Sir2) were shown to modify Sac10b imparting a mechanism of Sac10b binding 

control [100,108,118]. However, K16 is not well-conserved in Sac10b homologues [117], 

and the initial identification of K16 as the site of modification, and even the PTM itself are 

now in question. More recent studies have identified Sac10b as a target for both methylation 

and N-terminal acetylation, but not K16 acetylation [119]. Post-translational modification of 

the N-terminus of Sac10b by N-acetyl transferase (NAT) has been demonstrated in vitro and 

is proposed to be the primary site of Sac10b acetylation in vivo. Recent mass-spectrometry 

(NanoLC-MS-MS) data of a Sac10b homologue from S. islandicus has revealed 

methylation, acetylation, and deamination of this protein [101]. Strikingly, K16 was 

trimethylated, not acetylated. The improvements in mass spectrometry and identification of 

K16 trimethylation challenges the core assertion of Sac10b:DNA interactions being 

controlled by acetylation at K16. Taken together, the conflicting information on the PTM 

status of K16, the likely role of Sac10b homologues in binding DNA and RNA, and the 

differential abundance and importance of Sac10b homologues in diverse species argues that 

PTM(s) of Sac10b members may also be diverse and likely impact aspects of both RNA and 

DNA binding.

Variety in archaeal NAPs may shape genomes in diverse environments.

While the biological importance of mechanisms governing Sac10b nucleic acid interactions 

are heavily debated, it is important to consider the roles of the many other NAPs encoded in 

archaeal genomes. In addition to Sac10b, most crenarchaea encode small ~7 kDa proteins, 

with Sul7 and Cren7 dominating the literature. Cren7 is a 7kDa, basic protein that has been 

found associated with DNA in vivo. The abundant and basic Cren7 protein has high affinity 

for double-stranded DNA, suggesting a primary role in genomic organization [120]. 

Although no obvious relationship is present at the primary amino acid level, Sul7 is 

structurally homologous to Cren7, and both are known to induce DNA compaction in vitro 

[121]. Crenarchaeal species such as Pyrobaculum aerophilum and Thermoproteus tenax lack 
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obvious Cren7 or Sul7 homologues and instead encode the chromatin protein CC1. Like 

Sac10b proteins, CC1 is able to bind double stranded and single stranded DNA, suggesting a 

role in chromatin organization [122].

In the euryarchaeal Thermococcales the TrmBL2 family is an abundant DNA-associated 

protein [123]. At likely physiological salt concentrations (~300mM KCl) TrmBL2 binds 

DNA in a site-specific manner, while displaying non-specific DNA binding at lower salt 

concentrations. Non-specific DNA binding results in a filamentous structure that can 

compete with histone-binding [124]. In T. kodakarensis the abundance of TrmBL2 changes 

with the growth phase, and the interplay/competition between histones and TrmBL2 may 

offer an additional path to regulate genomic architecture and thus gene expression in 

response to environmental conditions. TrmBL2 occupancy of promoter regions can impact 

transcription, whereas TrmBL2 minimally impacts transcription elongation [125]. Deletion 

of TrmBL2 is possible and results in reduced condensation of chromatin and altered 

expression of approximately the same percentage of genes as deletion of a histone isoform 

[125].

Conclusions and future perspectives

Archaea are ecologically and metabolically diverse and thus it is perhaps not surprising that 

substantial differences in genomic architecture and regulation are imposed in different 

clades. Most species encode proteins with the core histone-fold, and archaeal chromatin thus 

dominates the landscape of regulation in archaeal species. The overall structural similarities 

between archaeal histone-based chromatin and eukaryotic chromatin are obvious, but the 

regulatory potential of the latter far exceeds the potential of the former. Archaeal chromatin 

is often formed with only one histone isoform, and given the absence of identifiable PTMs, 

it is likely that archaeal histones are not subject to repositioning or changes in DNA affinity 

that could increase or decrease transcription levels at specific loci. Significant questions 

remain for species that encode multiple histone isoforms and whether regulated assembly or 

binding of unique heterodimers impacts genomic architecture and thus gene regulation. The 

identification of PTMs or factors that could impact the normally tight association of adjacent 

gyres of archaeal histone-based chromatin may provide a route to regulate chromatin 

structure and transcriptional output. Identification of any such factors may help reveal the 

evolutionary origin of remodeling and modification machineries found ubiquitously in 

eukaryotes.

The identification of archaeal species that encode extensions on the core histone fold is an 

exciting new revelation in the context of histone-based regulation of gene expression. The 

expansion beyond the core histone-fold, and the retention of discrete histone isoforms in 

many archaeal species provides tantalizing evidence in support of the expansion that must 

have occurred to provide all extant eukaryotes with the canonical four histones. The length 

and stability of extended nucleosome-like structures formed with archaeal histones is likely 

impacted by histone isoforms and the presence of extensions beyond the core histone-fold. 

Given that disrupting the tight-association of archaeal histone-based chromatin results in 

massive fitness defects, it is plausible to predict that more fine-tuned and regulated 

mechanisms may exist to control and adjust chromatin formation or limit the length of the 
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extended histone-based polymers to control gene expression in vivo. The timing of and 

expansion to defined heterodimeric histone partnerships that lead to the transition from an 

extended histone-based polymer structure to the discrete particles that define the eukaryotic 

nucleosome is a major outstanding question.

In addition to chemical modification machinery, eukaryotes encode a wealth of complexes to 

reposition nucleosomes. Repositioning nucleosomes or altering histone-DNA affinity may 

help or hinder transcription in eukaryotic cells. It remains possible that archaeal encoded 

modification or repositioning complexes exist, but current evidence suggests instead that 

archaeal TECs are reliant on conserved transcription factors to aid in overcoming histone-

induced barriers to transcription elongation. To fully illustrate the evolution of the 

transcription apparatus, the roles of other conserved and potentially novel transcription 

factors and effectors will need to be characterized. The noted effects of Spt4/5 and TFS 

suggest that direct modification of the transcription apparatus may suffice for unmodified 

and relatively uniform histone-based chromatin structures, but that more powerful chromatin 

remodeling complexes and modification machinery are required for the diverse landscape of 

extant eukaryotic chromatin landscapes.

Despite many archaea encoding both NAPs and histone proteins, only limited information is 

available regarding the combinatorial regulation provided by the interplay of architectures 

produced by binding of both classes of proteins [125]. It is logical to predict that the length 

and stability of extended histone-based structures may be regulated by NAP binding or 

NAP-mediated formation of DNA loops that impact overall topology and DNA flexibility. 

While minimally conserved at an amino acid sequence level, the structural conservation and 

functionality of archaeal NAPs suggests a conserved strategy for organizing DNA structure 

[126]. Clarity surrounding the role of the nearly ubiquitous Sac10b family of proteins with 

respect to RNA versus DNA binding – and clarification of the locations, identity and impacts 

of potential PTMs – should illuminate the role of this often-abundant protein in organizing 

and providing dynamic regulation of archaeal genomes.
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Highlights

• Archaea encode histone proteins and nucleoid-associated proteins to organize 

DNA

• Archaeal and eukaryotic histones wrap DNA in a similar geometry

• Extended histone-based chromatin structures regulate archaeal gene 

expression

• Conserved transcription factors facilitate transcription through archaeal 

chromatin

• Unique archaeal histone-isoforms may provide regulatory potential

• Nucleoid associated proteins (NAPs) are diverse, especially in the 

Crenarchaeota

• Archaeal NAPs likely bind and influence both RNA and DNA structure and 

dynamics

• Post-translational modification control of NAP activity is heavily debated
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Figure 1. Distribution of chromatin associated proteins identified across the Archaea.
Histone proteins and nucleoid-associated proteins (NAPs; right) encoded in each phylum 

according to the schematic evolutionary tree of Archaea (left).
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Figure 2. The structure of histone-based chromatin in Archaea mirrors that of the eukaryotic 
nucleosome.
(a) The eukaryotic nucleosome hexamer containing two H3-H4 dimers (blue, green 

respectively) and one H2A-H2B dimer (yellow, red respectively) with wrapped DNA (gold) 

from a top-down and side view. N and C terminal extensions, specific to eukaryotic histones, 

are shown in grey. (b) Histone based-chromatin in Archaea can form from varied numbers of 

histone dimers (three dimers are shown here for comparison to the eukaryotic hexasome), 

with wrapped DNA (silver) from a top-down and side view. The archaeal histone-based 

chromatin structure formed with three histone dimers is almost identical to the eukaryotic 

hexasome without the N- and C-terminal extensions.
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Figure 3. The archaeal chromatin landscape is dynamic.
a) Wrapping of DNA by archaeal histones forms various sizes of extended histone-based 

chromatin structures. The regulation and depositions of these structures is unknown, but 

nucleoid associated proteins (NAPs) may play a role in both looping of DNA and size 

restriction of extended histone polymers. b) Transcription initiation factors TFB and TBP 

compete with histone proteins for the promoter element in archaea allowing transcription 

initiation upstream of a chromatinized gene body. c) RNAP must traverse a chromatinized 

gene body. Spt4-Spt5 permit the transition from initiation to early elongation by displacing 

TFE and facilitating processive elongation through a chromatin landscape.
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