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Abstract

Dopamine is well recognized as a neurotransmitter in the brain, and regulates critical functions in 

a variety of peripheral systems. Growing research has also shown that dopamine acts as an 

important regulator of immune function. Many immune cells express dopamine receptors and 

other dopamine related proteins, enabling them to actively respond to dopamine and suggesting 

that dopaminergic immunoregulation is an important part of proper immune function. A detailed 

understanding of the physiological concentrations of dopamine in specific regions of the human 

body, particularly in peripheral systems, is critical to the development of hypotheses and 

experiments examining the effects of physiologically relevant dopamine concentrations on 

immune cells. Unfortunately, the dopamine concentrations to which these immune cells would be 

exposed in different anatomical regions are not clear. To address this issue, this comprehensive 

review details the current information regarding concentrations of dopamine found in both the 

central nervous system and in many regions of the periphery. In addition, we discuss the immune 

cells present in each region, and how these could interact with dopamine in each compartment 

described. Finally, the review briefly addresses how changes in these dopamine concentrations 

could influence immune cell dysfunction in several disease states including Parkinson’s disease, 

multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, as well as the collection of 

pathologies, cognitive and motor symptoms associated with HIV infection in the central nervous 

system, known as NeuroHIV. These data will improve our understanding of the interactions 

between the dopaminergic and immune systems during both homeostatic function and in disease, 

clarify the effects of existing dopaminergic drugs and promote the creation of new therapeutic 

strategies based on manipulating immune function through dopaminergic signaling.
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Introduction

Dopamine, or 3-hydroxytyramine, is a catecholamine neurotransmitter that is associated 

with a variety of neurological processes, including motor control, cognition, learning and 

reward. In addition to these and other central nervous system (CNS) processes, dopamine 

influences numerous peripheral functions including gastrointestinal motility, hormone 

release, blood pressure and sodium balance. While dopamine was first synthesized in 1910 

(Hornykiewicz 1986), it wasn’t until 1957 that dopamine was found in the human brain 

(Montagu 1957). Prior to this discovery, dopamine had only been found in peripheral tissues 

and body fluids of mammalian animals (Euler and Hellner 1951; Goodall 1951) and was 

assumed to be just a precursor to other catecholamines. This changed in 1958, when Arvid 

Carlsson found that dopamine acted as a neurotransmitter (Carlsson, Lindqvist, Magnusson, 

& Waldeck, 1958), and was primarily concentrated in the basal ganglia of both humans and 

rodents (Bertler and Rosengren 1959; Sano et al. 1959). Soon after, the development of 

fluorescent histochemical visualization of monoamines enabled observation of neuronal 

pathways containing dopamine (Carlsson et al. 1962), establishing an independent role for 

dopamine and leading to the identification of specific dopamine receptors (Kebabian et al. 

1972; Seeman et al. 1976) and their signaling pathways (Kebabian and Calne 1979).

The immunomodulatory activities of dopamine were first proposed in the 1980’s and 

1990’s, when a number of studies suggested immune cells contain components of the 
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dopaminergic system (Cosentino et al. 1999; Le Fur et al. 1980; Musso et al. 1996; 

Santambrogio et al. 1993). Many studies now show that dopamine functions as an 

immunomodulatory regulator and is pivotal for neuroimmune communication, with recent 

studies finding dopamine-induced changes in the functions of lymphocytes, macrophages, 

neutrophils and monocytes (Calderon et al. 2017; Dos-Santos-Pereira et al. 2018; Fan et al. 

2018; Gaskill et al. 2014; Kawano et al. 2018; Nolan et al. 2018). Significant progress has 

also been made in understanding the specific dopaminergic signaling mechanisms in a 

variety of cell types other than neurons, indicating that immune cells interact with dopamine 

centrally and peripherally, in both homeostatic and pathological conditions.

However, the physiological concentrations of dopamine in specific regions of the human 

body, particularly in peripheral systems, remain unclear due to a relative scarcity of data on 

this topic, and the large variability among those studies which have been done. Further, most 

studies comparing distinct effects of dopamine between tissues focus on the expression of 

dopamine receptors, but not the concentration of dopamine itself. This presents a significant 

problem in the field, as lack of information prevents the development of hypotheses and 

experiments examining the effects of physiologically relevant dopamine concentrations on 

immune function. The purpose of this review is to fill this knowledge gap, providing a 

comprehensive summary of the available data regarding dopamine concentrations and 

activities throughout the body in both humans and animal models. Recognizing the 

heterogeneity of dopamine concentrations and the cells that regulate it across distinct tissue 

milieu is critical to defining the complex role of this neurotransmitter in the immune 

response. Further, many dopaminergic drugs are currently in use as therapeutics for a variety 

of disorders including depression, Alzheimer’s disease, and Parkinson’s disease, so a more 

comprehensive understanding of the immunologic actions of dopamine could initiate drug 

repurposing and the development of new therapeutic strategies based on manipulating 

dopaminergic immunology.

Overview of the Dopaminergic System

Dopamine Receptors

Dopamine primarily mediates its effects through activation of dopamine receptors (DRs), 

which are members of the G protein-coupled receptor (GPCR) superfamily. Dopamine 

receptors are divided into 2 subgroups, D1-like (D1 and D5), and D2-like (D2, D3 and D4) 

(Beaulieu and Gainetdinov 2011; Missale et al. 1998), which have different affinities for 

dopamine (Mittal et al. 2017). Greengard and colleagues showed that dopamine acts on D1-

like receptors to increase the formation of cAMP (Hemmings Jr et al. 1984), and this 

pathway now serves as the basis for the distinction between DR subtypes. The D1-like 

receptors couple to Gαs/olf and stimulate cAMP production, while D2-like DR couple to 

Gαi/o and inhibit cAMP production. In addition to regulating cAMP, DRs can act through 

several alternative signaling pathways. The most studied is the Gq/11 mediated activation of 

phospholipase C (PLC) which induces calcium release from the endoplasmic reticulum 

through activation of IP3 receptors (Felder et al. 1989; Jin et al. 2001; Wang et al. 1995). 

Dopamine also mediates β-arrestin 2 induced activation of Akt, and the transactivation of 

tyrosine receptor kinases (RTKs) such as BDNF and TrkB (Beaulieu et al. 2015). Additional 
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signaling complexity is generated by the formation of oligomeric complexes with other 

GPCR, such as D2-D4 or D2 with the adenosine A2A receptor (Borroto-Escuela et al. 2011; 

Fiorentini et al. 2008; Fuxe et al. 2010; Lee et al. 2002; Łukasiewicz et al. 2016; Perreault et 

al. 2010; Perreault et al. 2014), although formation of some of these heteromers is 

controversial (Frederick et al. 2015). A more detailed discussion of DR signaling and 

pharmacology can be found in Beaulieu and Gainetidinov (Beaulieu and Gainetdinov 2011).

Dopamine Synthesis, Metabolism, Storage, and Transport

This has been covered extensively in other recent reviews (Arreola et al. 2016; Nolan and 

Gaskill 2018), so we will only briefly cover this topic. Dopamine is derived from a two-step 

process starting with the hydroxylation of L-tyrosine by the enzyme tyrosine hydroxylase 

(TH) (Meiser et al. 2013), followed by the decarboxylation of the resulting product, L-

DOPA, by aromatic amino acid decarboxylase (AADC). This process primarily occurs in 

dopaminergic neurons, although immune cells (Nolan and Gaskill 2018) and other cells 

from peripheral tissues (Mezey et al. 1998; Nurse and Fearon 2002; Pilipović et al. 2008) 

also express enzymes for dopamine synthesis (Rubí and Maechler 2010; Ugrumov 2009). In 

neurons, once dopamine is produced, it is either stored in synaptic vesicles at high 

concentrations (mM) (Omiatek et al. 2013; Scimemi and Beato 2009) for future release, or 

hydroxylated to form norepinephrine if the cell contains dopamine-β-hydroxylase (DBH). 

Dopamine is released into the synaptic cleft upon neuronal excitation, and excess dopamine 

in the cleft is returned to the cell by reuptake through the dopamine transporter (DAT), 

located at the presynaptic membrane. The norepinephrine transporter (NET) can also take-

up dopamine in areas where the concentration of DAT is low (Moron et al. 2002). After 

returning to the neuron, dopamine is translocated from the cytoplasm to storage vesicles by 

vesicular monoamine transporter 2 (VMAT2), located on vesicular membranes. Dopamine 

remaining in the cytoplasm is inactivated through multiple pathways including oxidative 

deamination by monoamine oxidase (MAO) and O-methylation by catechol-O-methyl 

transferase (COMT), leading to the formation of dihydroxyphenylacetic acid (DOPAC) and 

homovanillic acid (HVA) (Kopin 1985; Korf et al. 1976). In addition, formation of dopamine 

sulfate, the predominant form of dopamine in circulation, is catalyzed by 

phenolsulfotransferases (PSTs) and glucuronidation is catalyzed by uridine 

diphosphoglucuronosyltransferases (UGTs) to form their respective inactive conjugates 

(Suominen et al. 2015; Suominen et al. 2013; Uutela et al. 2009). Dopamine is also 

susceptible to oxidation, producing reactive quinones and reactive oxygen species that can 

cause cell damage and neurodegeneration (Delcambre et al. 2016; Meiser et al. 2013).

Dopaminergic Interaction with Immune Cells

The immune and nervous systems participate in extensive bidirectional crosstalk, mediated 

by a wide array of neurotransmitters, hormones, cytokines, and other factors, including 

dopamine. Dopamine regulates a variety of immune functions including cytokine secretion, 

cell adhesion, cytotoxicity, and chemotaxis (Besser et al. 2005; Cosentino et al. 2007; 

Gaskill et al. 2012; Kipnis et al. 2004; Nolan et al. 2018; Watanabe et al. 2006a), and these 

immune functions in turn can affect dopaminergic signaling both centrally and peripherally 

(Kabiersch et al. 1998; Kumai et al. 2000; Song et al. 2006). The effects are likely mediated 

by activation of DRs, as both human and rodent immune cells express multiple DR subtypes, 
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however, DRs on distinct immune cell types may have different sensitivities to dopamine 

(Ferrari et al. 2004). These cells may also respond to different dopamine concentrations than 

those required for classical dopamine signaling in neurons (Meredith et al. 2006). The 

specific effects of dopamine on immune function have been described in recent articles 

(Gaskill et al. 2013; Levite 2016; Nolan and Gaskill 2018; Pinoli et al. 2017), therefore this 

section will only briefly discuss the immune cells in the CNS and periphery which could 

respond to dopamine.

Dopamine-Immune Interactions in CNS Immune cells—In the CNS, microglia are 

the predominant immune effector cells and they express functional DRs (Farber et al. 2005; 

Huck et al. 2015; Kopec et al. 2017; Mastroeni et al. 2009), as well as other dopaminergic 

proteins (Fan et al. 2018; Myohanen et al. 2010). Microglia are heterogeneously located 

throughout the brain, and are likely to encounter dopamine in any brain region where it is 

elevated. In addition to microglia, different types of CNS macrophages including 

perivascular, juxtavascular, meningeal and choroid plexus macrophages are active in the 

CNS immune response in their cognate regions (Corraliza 2014; Nayak et al. 2012). Human 

monocyte-derived macrophages have been shown to express active DRs and other 

dopamine-related proteins, suggesting that the brain specific macrophages may also express 

dopaminergic machinery (Gaskill et al. 2009; Gaskill et al. 2012; Nolan et al. 2018).

Although they are not immune cells, astrocytes are the most abundant glial cells in the CNS 

and extensively modulate immune function within the brain. Astrocytes from different brain 

regions show heterogeneity in DR expression, with expression found in cells in 

dopaminergic areas like the basal ganglia or striatum but not in other regions such as the 

cerebellum (Bal et al. 1994; Khan et al. 2001; Reuss and Unsicker 2001; Zanassi et al. 

1999). Astrocytes also express DAT (Takeda et al. 2002), MAO-B, and COMT (Levitt et al. 

1982; Myohanen et al. 2010; Winner et al. 2017), suggesting that they can take up and 

metabolize dopamine.

Dopamine-Immune Interactions in Peripheral Immune Cells—T-lymphocytes were 

first shown to express DRs in 1980 (Le Fur et al. 1980), and since then many other studies 

have shown that T cells express all DRs (Besser et al. 2005; Huang et al. 2010; Kirillova et 

al. 2008; Levite et al. 2001; McKenna et al. 2002; Ricci et al. 1995; Santambrogio et al. 

1993; Watanabe et al. 2006a). The binding profiles of dopaminergic ligands in these cells 

were similar to those in neuronal membranes, suggesting the receptors act similarly to those 

found in neurons (Takahashi et al. 1992). T-cells also express TH, DAT, VMAT2, and 

COMT, suggesting they have the capacity to take up, synthesize, store, and release dopamine 

(Bergquist et al. 1994; Cosentino et al. 2007; Qiu et al. 2004; Tsao et al. 1998). The 

particular expression and function of the T-cell dopaminergic system is heterogeneous 

among T cell subsets, and some studies show expression is dependent on activation state 

and/or differentiation (Cosentino et al. 2007; Mignini et al. 2013; Nakano et al. 2009), which 

is extensively reviewed elsewhere (Pacheco et al. 2009). There is much less data regarding 

the dopaminergic system in B-lymphocytes and natural killer cells, but both cell types have 

also been shown to express all subtypes of DRs (McKenna et al. 2002; Meredith et al. 2006; 
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Santambrogio et al. 1993; Watanabe et al. 2006b) and B-cells have dopamine stores (Ferrari 

et al. 2004).

Human myeloid cells, such as monocytes and macrophages, also express all subtypes of 

DRs, as well as DAT, VMAT2, TH, and AADC (Coley et al. 2015; Gaskill et al. 2009; 

Gaskill et al. 2012; Nolan et al. 2018). Other studies have found that human monocytes/

macrophages can store and produce dopamine as well (Cosentino et al. 2000; Flierl et al. 

2009; Josefsson et al. 1996; Marino et al. 1999). Monocyte-derived dendritic cells express 

DRs, primarily D1-like DR, and expression MAO and VMAT2, while expression of DAT is 

not clear (Nakano et al. 2008). These cells were also shown to contain intracellular 

dopamine, which is released upon antigen presentation to T cells (Nakano et al. 2009). 

Fewer studies have focused on granulocytes, but all five DR subtypes have been found on 

neutrophils (Boneberg et al. 2006; McKenna et al. 2002; Sookhai et al. 1999) and 

eosinophils (McKenna et al. 2002). Neutrophils and eosinophils contain intracellular 

dopamine (Cosentino et al. 1999) and eosinophils can also release dopamine (Withers et al. 

2017). Further, human neutrophils and eosinophils can respond to dopamine (Pinoli et al. 

2017). To our knowledge, there is no data on DR expression in basophils or mast cells.

Neural-immune Interactions Between Central/Peripheral Dopaminergic 
Systems—In addition to directly responding to dopamine, immune cells can be indirectly 

influenced by dopaminergic regulation in distant tissues, including the CNS (Basu and 

Dasgupta 2000). For example, hypoactivation of central dopamine increases the risk of 

inflammation during infection or tissue injury (Engler et al. 2009), and animals with 

hyperdopaminergic systems showed increased lipopolysaccharide (LPS)-induced cytokine 

production in macrophages (Kavelaars et al. 2005; Teunis et al. 2004). In rats, elevation of 

CNS dopamine levels using L-DOPA caused peripheral T cells to exhibit similar 

characteristics to those of dopamine activated T cells in vitro (Ilani et al. 2004). In addition, 

direct activation of dopaminergic neurons in the mouse VTA using DREADDs led to 

enhanced phagocytic activity of splenic dendritic cells and macrophages (Ben-Shaanan et al. 

2016). These data suggest dopaminergic neurotransmission is important to 

immunoregulation, and suggest that consideration of the immunologic impact of dopamine 

across the body is an important step in evaluating therapeutic efficacy of dopaminergic 

drugs.

Caveats Regarding the Comparison of Dopamine Concentrations

This review consolidates the data from a large number of studies describing dopamine 

concentrations both within the CNS and in the periphery. Despite the amount of research 

cited here, there were a number of additional studies that examined dopamine which were 

not included due to the inability to determine the precise dopamine concentrations being 

reported. For example, studies that only reported percent changes in dopamine relative to 

baseline (Dunn et al. 1987; Floresco et al. 2003; Hu et al. 2015; Jackson and Moghaddam 

2001; Kao et al. 1994; Keefe et al. 1993; Tanda et al. 1997), only reported levels of 

dopamine metabolites (Dahlin et al. 2012; Geracioti et al. 1998; Kilpatrick et al. 1986), or 

found dopamine to be below the limit of detection (Markianos et al. 2009; Nagler et al. 

2018) were not included. To more effectively compare dopamine concentrations between 
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studies, all values were converted to relative molar concentrations by dividing original 

values by the molecular weight of dopamine (153.18 g/mol) if not already in a molar value, 

and multiplying the density of tissues or fluids which we averaged to be around 1 kg/L or 

kg/m3 for all tissues or fluids. Additionally, if the values reported were not usable in this 

calculation, for instance concentrations of dopamine over time or concentration of a tissue 

with undefined mass, these values were not included (Basson et al. 1997; Di Chiara and 

Imperato 1988; McCarty et al. 1986; Reith et al. 1997; Yoshimoto et al. 1992). All the 

calculated values are reported alongside the original measurements in Tables 1–4 for 

reference. While this enables a more standardized comparison, it does not account for 

substantial variability resulting from differences in species, age, cell type or sex (Arvidsson 

et al. 2014; Bourque et al. 2011; Cosentino et al. 2000; Pilipović et al. 2008; Wahlstrom et 

al. 2010). An additional consideration when comparing the concentrations of dopamine 

found in corresponding regions of different species, even though we limited reporting 

studies from only mammals, is that while dopamine pathways are functional similarly 

among rodent species (Bhagwandin et al. 2008; Calvey et al. 2016; Calvey et al. 2015; 

Kruger et al. 2012; Limacher et al. 2008), there are major variations between these pathways 

in different mammalian orders (Manger et al. 2004; Maseko et al. 2013). There may also be 

significant variation resulting from experimental differences such as detection technique, 

preparation of tissue, type of analysis used or physical state of the animal (i.e. freely moving 

versus anesthetized) (Jackowska and Krysinski 2013; Peaston and Weinkove 2004; Wanat et 

al. 2009; Wightman and Robinson 2002). Important examples include the fact that almost all 

researchers do not report free versus conjugated dopamine, and some experiments utilize 

additional reagents to increase dopamine to the level of detection (Hauber and Fuchs 2000; 

Ripley et al. 1997), which are useful in detecting small changes in dopamine in response to 

pharmacological agents, but give artificial values that confound our understanding of the true 

concentrations of dopamine that immune cells could be exposed to in a particular tissue. 

Further, research groups without experience examining dopamine tended to show more 

extreme values than those laboratories with extensive experience with studying this 

neurotransmitter, suggesting that research experience should also be considered when 

evaluating the cited studies.

Dopamine in the Central Nervous System

There are four main dopaminergic pathways in the mammalian brain; the nigrostriatal, 

mesolimbic, mesocortical, and tuberoinfundibular pathways. The nigrostriatal pathway is 

involved in motor control and starts in the substantia nigra (SbN), where dopaminergic 

neurons give rise to ascending fibers densely innervating the caudate and putamen (dorsal 

striatum). Both the mesolimbic pathway and mesocortical pathways are associated with the 

reward system (Wise 2004). The mesolimbic pathway connects the ventral tegmental area 

(VTA) to the limbic regions of the brain (nucleus accumbens, ventral striatum and 

amygdala), and the mesocortical pathway links the VTA to the cortex (medial, prefrontal, 

cingulate and entorhinal cortex). The tuberoinfundibular pathway is important in the 

inhibitory control of prolactin (Ben-Jonathan and Hnasko 2001) and runs from the arcuate 

and periventricular nuclei of the hypothalamus to the intermediate lobe of the pituitary and 

the median eminence. In addition to these regions, there are smaller amounts of dopamine in 
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other areas in which immune cells are active, such as the CSF (Hubbard et al. 2009; 

Louveau et al. 2015) and the retina (Silverman and Wong 2018; Witkovsky 2004), but this 

review focuses on the major dopaminergic pathways.

Dopamine neurons represent only a fraction of the total CNS neuronal population, even 

within these regions, but they influence significant areas of the brain through networks of 

branching fibers and display diverse electrophysiological properties (Hauber 2010; Marinelli 

and McCutcheon 2014; Roeper 2013). These neurons operate in two distinct temporal 

modes, a “phasic” mode producing fast, transient dopamine release (seconds) through 

synchronized burst firing, and a tonic mode, which produces slow (minutes – hours), 

widespread dopamine release through non-synchronous spontaneous firing (Hauber 2010). 

Dopamine release is regulated by interactions with other neurons such as glutamatergic, 

cholinergic as well as GABAergic cells (Morikawa and Paladini 2011). The local dopamine 

concentration is also regulated by the relative rates of dopamine release and uptake, as they 

are regionally specific (Calipari et al. 2012; Cass and Gerhardt 1995; Cragg et al. 2000; 

Garris and Wightman 1994; Letchworth et al. 2001; Sulzer et al. 2016; Trout and Kruk 

1992).

Dopamine neurons can communicate through either one-to-one synaptic wiring 

transmission, or through a one-to-many volume transmission. Modeling dopamine spillover 

during neurotransmission indicates that short distance volume transmission is the primary 

mode of dopamine-mediated communication (Agnati et al. 2010; Borroto-Escuela et al. 

2018; Peters and Michael 2000; Venton et al. 2003). Additionally, the largest dimension of 

the dopamine synaptic cleft is small (300 nm) (Pickel et al. 1996), suggesting it was 

designed to promote dopamine efflux. This is also supported by ultrastructural studies 

showing many DRs and transporters are extrasynaptic (Caille et al. 1996; Levey et al. 1993; 

Nirenberg et al. 1996). These and other studies indicate that during volume transmission, a 

cloud of released dopamine spills out of the synapse in three dimensions and permeates the 

surrounding area (Cragg et al. 2001; Garris and Wightman 1994), exposing adjacent immune 

cells to elevated dopamine during neuronal communication. The dopaminergic tone in 

humans is unclear, but in rodents, tonic dopamine concentrations are commonly thought to 

be in the nanomolar range (Floresco et al. 2003; Keefe et al. 1993; Parsons and Justice 

1992), while phasic dopamine concentrations can be as high as in the micromolar range 

(Garris et al. 1994; Kawagoe et al. 1992; Wanat et al. 2009). As the concentration of 

dopamine to which immune cells will be exposed depends on the regional dopaminergic 

tone, this section examines the concentrations of dopamine within these pathways (Table 1), 

the mechanisms contributing to these dopamine levels and the immune cells that could be 

exposed to dopamine in these regions under homeostatic and drug-using conditions.

Nigrostriatal, Mesolimbic and Mesocortical Dopamine Levels

The midbrain dopamine neurons making up the nigrostriatal, mesolimbic and mesocortical 

pathways are largely localized in the SbN and the VTA, with efferents reaching to the 

striatum, accumbens and several regions in the cortex. The basal dopamine levels in the 

rodent and primate striatum are thought to be around 10 – 30 nM (Owesson-White et al. 

2012; Sulzer et al. 2016), although the estimates vary widely depending on the model and 
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analytic technique used (Table 1, Figure 1). Although measuring the spatiotemporal 

dynamics of dopamine in vivo is difficult, models of dopamine release in the SbN suggest 

that during phasic firing, dopamine concentrations of 1 μM can be found up to 2 μm from 

the synapse, while concentrations of 10 nM can be found 8.2 um away (Cragg and Rice 

2004). The distances in the striatum are suggested to be 2 – 7 μm for 1 uM dopamine, and 7 

– 20 μm for 10 nM dopamine (Beyene et al. 2017; Cragg and Rice 2004; Staal et al. 2004; 

Sulzer et al. 2000), while models of the primate prefrontal cortex suggest that 10 nM 

dopamine can reach as far as 10 – 15 μm from the synapse during tonic firing, with 

concentrations as high as 90 nM during phasic output (Spühler and Hauri 2013). 

Examination of the nucleus accumbens suggests dopamine could reach 6 – 10 μm from the 

synapse at 10 nM concentrations (Cragg et al. 2001; Garris et al. 1994; Stamford et al. 

1988). Some studies suggest that more extensive dopamine volume transmission may occur 

due to dopaminergic terminal-receptor mismatches in the retina, nucleus accumbens shell, 

and amygdala, reaching as far as 30 – 50 μm (Bjelke et al. 1996; Fuxe et al. 2003; Jansson et 

al. 1999).

These “spheres of influence” are significantly affected by DAT function in these regions 

(Sulzer et al. 2016), and in the case of diseases that dysregulate DAT function, such as 

Parkinson’s Disease (Mackie et al. 2018) or HIV (Gaskill et al. 2017), the area exposed to 

dopamine could be much larger. An important caveat to these models is that they generally 

assume the only DAT taking up dopamine are those on dopaminergic neurons, whereas 

numerous studies have shown DAT is also present on immune cells and astrocytes, which 

may also influence dopamine concentrations. Further, the distances and concentrations 

modeled here are based on quantal release from a single synapse, and depending on the 

stimulus, the firing pattern and the number of synapses involved, the concentration of 

dopamine could be significantly greater (Arbuthnott and Wickens 2007). For instance, 

dopamine neurons projecting to the dorsal striatum and the nucleus accumbens shell show 

classical slow firing properties, whereas dopamine neurons in the medial VTA projecting to 

the amygdala or nucleus accumbens core have unconventional fast-firing properties that 

include an almost doubled basal firing rate and maximal firing rate (Hauber 2010; Lammel 

et al. 2008).

Thus, when microglia and macrophages in these regions are in close proximity to 

dopaminergic neurons, they would be exposed to dopamine concentrations ranging from 10 

nM to 1 μM or higher. Microglia are particularly likely to encounter elevated dopamine in 

this way, as the density of these cell is particularly high in the SbN (Kim et al. 2000; Lawson 

et al. 1990; Yang et al. 2013), and both ultrastructural analysis and two-photon imaging 

studies show microglial processes contact neuronal cell bodies and dendritic spines 

(Tremblay et al. 2010; Wake et al. 2009). Similarly, all types of CNS macrophages have 

been shown to interact with neurons in different brain regions (Faraco et al. 2017). By 

participating in the ‘tripartite’ synapse (Farhy-Tselnicker and Allen 2018), astrocytes can 

also regulate synapses by direct contact (Hama et al. 2004; Nishida and Okabe 2007), and 

are interconnected with each other to expand the range and magnitude of synaptic 

regulation. Localization of substantial D1R on fine processes of astrocytes within the SbN 

and D2R in the prefrontal cortex suggest that they are a likely recipient for dopamine (Khan 
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et al. 2001; Nagatomo et al. 2017), and that dopamine could impact large astroglial networks 

within these regions.

Tuberoinfundibular Dopamine

Studies indicate that the regions in this pathway contain high levels of dopamine, ranging 

from 1 μM to around 100 μM in the in both the hypothalamus and the pituitary (Table 1). 

While most neurons release dopamine into the synaptic cleft and bind to postsynaptic 

receptors, the majority of tuberoinfundibular dopaminergic neurons (TIDA) lack true 

synaptic contacts and are categorized as secretory neurons (Ben-Jonathan and Hnasko 2001). 

As such, dopamine diffuses away from the terminals through the perivascular space and is 

transported by portal blood to the pituitary. The rate of dopamine release from neurons of 

this pathway appears to be slower than from classical neurons, but the basal activity is high, 

making the dopaminergic environment within this pathway quite unique. Maintaining low 

circulating prolactin levels requires a continuous high input of dopamine and a high but 

sustainable rate of synthesis, but also a mechanism to allow for rapid decreases in dopamine 

to enable prolactin release during situations that result in massive changes in hormones like 

pregnancy. This is accomplished by hypothalamic TH activity that is basally constitutive but 

can be transiently inactivated, unlike TH in most tissues, which can rapidly generate 

dopamine for immediate release (Haycock and Haycock 1991). Both microglia and 

macrophages are active in the hypothalamus, mediating the inflammatory response to 

obesity (Valdearcos et al. 2017). Studies have also identified both dendritic cells (Glennon et 

al. 2015) and macrophages (Fujiwara et al. 2017) in the pituitary that may play a role in 

communicating immune activation to the hypothalamic pituitary adrenal (HPA) axis. As 

local dopamine concentrations fluctuate to regulate prolactin production (Lyons et al. 2012; 

Stagkourakis et al. 2016) or in response to diet (Volkow et al. 2011), immune cells located in 

this pathway could be exposed to significant dopamine fluctuations.

CNS Dopamine During Drug Abuse

The effects of drug abuse on CNS dopamine has been discussed in detail in a number of 

excellent recent reviews (Fox and Wightman 2017; Nutt et al. 2015; Solinas et al. 2018; 

Volkow and Morales 2015).

Therefore, this section will only briefly discuss these effects, focusing particularly on how 

drug abuse changes regional dopamine concentrations and the impact this may have on 

immune cell interactions. This is important, as recent research has revealed that CNS 

immune signaling may substantially contribute to dopamine signaling induced by drugs of 

abuse (Hutchinson and Watkins 2014; Lacagnina et al. 2017). The dopaminergic system, 

particularly the mesolimbic and mesocortical pathways, is activated by many of types of 

drugs of abuse, including psychostimulants, opioids, nicotine and alcohol (Di Chiara and 

Imperato 1988; Pierce and Kumaresan 2006; Volkow and Morales 2015). The specific 

pharmacological effects of these drugs are wide-ranging but many act, at least partially, by 

interfering with dopamine reuptake through antagonism or reversal of DAT (Sulzer 2011; 

Torres et al. 2003; Volkow et al. 1997). Despite the differences in mechanisms, all drugs of 

abuse increase extracellular DA levels, generally to the high nanomolar to low micromolar 

range (Table 2).
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These increases in dopamine concentrations would expand the volume of the brain 

permeated by dopamine, and also increase the distance from the synapse at which higher 

concentrations of dopamine are present (Peters and Michael 2000; Spühler and Hauri 2013; 

Venton et al. 2003). This could substantially increase the number of immune cells which 

interact with dopamine, with larger increases in tissues that have proportionately greater 

responses to drug use. The largest drug-induced elevations in dopamine concentrations 

generally occur within the basal ganglia, specifically in the striatum and nucleus accumbens 

(Fadda et al. 2003; Shou et al. 2006; Stuber et al. 2005; Wightman et al. 2007). In both 

striatum and prefrontal cortex, increased dopamine concentrations induced by blockade of 

dopamine reuptake using cocaine, methylphenidate or nomifensine enhance the diffusion of 

dopamine, increasing the volume of tissue exposed to this neurotransmitter by as much as 

50% (Peters and Michael 2000; Spühler and Hauri 2013; Venton et al. 2003). Changes in 

dopamine reuptake could also enhance heterogeneity in dopaminergic tone, and create local 

“hot spots” with unusually high dopamine concentrations (Peters and Michael 2000; Spühler 

and Hauri 2013). Another factor influencing the interaction of dopamine with immune cells 

is that different types of drugs have a regionally distinct impact on dopamine diffusion and 

reuptake, suggesting the changes in immune cell exposure could differ in magnitude across 

the brain (Cass et al. 1992; Cragg and Greenfield 1997; Jones et al. 1995; Porrino et al. 

2004; Salinas et al. 2016). There are also regional differences in the homeostatic rate of 

uptake that could affect immune cell responses. For example, cocaine mediated inhibition of 

uptake in a region where it tightly controls extracellular DA such as the striatum would have 

a different effect on extracellular levels than in a brain region where uptake does not regulate 

DA as closely such as in the nucleus accumbens shell (Wu et al. 2001).

Drug-induced increases in dopamine likely have a large impact on CNS immune cells and 

astrocytes, as many drugs of abuse increase expression of microglial and astrocytic markers, 

increase cytokine/chemokine release, and promote pro-inflammatory glial phenotypes 

(Alfonso-Loeches et al. 2010; Cadet and Bisagno 2014; Schwarz and Bilbo 2013; Wang et 

al. 2012). Specifically, glial inhibitors and cytokines can augment drug-induced dopamine 

release (Bland et al. 2009; Hutchinson et al. 2008; Nakajima et al. 2004; Zhang et al. 2006), 

demonstrating that CNS immune cells could modulate the effects of drugs of abuse and 

interact with dopamine during drug exposure. Synaptic remodeling may also occur during 

increased exposure to dopamine during drug abuse, which could contribute to the persistent 

behavioral effects typical of substance abuse disorders (Coller and Hutchinson 2012; Kovacs 

2012). Importantly, the changes in dopaminergic tone evoked by drug abuse will also depend 

on the timing, method of delivery and length of drug exposure. There are large differences in 

dopamine response between chronic drug abusers and intermittent or naive users (Sklair-

Tavron et al. 1996; Volkow et al. 2010; Wu and French 2000), and some studies show that 

chronic drug use decreases drug-induced dopamine release (Volkow et al. 1996; Wilson et 

al. 1996a). Thus, it is important to consider not only the neurological effects of the drug 

being used, but also the epidemiological context of the substance abuser in order to develop 

a complete picture of how the changes in CNS dopamine induced in a particular drug abuser 

impact the immune cells in the CNS.
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Dopamine in Peripheral Systems

It has been more than five decades since a peripheral role for dopamine was first described 

(Goldberg 1972), and while dopamine is most often studied in the context of its actions in 

the CNS, this neurotransmitter is also present throughout the periphery. Peripheral dopamine 

plays an important regulatory role in a variety of functions including hormone secretion, 

vascular tone, sympathetic regulation, immune activation, gastrointestinal motility, blood 

pressure, respiration, and renal functions (Arreola et al. 2016; Goldstein et al. 1995; Rubí 

and Maechler 2010). Dopamine can be released from sympathetic nerves and the adrenal 

medulla, as well as from other peripheral organs, where dopamine can act as an autocrine/

paracrine regulator of local organ function. This section focuses on the available research 

showing the concentrations of dopamine in peripheral compartments (Table 3), and 

discusses how the dopaminergic machinery found in peripheral systems affects the amount 

of dopamine seen by immune cells in these regions. Specifically, the tissues discussed here 

are those in which multiple studies have reported measurable dopamine concentrations that 

could interact with resident immune cells. Tissues that are not discussed may also express 

sufficient dopamine to affect immune cells, but either the reports of this were scarce or to 

our knowledge it has not be demonstrated yet. For example, very few studies have reported 

dopamine concentrations in the liver. However, the liver receives both parasympathetic and 

sympathetic input (Yi et al. 2010), and is known to have some of the highest expression of 

COMT in the body (Männistö and Kaakkola 1999; Myohanen et al. 2010), suggesting it 

plays a major role in metabolizing dopamine (Eisenhofer et al. 1995). Therefore, more 

research is warranted to further characterize additional sources of dopamine and 

dopaminergic regulation throughout the body.

Adrenals

The adrenal glands are one of the more well-known sources of peripheral dopamine, and 

express both D1-like and D2-like DRs (Pivonello et al. 2004). Specifically, the adrenal 

medulla, located at the center of the gland and surrounded by the cortex, is innervated by the 

greater splanchnic nerve and regulates secretion of catecholamines into systemic circulation 

(Bloom et al. 1988). However, both medulla and cortex seem to be important for dopamine 

production (McCarty et al. 1986). Adrenocortical dopamine appears to derive from DOPA 

removed from the circulation and decarboxylated in non-catecholaminergic cells (Buu and 

Lussier 1990). Recently, studies showed that electroacupuncture in the sciatic nerve of mice 

increased the production of dopamine in the adrenal medulla, and vagotomy abolishes this, 

suggesting that dopamine from the adrenals relies on both neuronal and non-neuronal inputs 

(Torres-Rosas et al. 2014). Many studies have shown that resident neuroendocrine 

chromaffin cells release dopamine (Fhaner et al. 2013; Leszczyszyn et al. 1991; Podvin et al. 

2015), and the vesicular concentration of dopamine in these cells has been estimated to be as 

high as 300 mM (Wightman et al. 1991) which is comparable to that found in midbrain 

neurons (Pothos et al. 1998), although a range of studies estimate the dopamine 

concentration in the adrenals to be in the nanomolar to milimolar range (Table 3).

Many types of immune cells, in particular macrophages, dendritic cells, mast cells, and 

lymphocytes, can be found in the adrenals (Kanczkowski et al. 2016; Schober et al. 1998). 
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Close cell–cell localization between immune cells and surrounding adrenocortical, 

chromaffin, or endothelial cells has been observed (Gonzalez-Hernandez et al. 1994; 

Wolkersdorfer et al. 1999), indicating that immune cells are likely to be in close contact with 

dopamine-releasing cells and exposed to high concentrations of dopamine. The 

catecholaminergic machinery in immune cells themselves can also be altered by the adrenal 

environment, as adrenalectomy increases TH and decreases MAO-A expression in 

macrophages (Stanojevic et al. 2013). The dopamine released from the adrenals is likely to 

influence other peripheral regions as well, as the hormones and catecholamines they release 

can regulate cytokine expression and immune cell activation (Deak 2008; Kanczkowski et al. 

2016). Further, mature dendritic cells exposed to dopamine in the adrenals migrate from 

their residence in the adrenal cortex into the bloodstream and lymph nodes to present 

antigen to lymphocytes (Deak 2008).

Bone Marrow

The bone marrow microenvironment is critical in the maintenance of hematopoietic stem 

cells (HSCs), from which immune cells are derived through hematopoiesis. Signals from the 

sympathetic nervous system, including dopamine release, have been shown to regulate HSC 

development and function (Cosentino et al. 2015; Madden 2017; Mercier et al. 2011). 

Dopamine specifically enhances a number of cellular functions including cell polarity, 

migration, colony formation and metalloproteinase secretion, through stimulation of DRs 

expressed on these cells (Basu et al. 1993; Chakroborty et al. 2008; Spiegel et al. 2007). 

These and other studies suggest dopamine plays an active role in the bone marrow, a 

hypothesis supported by data showing nanomolar to micromolar ranges of dopamine in this 

compartment (Chakroborty et al. 2008; Maestroni et al. 1998; Marino et al. 1997), which is 

substantially more than what is typically found in circulation. Interestingly, bone marrow 

dopamine levels display rhythmicity, which could be disrupted by chemical sympathectomy, 

thereby indicating the possible role of this rhythmicity in regulation of hematopoiesis 

(Maestroni et al. 1998). The dopamine found in this compartment can also act on the many 

other immune cells present in the bone marrow, including macrophages and osteoclasts, 

several types of T-cells, B-cells and myeloid-derived suppressor cells. These cells are found 

throughout the bone marrow, circulating through the capillary network permeating this 

region (Mercier et al. 2011; Zhao et al. 2012), and all respond to dopamine. Thus, the 

dopamine present in the bone marrow could directly influence both the development of 

immune cell precursors, as well as indirectly affect hematopoiesis and ancillary functions, 

by acting on the mature immune cells hosted in this compartment. Further characterization 

of the role of dopamine in hematopoiesis is needed to better define how dopamine affects 

immune cell development, and to determine how dopaminergic effects on mature immune 

cells influence this process. This is of particular clinical significance as bone marrow derived 

stem cells are being utilized for therapies in Parkinson’s disease (Fu et al. 2015) as well as 

Alzheimer’s disease (Fang et al. 2018).

Carotid bodies

Carotid bodies, small clusters of chemoreceptors (type I cells) located near the bifurcation of 

the carotid artery, are one of the major groups of peripheral chemoreceptors in the body 

(Kumar and Prabhakar 2012). These cells are similar to the chromaffin cells of the adrenal 
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medulla, and express both pre- and post-synaptic DRs (Almaraz et al. 1991; Bairam et al. 

1998; McQueen et al. 1984) as well as dense core vesicles where TH has been localized 

(Karasawa et al. 1982; Nurse and Fearon 2002), indicating the storage of dopamine. 

Although these vesicles contain approximately 20-fold less catecholamine per vesicle than 

larger vesicles in chromaffin cells (Wightman et al. 1991), they have around 5-fold more 

dopamine than the smaller vesicles found in sympathetic ganglia (Zhou and Misler 1995). 

These cells are synaptically connected to nerve terminals of the petrosal ganglion neurons 

(Iturriaga and Alcayaga 2004), and release dopamine in response to changes in the 

oxygenation, pH, and temperature of arterial blood (Kumar and Prabhakar 2012). The 

literature suggests that the amount of dopamine in this region is substantial, in the 

micromolar to millimolar range (Table 3). The carotid bodies contain large numbers of 

monocytes and macrophages (Dvorakova et al. 2000), and carotid bodies exposed to chronic 

hypoxia, which increases dopamine (Hanbauer et al. 1981), also show invasion of 

macrophages and subsequent upregulation of proinflammatory cytokines (Lam et al. 2012). 

Carotid bodies can also respond to a wide variety of blood-borne stimuli, including 

cytokines, with IL-6 inducing catecholamine release from chemoreceptors in a dose-

dependent manner via elevation in intracellular Ca2+ (Fan et al. 2009). The dopamine 

concentrations found in carotid bodies are sufficient to increase macrophage-mediated 

inflammation, including production of IL-6 (Nolan et al. 2018), suggesting that bidirectional 

interaction between inflammatory stimuli and changes in chemoreceptor dopamine release 

could stimulate immune activation and inflammation in these regions.

Circulation

Dopamine plays an important role in the circulatory system, potentiating vasodilation in 

systemic arteries (Amenta et al. 2000) and enhancing blood flow in skeletal muscles (Eliasen 

et al. 1989). Clinically, dopamine has long been used to treat cardiovascular complications 

arising from shock, trauma, and sepsis (Zhang and Chen 2016), suggesting that dopamine is 

involved in the regulation of vascular pathologies. Circulating dopamine can originate from 

diet and other physiological sources that can be independent or dependent of the nervous 

system (Eisenhofer and Goldstein 2004; Goldstein et al. 1999). Conditions that increase 

sympathetic nervous system activity can increase plasma dopamine levels (Van Loon 1983), 

and similarly, loss of sympathetic nerve function can decrease plasma dopamine (Goldstein 

and Holmes 2008). Dopamine is also released directly into the circulation from chromaffin 

cells of the adrenal medulla, amine precursor uptake decarboxylase (APUD) cells found 

predominantly in the kidney and pancreas (Rubi and Maechler 2010; Wolfovitz et al. 1993), 

and possibly from other, as yet undefined peripheral sources. Overall, peripheral dopamine 

synthesis and metabolism may currently be underestimated, as the high levels of dopamine 

in the plasma and the urinary excretion rates of dopamine metabolites and conjugated 

dopamine are not well accounted for by the known sources of peripheral dopamine.

Free (non-sulfated or glucuronated) dopamine levels in the circulation are relatively low 

compared to the rest of the body, comprising only 5% of dopamine in plasma (Kuchel and 

Kuchel 1991). Most studies report free dopamine concentrations in the picomolar range, but 

nanomolar levels have also been found (Table 3). These levels seem to vary widely among 

individuals (Eisenhofer et al. 2005), and can be substantially altered during normal activity. 
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For instance, ingestion of a meal can increase dopamine plasma concentrations by more than 

5000% (Eisenhofer and Goldstein 2004). The circulatory system is home to a wide variety 

of immune cells, many of which actively respond to dopamine (Scheiermann et al. 2015; Shi 

and Pamer 2011). Within circulation, these immune cells, including T-cells, granulocytes or 

monocytes, are likely to encounter large fluctuations in dopamine, with only small regions 

concentrated with enough dopamine to mediate the effects described for these cells (Gaskill 

et al. 2013; Pinoli et al. 2017). In particular, pockets of higher dopamine concentrations 

present on blood vessels and other tissue barriers may be critical for extravasation and 

trafficking of T cells and monocytes, as dopamine has been shown to both promote adhesion 

to extracellular matrix components and enhance chemokinesis and transmigration (Calderon 

et al. 2017; Coley et al. 2015; Levite et al. 2001; Watanabe et al. 2006a). Encounters with 

elevated dopamine could also slow down or diminish the immediate response to pathogenic 

insults, as dopamine decreases neutrophil adherence, phagocytosis, ROS formation and 

migration while increasing the apoptosis of these cells (Sookhai et al. 1999; Trabold et al. 

2007; Wenisch et al. 1996).

The majority of circulating dopamine is conjugated with sulfates or glucuronides, rendering 

it biologically inactive (Yoneda et al. 1983). In humans, sulfation is the more important 

metabolic pathway (Claustre et al. 1983), Dopamine sulfate has a half-life of a few hours, 

compared to a few minutes for free dopamine (Eldrup 2004). Its concentration is relatively 

independent of sympathetic nerves and more dependent on diet and conjugation of dopamine 

in the gastrointestinal tract (Eldrup et al. 1997; Goldstein et al. 1999). Unlike inactivation of 

dopamine by deamination or O-methylation, glucuronidation and sulfoconjugation are 

reversible by the enzymes β-glucuronidase (Pellock and Redinbo 2017) and arylsulfatase A 

(ARSA) (Strobel et al. 1990), respectively, which are found in the both the CNS and 

peripheral tissues (Antunes et al. 2012; Borcherding et al. 2011; Richard et al. 2001; Sperker 

et al. 2000). The function of dopamine conjugation remains unclear. One hypothesis is that 

conjugation sequesters dopamine to reduce its bioactivity and prevent catecholamine buildup 

in circulation, while another proposes that it acts as a reservoir for free dopamine (Goldstein 

et al. 1999; Yamamoto et al. 1996). Higher levels of plasma dopamine are associated with 

congenital heart defects (Yoshizumi et al. 1998) and are a risk factor for future coronary 

events in patients with coronary artery disease (Abe et al. 2007), so sequestration of free 

dopamine might be a protective mechanism. It is not clear that immune cells have the 

capability to reverse sulfation or glucuronidation, but these processes would prevent 

circulating leukocytes from encountering high levels of free dopamine in the blood stream, 

thereby reducing dopamine-mediated inflammation.

Heart

Within the heart, the measured concentrations of dopamine are generally found to be in the 

high nanomolar range (Table 3), suggesting that dopamine could be synthesized in this 

compartment non-neuronally. This is supported by studies indicating that dopamine can be 

synthesized in the heart independent of noradrenergic nerves (Mohanty et al. 1986), possibly 

via chromaffin cells found in the paraganglia of the heart (Chumasov et al. 2011; 

Scheuermann 1993). These concentrations of dopamine are high enough to elicit activity 

from the immune cells present in the heart, which include resident cardiac macrophages, T-
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cells and mast cells, as well as lesser numbers of neutrophils and eosinophils (Frieler and 

Mortensen 2015; Lavine et al. 2014). Recent studies have shown that immune cells play an 

important role in both homeostatic heart function and in cardiac pathology. Distinct subsets 

of cardiac macrophages, both directly and indirectly facilitate tissue repair after cardiac 

injury, through phagocytosis and the production of cytokines such as IL-1β, IL-10 and IL-6, 

which are important regulators of cardiomyocyte and fibroblast function (Epelman et al. 

2014; Frieler and Mortensen 2015). Recent studies show that heart-resident macrophages 

and cardiomyocytes can be physically connected by gap junctions to allow for synchronous 

propagation of electrical signals that drive the heart to contract during a normal heartbeat 

(Hulsmans et al. 2017). Monocyte derived macrophages are also recruited to the heart after 

injury, and have been show to promote inflammation (Lavine et al. 2014). Different subtypes 

of T-cells are involved in cardiac remodeling, altering cardiac physiology and both 

promoting and suppressing hypertrophy (Hamrell et al. 1995; Tang et al. 2012). Mast cells 

are also associated with maladaptive cardiac remodeling, potentially through interactions 

with fibroblasts (Zhang et al. 2011b). As dopamine has been shown to regulate cytokine 

production, phagocytosis and chemotaxis in both macrophages and T-cells, and to inhibit 

Treg function (Gaskill et al. 2013), the interactions of immune cells with dopamine in the 

heart could certainly promote or exacerbate cardiac inflammation and pathology. Exogenous 

changes in dopamine levels due to therapeutics or drug abuse could also disrupt non-

pathologic cardiac function.

Kidney

Dopamine regulation in the kidney is one of the better characterized systems in the 

periphery, with dopamine levels reaching nanomolar to micromolar concentrations in this 

organ (Table 3). DRs in the kidney contribute to the control of renal electrolyte balance and 

blood pressure, as well as renin production (DiBona 1990; Gildea 2009; Harris and Zhang 

2012; Hussain and Lokhandwala 2003). The primary source of dopamine in the kidney are 

renal peritubular cells (RPTs). These cells express AADC but not TH or DBH, so dopamine 

can only be produced from L-DOPA and can’t be converted into norepinephrine. Peritubular 

L-DOPA is transported into the RPTs via the Na+-independent and pH-sensitive L-type 

amino acid transporters (LAT) or related to b0,+ amino acid transporters (rBAT) from the 

circulation or following filtration at the glomerulus (Harris and Zhang 2012). This dopamine 

can then be secreted into the lumen from the same transporter, acting as a paracrine agent 

along nephron segments, circulating throughout the kidney (Carey 2001; Hussain and 

Lokhandwala 2003) or metabolized due to the high activity of COMT in this organ (Vieira-

Coelho and Soares-da-Silva 1996). In addition to metabolizing dopamine, recent research 

has identified another enzyme, a FAD/NADH-dependent amine oxidase known as renalase, 

that is expressed in the kidney and secreted into blood, where it may metabolize 

catecholamines (Luft 2005). Renalase knockout mice have increased urinary and circulating 

dopamine, which is thought to result from an enhanced availability/uptake of l-DOPA in 

RPTs (Quelhas-Santos et al. 2015; Sizova et al. 2013). Interestingly, renalase is expressed in 

other tissues such as the brain, heart, and pancreas (Fedchenko et al. 2013; Guo et al. 2016), 

so although it is not well known it could be hypothesized that this enzyme has an important 

regulatory role in metabolizing dopamine throughout the body.
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The primary immune cells in a healthy kidney are several discrete subpopulations of tissue 

resident macrophages, resident dendritic cells and a small number of lymphocytes and mast 

cells. The dendritic cells are found in the interstitium and extend dendrites into the tubular 

lumen, while the macrophages are also found in the interstitium, as well as the renal medulla 

and capsule and to a lesser extent in the glomeruli. The lymphocytes and mast cells can also 

be found in the interstitium (Kawakami et al. 2013; Kurts et al. 2013; Weisheit et al. 2015). 

High levels of dopamine are present in all these regions; therefore, kidney immune cells are 

likely to regularly interact with high levels of this neurotransmitter. Because of this regular 

interaction, it is likely that the impact of dopamine on the function of these cells is part of 

homeostatic kidney function. Indeed, mice with intrarenal dopamine deficiency show 

increased oxidative stress and inflammatory infiltration, and reduced intrarenal dopamine 

synthesis is associated with increased detrimental effects of angiotensin II on renal injury 

(Yang et al. 2012; Zhang et al. 2011a).

Lung

A number of cells within the lung may be capable of producing dopamine, including 

alveolar type II epithelial cells (Adir et al. 2004) and pulmonary neuroendocrine cells 

(Scheuermann et al. 1988). Additionally, dopamine is taken up and metabolized in lungs 

from rats (Bryan-Lluka et al. 1992; Scarcella and Bryan-Lluka 1995) and humans (Russell et 

al. 1982). There is evidence that dopamine is physiologically produced and distributed in the 

lungs in a process similar to that found in the kidney, although stimulation of DRs has 

opposite effects in these organs, increasing lung Na+ absorption but increasing kidney Na+ 

excretion (Barnard et al. 1999; Bertorello and Sznajder 2005). Further, while pulmonary 

endothelial cells are a site of very rapid metabolism by MAO and COMT (Russell et al. 

1982) there is a lack of conversion of dopamine to norepinephrine, unlike other peripheral 

tissues (Scarcella and Bryan-Lluka 1995). DRs are found in airway smooth muscle (Mizuta 

et al. 2013), lung epithelial cells (Matsuyama et al. 2018), and lung arteries (Kobayashi et al. 

1995), and lung dopamine levels are substantial enough to influence these receptors in a 

dose-dependent fashion (Ciarka et al. 2007). These concentrations are in nanomolar to 

micromolar levels (Table 3), and together these data suggest dopamine is involved in a 

number of pulmonary functions. Indeed, this neurotransmitter can modulate respiratory 

function through carotid bodies, and influence pulmonary circulation, neuromodulation of 

sensory pulmonary nerves, and lung water clearance (Chamorro-Marín et al. 2008; Prieto-

Lloret et al. 2015; Vohra et al. 2012).

The role of the immune system in the lungs is critical, as they represent the environment 

most frequently targeted by pathogens (Lloyd and Marsland 2017). Alveolar macrophages 

make up a significant portion of immune cells within this organ during steady state, and an 

increase in specialized lymphocytes and neutrophils are recruited during bouts of 

inflammation (Cho et al. 2016; Hussell and Bell 2014). Lung immune activation can be 

triggered by the pulmonary neuroendocrine cells, which are the only innervated airway 

epithelial cells (Branchfield et al. 2016), suggesting dopamine could play a role in regulating 

this process. Expression of MAO and COMT in murine alveolar macrophages is regulated 

by LPS, suggesting lung inflammation changes their response to dopamine (Flierl et al. 

2007). Pretreatment with dopamine ameliorated LPS-mediated edema formation and 
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lowered neutrophil infiltration in a murine lung injury model (Vohra et al. 2012). In humans, 

inhaled dopamine induces bronchodilation during bronchial obstruction in asthmatic patients 

(Cabezas et al. 2003). However, D1-like receptor antagonists suppress Th17-mediated 

neutrophilic airway inflammation resulting from severe asthma (Nakagome et al. 2011). As 

with the kidney, the relatively high baseline dopamine levels in the lung suggest that 

dopamine-immune interactions are a regular part of pulmonary function, and seem to have 

an anti-inflammatory and therapeutically beneficial effect. However, in individuals with 

certain conditions, or under conditions of aberrant dopamine regulation, the alterations in 

immune function resulting from interaction with dopamine could be dangerous (Ciarka et al. 

2004).

Gastrointestinal System

Dopaminergic mechanisms are important for regulation of gastrointestinal motility, likely 

through stimulation of DRs found along the gastrointestinal tract (Glavin and Hall 1995; Li 

et al. 2006; Mittal et al. 2017). The expression and activity of TH is high throughout the 

gastrointestinal system, and it is thought to be a significant source of dopamine metabolism. 

The sources of dopamine include the enteric nervous system as well as non-neuronal cells 

such as stomach epithelial cells, cells in the lamina propria and gut resident immune cells 

(Eisenhofer et al. 1997; Mezey et al. 1998). The microbiome may also be involved in the 

production of gut dopamine. Germ free animals have decreased dopamine concentrations in 

the small intestine (Asano et al. 2012), and germ free mice also display an increased 

turnover rate of dopamine in the brain (Diaz Heijtz et al. 2011). Additionally, microbiome 

depletion by antibiotics decreases TH in the gut and cytokine inhibition in invariant NKT 

cells, which could be reversed by replenishing the microbiome or treating with the D1-like 

receptor agonist A68,930 (Xue et al. 2018). Recent data indicate that bacteria produce and 

recognize neurochemicals (Lyte 2013; Strandwitz 2018), and have shown micromolar 

concentrations of dopamine that can be detected in the bacteria themselves and their culture 

fluid (Nagler et al. 2018; Özoğul 2004; Shishov et al. 2009). In addition, bacteria 

themselves, in particular Clostridium species, have been shown to express β-glucuronidase, 

which could significantly contribute to the generation of free dopamine in the gut (Asano et 

al. 2012). Overall, studies show nanomolar to micromolar dopamine throughout the 

gastrointestinal tissues and fluids including gastric and duodenal juice, stomach, small 

intestine, and colon (Table 3).

The gut contains the largest number of immune cells in the body, include multiple subsets of 

T-cells, macrophages and dendritic cells, as well as a variety of granulocytes, many of which 

are specifically adapted to the GI tract (Huffnagle and Noverr 2008; Wu and Wu 2012). 

These cells are found throughout the gastrointestinal system, and the ubiquity of these cells 

suggests that they could encounter dopamine anywhere within the gastrointestinal system. 

Large numbers of macrophages accumulate around the submucosal and myenteric plexuses 

(Bogunovic et al. 2009), which contain nerve terminals for both sympathetic and 

parasympathetic nerve fibers connected to the CNS. Mast cells have also been shown to 

surround nerve terminals in these regions (Schemann and Camilleri 2013). The mucosal 

plexus in the mucosal layer contains nerve endings in close proximity to a high 

concentration of immune and epithelial cells (Benarroch 2007). In addition, a substantial 
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number of immune cells in the lamina propria express mRNA for DRs and TH but not DBH 

and PNMT, suggesting that these cells are exclusively dopaminergic (Mezey and Palkovits 

1992). This demonstrates that many of the immune cells in this compartment are specifically 

adapted to respond to dopamine. The close proximity of other immune cells to nerve fibers 

and other sources of dopamine indicate many gastrointestinal immune populations interact 

with dopamine on a regular basis. Thus, dopamine-mediated changes in immune function 

are likely important to maintaining gut homeostasis, and disruptions in the gut dopaminergic 

system could be involved the development or exacerbation of a number of gastrointestinal 

disorders (Magro et al. 2004; Pacheco et al. 2014; Rooks et al. 2014; Tolstanova et al. 2015), 

as discussed later in this review.

Lymphoid Organs

Primary and secondary lymphoid organs, including the thymus, spleen, and lymph nodes, 

are massively innervated by sympathetic nerves that store a large amount of dopamine 

(Mignini et al. 2009; Weihe et al. 1991). Another source of dopamine for these regions is 

thought to be autocrine and paracrine secretion of dopamine by immune cells, primarily T-

cells, as both regulatory CD4+CD25+ T-cells (Cosentino et al. 2007) and T follicular helper 

cells (Papa et al. 2017) contain and release dopamine. In addition, parasympathetic efferent 

nerves could also contribute to dopamine production, but their presence and function is not 

clear (Nance and Sanders 2007; Schafer et al. 1998). Many of the nerve fibers within the 

secondary lymphoid tissues are in close contact with blood vessels (Mignini et al. 2014), and 

DRs, TH and VMATs can be found on sympathetic nerve endings in the medulla, cortico-

medullary junction, and thymic epithelial cell compartments of the thymus (Pilipović et al. 

2008). Dopaminergic proteins are also found in the white pulp border and to a lesser extent 

in the red pulp in the spleen (Mignini et al. 2003; Mignini et al. 2009). These and other 

studies indicate that dopamine is present throughout the lymphoid organs, that some of it 

may derive from the CNS, and that dopamine is involved in the function of the lymphoid 

tissues. This is supported by data showing that the destruction of dopaminergic terminals in 

the nucleus accumbens and striatum results in depression of spleen natural killer cells and 

lymphocytes (Deleplanque et al. 1994).

The lymphoid organs have been shown to contain high nanomolar concentrations of 

dopamine, although the amounts vary between tissues (Table 3). The presence of both 

dopamine and dopaminergic proteins at the border of the thymic medulla, where most of 

single-positive (CD4+ and CD8+) lymphocytes reside, suggests that these immune cells may 

be directly exposed to dopamine from nerve terminals. Further, in the splenic white pulp, 

sympathetic nerve terminals are in direct apposition to T-cells and adjacent to both dendritic 

cells and B-cells, with a neuroimmune junction approximately 6 nm wide (Felten et al. 

1987; Felten et al. 1985). These data indicate an extremely close interaction between 

sympathetic terminals and immune cells in these organs, demonstrating that interactions 

with dopamine are essential to proper tissue homeostasis and suggesting that stimuli which 

disrupt dopamine concentrations in these tissues could significantly impair immune 

function.
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Pancreas

Concentrations of dopamine in the pancreas are relatively high, with reports showing 

dopamine content in the low micromolar range (Table 3). Dopamine in this organ is derived 

from sympathetic innervation and the circulation, as well as from pancreatic cells and 

resident immune cells (Rodriguez-Diaz et al. 2011; Zern et al. 1980). Within the endocrine 

tissues of the pancreas, dopamine can directly regulate insulin production (Farino et al. 

2019; Rubí and Maechler 2010). In addition, dopamine release from the hypothalamus can 

indirectly regulate insulin and dopamine production through effects of prolactin on islet 

cells, which express TH (Teitelman et al. 1981) and DRs (Chen et al. 2014; Rubi et al. 

2005). Dopamine from the exocrine tissues is released into the duodenum to protect it from 

harmful digestive enzymes. Although pancreatic exocrine cells can respond to and produce 

dopamine, the dopamine released from these cells likely does not contribute to dopamine in 

the general circulation, as there is an absence of DAT in endothelial cells of arteries but 

abundance in excreting ducts and veins (Mezey et al. 1996). While chemical sympathectomy 

does not significantly alter dopamine levels, suggesting a non-neuronal source of pancreatic 

dopamine (Mezey et al. 1996), neurons from the gut can send axonal projections to the 

pancreas (Kirchgessner and Gershon 1990), and there is a central vagal connection through 

the paraventricular nucleus of the hypothalamus (Davis and Smith 1985).

While the role of pancreatic immune cells is still being defined, T-cells, macrophages and 

dendritic cells are all though to play important roles in the development and function of this 

organ (Carrero et al. 2017; Hawkins et al. 1996; Homo-Delarche and Drexhage 2004). The 

endocrine pancreas has a highly specialized islet structure and microvascular cells that 

facilitates T cell infiltration, bringing these lymphocytes into close contact with dopamine-

producing islet cells. The resident macrophages and dendritic cells in the islets are in close 

contact with blood vessels where they could encounter dopamine (Boldison and Wong 2016; 

Homo-Delarche and Drexhage 2004). While these and other studies indicate dopamine-

immune interaction may be part of normal pancreatic function, dopamine mediated changes 

to insulin levels, combined with the inflammatory phenotype of dopamine-exposed immune 

cells, suggests that changes in pancreatic dopamine levels could contribute to development 

of pancreatic pathology. Further, dopamine/insulin crosstalk can occur in other organs, such 

as the brain (Mebel et al. 2012; Stouffer et al. 2015; Williams et al. 2007), so the pancreatic 

influence on dopamine concentrations could also affect immune cells in other tissues.

Adipose

As dopamine has direct inhibitory effects on the secretion of insulin, it follows that 

dopamine also participates in glucose homeostasis and body weight. Alterations in 

dopaminergic markers such as DAT are decreased in postmortem brain samples from obese 

subjects (Wu et al. 2017) and dopamine is decreased in the brains of obese rats (Cone et al. 

2013). Dopamine can also directly affect differentiation and proliferation of adipocytes 

themselves (Borcherding et al. 2011). While concentrations of dopamine in adipose tissue 

appears to be in the lower nanomolar range (Table 3), adipocytes express DRs (Wang et al. 

2018), TH (Zhu et al. 2014) and ARSA, indicative of an active sulfoconjugation mechanism 

in adipose tissues (Borcherding et al. 2011). And while the adrenal medulla on average had 

1000 fold more TH expression than adipose tissues, considering the size of the adrenal 
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medulla compared to all of the adipose depots within the body, the dopamine production in 

adipose tissue may be comparable (Vargovic et al. 2011).

The immune composition of adipose tissue fluctuations based on the obesity of the 

individual and thus metabolic state of the tissue. In general, adipose tissue macrophages, 

which are divided into several distinct subsets, constitute 5% of the cells in adipose tissue, 

although the ratio of the subsets changes with body composition (Ortega Martinez de 

Victoria et al. 2009). In addition, dendritic cells, neutrophils, and mast cells are all relatively 

sparse in the adipose tissue of lean individuals, but much more common in the adipose tissue 

of obese individuals (Bertola et al. 2012; Elgazar-Carmon et al. 2008; Liu et al. 2009). This 

increase is also seen in T-cells, which are the second most common immune cell in adipose 

after macrophages (Wu et al. 2007). Some studies suggest that adipocytes act as antigen 

presenting cells during inflammation (Deng et al. 2013; Morris et al. 2013), meaning that T-

cells in adipose make direct contact with dopamine-producing adipocytes. As dopamine can 

enhance inflammatory activity in immune cells, the immune cells in adipose that are 

exposed to dopamine released from adipocytes and innervating nerve fibers could be 

contributing to the inflammatory milieu that is now commonly associated with metabolic 

disorders and obesity (Huh et al. 2014). Further research on the impact of changes in 

dopamine on adipose tissue is important to more effectively use dopaminergic drugs to treat 

obesity and metabolic disorders, as well as manage metabolic symptoms associated with 

chronic treatment with dopaminergic drugs such as antipsychotics (Panariello et al. 2011).

Peripheral Dopamine and Drug Abuse

There is little data on the effects of drugs of abuse on peripheral dopamine concentrations, 

although a mouse study using positron emission tomography (PET) imaging and quantitative 

whole-body autoradiography (QWBAR) with [18F]FDOPA indicates that use of ketamine, 

cocaine and methamphetamine increase dopamine levels in the gastrointestinal tract and 

kidney (Yeh et al. 2014). Many of the drugs that produce increases in CNS dopamine, such 

as cocaine, methamphetamine, and ethanol, are associated with significant pathology in 

peripheral organs with higher dopamine levels, such as the lung, gut, or kidney (Dimitrijevic 

et al. 2008; Lineberry and Bostwick 2006; Tiwari et al. 2006). Drug induced increases in the 

dopamine content of these tissues could disrupt homeostatic function and/or promote 

inflammation through dopamine modulation of resident macrophages and other immune 

cells. Indeed, drugs of abuse such as opioids have been shown to modulate both peripheral 

innate and adaptive immune cells (Roy et al. 2011). Further, DR expression in peripheral 

lymphocytes is affected by cocaine (Faraj et al. 1991), opioids (Goodarzi et al. 2009), 

alcohol (Biermann et al. 2007), and heroin (Czermak et al. 2004) during abuse and 

abstinence phases. These effects could also be induced by therapeutic agents that increase 

dopamine or act on DRs, such as Bromocriptine, L-DOPA, Emsam or Wellbutrin (Brannan 

et al. 1993; Lamensdorf et al. 1999; Stahl et al. 2004). Future studies should address the 

impact of drugs on peripheral dopamine, as it is clear that dopamine is present throughout 

the periphery, and the actions of both immune cells and dopamine are necessary for proper 

function in many different tissues.
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Clinical Implications of Dopamine Stimulation of Immune Cells

Disturbances in central and peripheral dopamine production are involved in many 

pathological conditions, including but not limited to Parkinson’s disease, NeuroHIV, 

multiple sclerosis, rheumatoid arthritis, and inflammatory bowel disease. All these 

pathologies are also influenced by changes in immune function, suggesting that 

communication between the dopaminergic system and immune cells plays a substantial role 

in their etiology. This section briefly discusses these interactions, examining the role 

dopamine in several pathologies in which dopamine-mediated alterations in the immune 

system might impact the development of disease.

Parkinson’s Disease

Parkinson’s disease (PD) is the most well-known disease associated with dopaminergic 

dysfunction. Characterized by James Parkinson in 1817, this disease is characterized by the 

degeneration of dopaminergic neurons in the substantia nigra, pathological protein 

aggregates known as Lewy bodies, reduced CNS extracellular DA concentrations 

particularly in the striatum, neuroinflammation, and motor disturbances (Table 4). In 

addition to these neurological symptoms, Parkinson’s symptoms include duodenal ulcers, GI 

absorptive motile functions, and generation of Lewy bodies in the gut (Glavin and Szabo 

1990; Singaram et al. 1995). It is not clear whether this connection is due to dysregulation of 

the local dopamine levels or the influence of the damaged CNS dopaminergic system on 

innervated peripheral organs, although both may contribute (Pellegrini et al. 2016; Singaram 

et al. 1995). Of note, PD has been positively correlated with inflammatory bowel diseases 

(Lin et al. 2016), another group of disorders where dopamine may be an important regulator 

of disease progression, and it has recently been hypothesized that T-cell driven 

inflammation, which mediates dopaminergic neurodegeneration, is triggered in the gut 

(Campos-Acuña et al. 2019). Although PD itself reduces dopaminergic tone by destroying 

dopamine neurons in the nigrostriatal pathway, treatment for this disease involves the 

administration of L-DOPA and/or DR agonists, potentially leading to stimulation of DRs on 

immune cells. Indeed, both in both humans and Parkinson’s rodent models, changes in 

dopamine concentrations have been found in the periphery as well as in the CNS (Eldrup et 

al. 1995; Kawamura et al. 1999; Winner et al. 2017). Dopamine has been shown to affect 

phagocytosis in myeloid cells (Gaskill et al. 2013), and microglia show greater phagocytic 

activity in the substantia nigra of the brain of PD patients has been reported (Barcia 2013).

Peripherally, the correlations between central and peripheral dopamine in PD patients are 

inconsistent (Buttarelli et al. 2009; Pontieri and Colosimo 2010), although significant 

correlations are more often found in patients undergoing dopamine therapy. A number of 

studies have reported increased dopamine in the intestines accompanying decreased CNS 

dopamine after treatment with 6-OHDA (Garrido-Gil et al. 2018b; Levandis et al. 2015), 

which is used to model Parkinson’s in rodents. With regards to the specific dopamine-

immune effects in PD and PD models, lymphocytes in these systems show reductions in 

intracellular dopamine content, as well as changes in expression of TH, DAT, and DRs 

(Barbanti et al. 1999; Caronti et al. 2001; Kustrimovic et al. 2016; Nagai et al. 1996). CD4+ 

T-cells seem to play more of a role in disease progression, as these cells can infiltrate into 
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the substantia nigra during PD, and depletion of CD4+ T-cells attenuates dopaminergic 

neurodegeneration in animal models of PD (Benner et al. 2008; Brochard et al. 2009). Very 

recently, it has also been shown that oxidized forms of α-synuclein, one of the main 

constituents of Lewy bodies, specifically drive CD4+ T-cell responses in PD patients (Sulzer 

et al. 2017). A case study additionally demonstrated that treatment with L-DOPA led to 

neutropenia and changes in neutrophil TH and DR expression (Cordano et al. 2015). These 

and other studies show that PD has a significant interaction with immune function (Mackie 

et al. 2018), and suggest that the role of dopamine in this interaction should be studied 

further.

NeuroHIV

The connection between HIV infection of the CNS and dopaminergic dysfunction has been 

recently reviewed (Gaskill et al. 2013; Nolan and Gaskill 2018), and will therefore only be 

briefly discussed here. This virus attacks immune cells, primarily CD4+ T cells and myeloid 

cells, and in the CNS the primary targets for HIV are myeloid cells such as microglia and 

macrophages. Once infected these cells can produce new virus, act as viral reservoirs, and 

release neurotoxic factors that contribute to the constellation of pathologies and behavioral 

cognitive and motor symptoms known as NeuroHIV. Prior to the use of combined 

antiretroviral therapy (cART), greater amounts of viral DNA and elevated neuropathology 

were seen in regions of the brain innervated by dopaminergic neurons (Aylward et al. 1993; 

Fujimura et al. 1997; Kieburtz et al. 1996). With cART, the effects are subtler, but changes in 

the dopaminergic system are still present (Cassol et al. 2014; Gaskill et al. 2017). Drugs 

which increase dopamine levels exacerbate SIV-associated neuropathology in the Rhesus 

macaque model of NeuroAIDS (Czub et al. 2004; Czub et al. 2001), and individuals infected 

with HIV show alterations in CNS and CSF dopamine (Table 4). During HIV infection, 

dopamine could increase monocyte transmigration into the CNS (Calderon et al. 2017; 

Coley et al. 2015), as well as increase HIV infection of macrophages (Gaskill et al. 2009; 

Gaskill et al. 2014) and promote an inflammatory environment, even in infected individuals 

on cART (Nolan et al. 2018). As drug abuse is a common comorbidity in HIV infection 

(Mathers et al. 2008), and many HIV-infected individuals also suffer from neuropsychiatric 

disorders (Dubé et al. 2005; Gallego et al. 2011), changes in dopamine concentrations in 

response to both illicit and psychiatric drugs could exacerbate the impact of dopamine on 

HIV associated neuropathology. Overall, these and other studies indicate that the 

bidirectional interactions between dopamine and HIV-infected myeloid cells are an 

important driver of NeuroHIV.

Multiple Sclerosis

Multiple sclerosis (MS) is a progressive, neurodegenerative disease characterized by 

progressive loss of neurological function due to the destruction of sheath axonal myelin 

throughout the brain and spinal cord (Cosentino and Marino 2013; Marino and Cosentino 

2016). The heightened inflammatory processes present in the CNS during MS increase the 

entry of circulating immune cells (Engelhardt 2006; Larochelle et al. 2011). As dopamine 

can increase the activation and production of inflammatory mediators, changes in CNS 

dopamine levels during increased immune cell entry could contribute to MS pathology. In 

experimental mouse models of MS such as experimental autoimmune encephalomyelitis 
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(EAE), changes in CNS dopamine alter the progression of disease (Bałkowiec-Iskra et al. 

2007). While there are no changes in the dopamine concentrations in the immune cells of 

MS patients (Cosentino et al. 2002; Rajda et al. 2002), there are substantial differences in 

DR expression in these cells, particularly D1-like DRs (Cosentino et al. 2014; Giorelli et al. 

2005; Prado et al. 2018). In an EAE model of MS, these changes promoted the production of 

inflammatory cytokines IL-12 and IL-23, and disrupted the balance of activity between Treg 

and Th17 cells, while the depletion of dopamine decreased the severity of the disease 

(Nakano et al. 2008; Prado et al. 2012; Prado et al. 2018). While other innate immune cells 

that are responsive to dopamine, including monocytes, NK cells, mast cells, and neutrophils 

also play a role in MS (Chanvillard et al. 2013; Hernández-Pedro et al. 2013; Hertwig et al. 

2016; Naegele et al. 2012), the specific dopaminergic modulation of these cells in the 

context of MS is not clear. One of the most common treatments for MS, IFN-β, induces the 

production of dopamine in human lymphocytes (Cosentino et al. 2005), and a longitudinal 

study in relapsing remitting MS patients undergoing IFN-β treatment for 12 months found 

increased D5 and decreased D2 in lymphocytes compared to untreated patients (Zaffaroni et 

al. 2008). Thus, IFN-β may alter the response to dopamine in these cells, promoting D1-like 

responses and suggesting a potential benefit for dopaminergic agents in MS (Cosentino and 

Marino 2013). Thus, the amount of dopamine immune cells encounter in the brains of MS 

patients could substantially alter the progression of disease by changing the inflammatory 

milieu in the CNS.

Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a chronic autoimmune disease in which the destruction of bone 

tissue and the articular structures of joints leads to progressive disability. Macrophages that 

infiltrate the synovial tissues play a crucial role in the progression of this disease, and 

dendritic cells (Gierut et al. 2010; Lutzky et al. 2007), neutrophils, and NK cells (Falgarone 

et al. 2005) in the synovial fluid also contribute to the development of the pathology. The 

dopaminergic system strongly influences the progression of RA (Pacheco et al. 2014), 

although dopamine levels in synovial fluid are relatively low, in the picomolar to nanomolar 

range (Table 4). Dopamine released from dendritic cells mediates IL-6 dependent 

differentiation of Th17 lymphocytes, resulting in exacerbated cartilage destruction that was 

blocked by the a D1-like receptor antagonist (SCH23390) (Nakano et al. 2011). In addition, 

the D2 antagonist haloperidol, and the DR agonist cabergoline have also been shown to 

ameliorate disease progression (Fahmy Wahba et al. 2015; Mobini et al. 2011). These effects 

may be mediated through effects on synovial fibroblasts in RA patients, which express both 

DRs and TH, (Capellino et al. 2014; Capellino et al. 2010), or through the effect of 

dopamine on osteoblasts, which also express these receptors and TH (Capellino et al. 2016). 

Expression of TH in osteoblasts suggests dopamine locally synthesized in the bone could 

influence disease progression, and that dopamine may be involved in not only bone 

formation (Lee et al. 2015), but also bone remodeling and joint erosion in RA.

Inflammatory Bowel Diseases

The autoimmune disorders known as inflammatory bowel diseases (IBDs) are categorized as 

chronic inflammatory conditions of the gastrointestinal system, with the two main categories 

including Crohn’s disease and ulcerative colitis. In both rodent models and humans with 
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IBD, dopamine is decreased in the colon (Magro et al. 2004; Magro et al. 2002) (Table 4), 

and rodent models of IBD show the disease is enhanced by treatment with the peripheral 

dopamine antagonist domperidone, and ameliorated by the dopamine agonist bromocriptine 

(Herak-Perkovic et al. 2001). A number of similar studies in rodent models show that 

treatment with D2 agonists (Tolstanova et al. 2015), D2 antagonists (Kim D, Kim W, et. al, 

2019), and the herbal alkaloid berberine, which acts as a pan-DR antagonist (Kawano et al. 

2015) all decreased the severity of IBD. The link between the dopaminergic system on IBD 

is also supported by a rat study showing that ulcerative colitis correlated with enhanced 

inflammatory and damaging effects of LPS on dopaminergic neurons in the nigrostriatal 

pathway (Villaran et al. 2010). In human IBD patients, impaired synthesis or cellular storage 

of dopamine was observed in enteroendocrine cells and the enteric nervous system, 

suggesting aberrant intestinal cellular synthesis and storage of dopamine could stimulate 

inflammation in nearby immune cells (Magro et al. 2002). These data show that the 

inflammatory responses triggering IBD are connected to both local and distal dopaminergic 

systems, and that changes in dopamine may be central to disease development.

Conclusion

The data presented here demonstrate that the dopaminergic system is active in many tissues, 

both in the CNS and the periphery. This activity is seen not only in the concentrations of 

dopamine found in these tissues, but in the variety of functions that are affected by this 

neurotransmitter. Dopamine has been shown to regulate immune cells in the brain and 

throughout the periphery, and dopamine displays complex regulatory effects on immune 

responses, depending on dopamine concentration, time of exposure, subtype of receptors, 

type of immune cells and immune cell activation state. The concentrations required to 

induce these effects on immunity are found in many compartments, where dopamine and the 

immune cells it can affect contribute to both homeostatic function and pathological 

responses. A better understanding of dopaminergic regulation of immune function is critical 

to understanding its role in both tissue homeostasis and many disease states associated with 

abnormal dopaminergic signaling and an altered/imbalanced immune response. Overall, a 

better appreciation of the broad immunomodulatory effects of this neurotransmitter is 

critical to the advancement of a number of fields, as it will likely demonstrate new pathways 

and mechanisms involved in many seemingly well understood processes, along with the 

development of new and better therapeutics and health strategies.
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Figure 1 - Concentrations of Dopamine Throughout the Central Nervous System.
Range of dopamine concentrations found throughout the central nervous system, based on 

the summary of literature in Table 1. These values represent the range of calculated absolute 

molar values, which provide a simplified way to compare relative physiologically relevant 

concentrations across the brain. The dopaminergic pathways of the brain in which dopamine 

concentrations are the highest are highlighted; the nigrostriatal pathway starts in the 

substantia nigra and innervates the dorsal striatum (purple), the mesocortical pathway 

connects the ventral tegmental area to the cortex (blue), the mesolimbic pathway connects 

the ventral tegmental area to the limbic regions of the brain such as the amygdala and 

hippocampus (red), and the tuberoinfundibular pathway which runs from the hypothalamus 

to the pituitary (green). Concentrations in these regions change significantly during the use 

of illicit drugs (Table 2) and in different disease states (Table 4). For clarity, data showing 

concentrations that were outliers in the calculated range of concentrations for each region 

are excluded.
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Figure 2 - Concentrations of Dopamine Throughout the Periphery.
A graphical representation of the various concentrations of dopamine throughout the 

periphery, based on the summary literature contained in findings in Table 3. These values 

represent the range of calculated absolute molar values, which provide a simplified way to 

compare relative physiologically relevant concentrations across peripheral systems. These 

concentrations can change during different disease states (Table 4). For clarity, data showing 

concentrations that were outliers in the calculated range of concentrations for each region 

are excluded
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Table 3:
Dopamine Concentrations in the Periphery.

A summary of human and animal studies that have examined concentrations of dopamine within the periphery. 

Both original values and our calculated relative molar values are reported to easily compare concentrations of 

dopamine between studies.

Original Dopamine 
Concentration

Concentration of Dopamine 
(M)

Location Species Method Reference

30 ng/g
b

2 × 10−7 M
a Adipose (Brown) Mouse HPLC (Griggio et al. 1992)

1 pg/mg
c

6.5 × 10−9 M
a Adipose 

(Epididymal 
White)

Mouse HPLC (Nagler et al. 2018)

100 pg/mg
b

7 × 10−7 M
a Adipose 

(Mesenteric Tissue 
Cells)

Rat HPLC (Vargovic et al. 2011)

0.0853 nmol/g
8.5 × 10−8 M

a Adrenal Gland Primate HPLC (Elchisak et al. 1983)

430 ng/kg
2.8 × 10−9 M

a Adrenal Gland Rat HPLC (Snider and Kuchel 
1983)

94600 pmol/g
9.5 × 10−5 M

a Adrenal Gland Rat HPLC (Kawamura et al. 1999)

51 nmol/g
5.1 × 10−5 M

a Adrenal Gland 
(Cortex)

Rat HPLC (Hannah et al. 1984)

0.5 ng/ml
b

3.3 × 10−9 M
a Adrenal Gland 

(Medulla)
Mouse HPLC (Torres-Rosas et al. 

2014)

6 nmol/g
6 × 10−6 M

a Adrenal Gland 
(Medulla)

Rat HPLC (Hannah et al. 1984)

0.37 mg/g
2.4 × 10−3 M

a Adrenal Gland 
(Medulla)

Rat HPLC (Ortega-Saenz et al. 
2016)

24 pmol/mg
2.4 × 10−5 M

a Adrenal Gland 
(Medulla)

Rat HPLC (Favre et al. 1986)

6.1 ug/g
4 × 10−5 M

a Adrenal Gland 
(Medulla)

Rat HPLC (Fhaneret al. 2013)

1.1 ng/ml
c

7 × 10−9 M
a Amniotic Fluid Human HPLC (Jonathan and Munsick 

1980)

45 pmol/g
4.5 × 10−8 M

a Aorta Rat HPLC (Kawamura et al. 1999)

0.15 μg/g
9.8 × 10−7 M

a Aorta Sheep HPLC (Juorio and Chedrese 
1990)

0.043 μg/g
3 × 10−7 M

a Artery 
(Mesenteric)

Rat HPLC (Bell and Gillespie 1981)

0.15 pmol/mg
1.5 × 10−7 M

a Bladder Rat HPLC (Favre et al. 1986)

2 nM
b 2 × 10−9 M Bone Marrow Mouse HPLC (Maestroni et al. 1998)

250 pg/g
b

1.6 × 10−9 M
a Bone Marrow Mouse HPLC (Marino et al. 1997)

35 ng/mg
b

2.3 × 10−5 M
a Bone Marrow Mouse HPLC (Chakroborty et al. 2008)

202 ng/g
b

1.3 × 10−3 M
a Carotid Body Human 

(infant)
HPLC (Perrin et al. 1984)

209.6 pmol/mg
2.1 × 10−1 M

a Carotid Body Rat HPLC (Vicario et al. 2000)
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Original Dopamine 
Concentration

Concentration of Dopamine 
(M)

Location Species Method Reference

84.04 mg/g
5.5 × 10−1 M

a Carotid Body Rat HPLC (Ortega-Saenz et al. 
2016)

3.3 nmol/mg
3.3 × 10−3 M

a Carotid Body Rat HPLC (Hanbauer et al. 1981)

256.2 pmol/mg
2.6 × 10−1 M

a Carotid Body Rat HPLC (Prieto-Lloret et al. 2015)

129 pmol/mg
1.3 × 10−1 M

a Carotid Body Rat HPLC (Favre et al. 1986)

115.4 ng/g
7.5 × 10−7 M

a Cecum Mouse HPLC (Asano et al. 2012)

140 pmol/g
b

1.4 × 10−7 M
a Colon Human HPLC (Magro et al. 2002)

177 ng/g
1.2 × 10−6 M

a Colon Mouse HPLC (Asano et al. 2012)

26 pmol/g
3 × 10−8 M

a Colon Rat HPLC (Magro et al. 2004)

60 pg/μg
b

3.9 × 10−4 M
a Colon Rat HPLC (Levandis et al. 2015)

100 pg/mg
b

6.5 × 10−7 M
a Colon (Ascending) Mouse HPLC (Garrido-Gil et al. 2018a)

15 pg/mg
9.8 × 10−8 M

a Colon (Proximal) Rat HPLC (Garrido-Gil et al. 2018a)

12 pg/mg
b

7.8 × 10−8 M
a Colon (Proximal) Rat HPLC (Garrido-Gil et al. 2018b)

239 pmol/g
2.4 × 10−7 M

a Duodenum Rat HPLC (Kawamura et al. 1999)

3.67 μg/g
2.4 × 10−5 M

a Duodenum Sheep HPLC (Juorio and Chedrese 
1990)

276 pg/ml
1.8 × 10−9 M

a Duodenum (Juice) Rat HPLC (Mezey et al. 1996)

13 pmol/mg
1.3 × 10−5 M

a Ganglion (Coeliac) Rat HPLC (Favre et al. 1986)

15 pmol/mg
1.5 × 10−5 M

a Ganglion 
(Mesenteric)

Rat HPLC (Favre et al. 1986)

26 pmol/mg
2.6 × 10−5 M

a Ganglion (Superior 
Cervical)

Rat HPLC (Favre et al. 1986)

8082 pmol/g
8.1 × 10−6 M

a Ganglion (Superior 
Cervical)

Rat HPLC (Kawamura et al. 1999)

14 pmol/mg
1.4 × 10−5 M

a Ganglion (Superior 
Cervical)

Rat HPLC (Prieto-Lloret et al. 2015)

0.52 pg/μg
3 × 10−6 M

a Heart Human HPLC (Regitz et al. 1990)

15 ng/g
b

1 × 10−7 M
a Heart Mouse HPLC (Griggio et al. 1992)

55.9 ng/g
3.6 × 10−7 M

a Heart Mouse HPLC (Amino et al. 2008)

30 ng/g
2 × 10−7 M

a Heart Mouse HPLC (Wagner et al. 1979b)

30 ng/g
b

2 × 10−7 M
a Heart Pig HPLC (Schoeneman n et al. 

1990)

12 ng/g
b

8 × 10−8 M
a Heart Rat HPLC (Schoeneman n et al. 

1990)

15 ng/g
1 × 10−7 M

a Heart Rat HPLC (Snider and Kuchel 
1983)

10 ng/g
b

6.5 × 10−8 M
a Heart Rat HPLC (Eldrup 2004)
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Original Dopamine 
Concentration

Concentration of Dopamine 
(M)

Location Species Method Reference

0.11 pmol/mg
1.1 × 10−7 M

a Heart Rat HPLC (Favre et al. 1986)

170 ng/g
b

1.1 × 10−6 M
a Heart (Atrium) Dog HPLC (Mohanty et al. 1986)

0.58 nmol/g
5.8 × 10−7 M

a Heart (Atrium) Primate HPLC (Elchisak et al. 1983)

0.135 μg/g
9 × 10−7 M

a Heart (Atrium) Mouse HPLC (Bell and Gillespie 1981)

143 ng/g
9.3 × 10−7 M

a Heart 
(Myocardium)

Human HPLC (Pierpont et al. 1987)

120 ng/g
b

7.8 × 10−7 M
a Heart (Ventricle) Dog HPLC (Mohanty et al. 1986)

0.549 nmol/g
5.5 × 10−7 M

a Heart (Ventricle) Primate HPLC (Elchisak et al. 1983)

15.7 ng/g
1 × 10−7 M

a Ileum Mouse HPLC (Asano et al. 2012)

30 pmol/g
3 × 10−8 M

a Ileum Rat HPLC (Magro et al. 2004)

160 pg/μg
b

1 × 10−3 M
a Ileum Rat HPLC (Levandis et al. 2015)

0.03 pmol/g
3 × 10−8 M

a Jejunum Mouse HPLC (Quelhas-Santos et al. 
2015)

36 pmol/g
b

3.6 × 10−8 M
a Jejunum 

(Epithelial cells)
Rat HPLC (Vieira-Coelho et al. 

1998)

41 pmol/g
4.1 × 10−8 M

a Jejunum (Mucosa) Rat HPLC (Vieira-Coelho et al. 
1998)

61 pmol/g
6.1 × 10−8 M

a Jejunum (Mucosa) Rat HPLC (Finkel et al. 1994)

13.3 ng/g
8.6 × 10−8 M

a Kidney Mouse HPLC (Wagner et al. 1979a)

115 ng/mg
b

7.5 × 10−4 M
a Kidney Mouse HPLC (Zhang et al. 2011a)

0.5 ng/mg
b

3.3 × 10−6 M
a Kidney Mouse HPLC (Weinman et al. 2011)

33 pmol/mg
3.3 × 10−5 M

a Kidney Rat HPLC (Wahbe et al. 1982)

5 ng/g
b

3 × 10−8 M
a Kidney Rat HPLC (Snider and Kuchel 

1983)

50 pmol/g
5 × 10−8 M

a Kidney Rat HPLC (Kawamura et al. 1999)

0.04 pmol/mg
4 × 10−8 M

a Kidney Rat HPLC (Favre et al. 1986)

0.846 nmol/g
8.5 × 10−7 M

a Kidney (Cortex) Primate HPLC (Elchisak et al. 1983)

0.017 μg/g
1 × 10−7 M

a Kidney (Cortex) Rat HPLC (Bell and Gillespie 1981)

0.225 nmol/g
2.3 × 10−7 M

a Kidney (Medulla) Primate HPLC (Elchisak et al. 1983)

0.092 nmol/g
9.2 × 10−8 M

a Liver Primate HPLC (Elchisak et al. 1983)

0.011 pmol/mg
1.1 × 10−8 M

a Liver Rat HPLC (Favre et al. 1986)

1.697 μg/g
1.1 × 10−5 M

a Lung Cow HPLC (Eyre 1971)

0.11 μg/g
7 × 10−7 M

a Lung Human HPLC (Aviado and 
Sadavongviva d1970)

0.0446 nmol/g
4.5 × 10−8 M

a Lung Primate HPLC (Elchisak et al. 1983)
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Original Dopamine 
Concentration

Concentration of Dopamine 
(M)

Location Species Method Reference

40 ng/g
2.6 × 10−7 M

a Lung Rat ELISA (Hampl et al. 2015)

34 pmol/g
3.4 × 10−8 M

a Lung Rat HPLC (Kawamura et al. 1999)

58.8 pmol/g
5.9 × 10−8 M

a Lung Rat HPLC (Scarcella and Bryan-
Lluka 1995)

9.96 μg/g
6.5 × 10−5 M

a Lung Sheep HPLC (Juorio and Chedrese 
1990)

0.021 pmol/mg
2.1 × 10−8 M

a Lung/Trachea Rat HPLC (Favre et al. 1986)

0.5 μmol/kg
b

5 × 10−7 M
a Microbiome 

(Biomass)
E coli HPLC (Shishov et al. 2009)

0.1 μmol/kg
b

1 × 10−7 M
a Microbiome 

(Supernatant)
E coli HPLC (Shishov et al. 2009)

79.4 μg/ml
b

5.2 × 10−4 M
a Microbiome 

(Supernatant)
E faecium HPLC (Villageliu and Lyte 

2018)

0.73 mg/L
4.8 × 10−6 M

a Microbiome 
(Supernatant)

Hafnia alvei HPLC (Özoğul 2004)

1.06 mg/L
6.9 × 10−6 M

a Microbiome 
(Supernatant)

Klebsiella 
pneumoniae

HPLC (Özoğul 2004)

2.46 mg/L
1.6 × 10−5 M

a Microbiome 
(Supernatant)

Morganella 
morganii

HPLC (Özoğul 2004)

29 pg/mg
c

1.8 × 10−7 M
a Pancreas Mouse HPLC (Nagler et al. 2018)

0.218 nmol/g
2.2 × 10−7 M

a Pancreas Primate HPLC (Elchisak et al. 1983)

84 pmol/mg
8.4 × 10−5 M

a Pancreas Rat HPLC (Mezey et al. 1996)

103 pmol/g
1 × 10−7 M

a Pancreas Rat HPLC (Kawamura et al. 1999)

8 μmol/kg
8 × 10−6 M

a Pancreas (Islets) Golden 
hamster

HPLC (Zern et al. 1980)

10 pg/ml
6.5 × 10−11 M

a Plasma Human HPLC (Saha et al. 2001)

17 pg/ml
3.5 × 10−8 M

a Plasma Human HPLC (Mitchell et al. 2018)

10 pg/ml
6.5 × 10−11 M

a Plasma Human HPLC (Gardner and Shoback 
2007)

10 pg/ml
6.5 × 10−11 M

a Plasma Human HPLC (Lechin et al. 1990)

38.9 pg/ml
2.5 × 10−l0 M

a Plasma Human HPLC (Scozzi et al. 2012)

22.14 ng/L
1.4 × 10−10 M

a Plasma Human HPLC (Ambade et al. 2009)

0.02 ng/ml
1.3 × 10−l0 M

a Plasma Human HPLC (Eldrup et al. 1995)

55.5ng/L
3.6 × 10−10 M

a
Plasma

Human HPLC (Iwen et al. 2017)

0.76 ng/ml
5 × 10−9 M

a Plasma Mouse HPLC (Kavelaars et al. 2005)

0.9 ng/ml
5.9 × 10−9 M

a Plasma Mouse HPLC (Alaniz et al. 1999)

75 pg/ml
b

4.9 × 10−10 M
a Plasma Mouse HPLC (Kanemi et al. 2005)

7 pmol/ml
7 × 10−9 M

a Plasma Mouse HPLC (Quelhas-Santos et al. 
2015)

J Neuroimmune Pharmacol. Author manuscript; available in PMC 2021 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Matt and Gaskill Page 79

Original Dopamine 
Concentration

Concentration of Dopamine 
(M)

Location Species Method Reference

0.1 ng/ml
b

7 × 10−10 M
a Plasma Rat HPLC (De Laurentiis et al. 

2002)

0.15 ng/ml
b

9.8 × 10−10 M
a Plasma Rat HPLC (Snider and Kuchel 

1983)

0.32 nmol/L
3.2 × 10−10 M

a Plasma (arterial) Human HPLC (Goldstein et al. 1999)

0.23 nmol/L
2.3 × 10−10 M

a Plasma (Hepatic 
Vein)

Human HPLC (Goldstein et al. 1999)

0.93 nmol/L
9.3 × 10−10 M

a Plasma (Portal 
Vein)

Human HPLC (Goldstein et al. 1999)

2 ng/ml
1.3 × 10−10 M

a Plasma (Umbilical 
Cord)

Human HPLC (Jonathan and Munsick 
1980)

18 ng/g
1.8 × 10−7 M

a Salivary Gland Rat HPLC (Snider and Kuchel 
1983)

39 ng/g
b

2.5 × 10−7 M
a Salivary Gland Rat HPLC (Tomassoni et al. 2015)

211 pmol/g
2.1 × 10−7 M

a Salivary Gland Rat HPLC (Kawamura et al. 1999)

1 pmol/mg
1 × 10−6 M

a Seminal Vesicles Rat HPLC (Favre et al. 1986)

0.032 pmol/mg
3.2 × 10−8 M

a Small intestine Rat HPLC (Favre et al. 1986)

1.31 ng/mg
8.6 × 10−6 M

a Spinal Cord 
(Cervical Dorsal 

Horn)

Rat HPLC (White et al. 1983)

0.65 ng/mg
4.2 × 10−6 M

a Spinal Cord 
(Cervical Ventral 

Horn)

Rat HPLC (White et al. 1983)

0.79 ng/mg
5.2 × 10−6 M

a Spinal Cord 
(Lumbar Dorsal 

Horn)

Rat HPLC (White et al. 1983)

0.67 ng/mg
4.4 × 10−6 M

a Spinal Cord 
(Lumbar Ventral 

Horn)

Rat HPLC (White et al. 1983)

2.18 ng/mg
1.4 × 10−5 M

a Spinal Cord 
(Thoracic Dorsal 

Horn)

Rat HPLC (White et al. 1983)

2.67 ng/mg
1.7 × 10−5 M

a Spinal Cord 
(Thoracic Lateral 

Horn)

Rat HPLC (White et al. 1983)

1.88 ng/mg
1.2 × 10−5 M

a Spinal Cord 
(Thoracic Ventral 

Horn)

Rat HPLC (White et al. 1983)

13.5 pmol/g
1 × 10−7 M

a Spleen Mouse HPLC (Tsao et al. 1997)

50 ng/g
b

3 × 10−7 M
a Spleen Pig HPLC (Schoeneman n et al. 

1990)

0.173 nmol/g
1.7 × 10−7 M

a Spleen Primate HPLC (Elchisak et al. 1983)

10 ng/g
b

7 × 10−8 M
a Spleen Rat HPLC (Schoeneman n et al. 

1990)

0.011 μg/g
7 × 10−8 M

a Spleen Rat HPLC (Bell and Gillespie 1981)

0.084 pmol/mg
8.4 × 10−8 M

a Spleen Rat HPLC (Favre et al. 1986)

J Neuroimmune Pharmacol. Author manuscript; available in PMC 2021 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Matt and Gaskill Page 80

Original Dopamine 
Concentration

Concentration of Dopamine 
(M)

Location Species Method Reference

152 pmol/g
1.5 × 10−7 M

a Spleen Rat HPLC (Kawamura et al. 1999)

0.078 pmol/mg
7.8 × 10−8 M

a Stomach Rat HPLC (Favre et al. 1986)

185 pmol/g
1.9 × 10−7 M

a Stomach Rat HPLC (Kawamura et al. 1999)

20 ng/g
b

1.3 × 10−7 M
a Stomach Rat HPLC (Eldrup 2004)

32.9 ng/g
3 × 10−7 M

a Stomach (Gastric 
Corpus Mucosa)

Guinea pig HPLC (Shichijo et al. 1997)

95.8 ng/g
6 × 10−7 M

a Stomach (Gastric 
Corpus Muscle)

Guinea pig HPLC (Shichijo et al. 1997)

5.41 ng/ml
4 × 10−8 M

a Stomach (Gastric 
Juice)

Human HPLC (Christensen and 
Brandsborg 1974)

1.02 nmol/g
1 × 10−6 M

a Testis Primate HPLC (Elchisak et al. 1983)

5 pmol/g
5 × 10−9 M

a Testis Rat HPLC (Kawamura et al. 1999)

12.7 pmol/mg
1 × 10−7 M

a Thymus Mouse HPLC (Tsao et al. 1997)

15 pmol/g 1.5 × 10−8 M Thymus Rat HPLC (Kawamura et al. 1999)

25 ng/g
d

1.6 × 10−7 M
a Thymus Rat HPLC (Pilipovic et al. 2008)

0.352 μg/g
2.3 × 10−6 M

a Vas Deferens Rat HPLC (Bell and Gillespie 1981)

2.1 pmol/mg
2.1 × 10−6 M

a Vas Deferens Rat HPLC (Favre et al. 1986)

2466 pmol/g
2.5 × 10−6 M

a Vas Deferens Rat HPLC (Kawamura et al. 1999)

a
Con cent ratio ns calculated by dividing values by the molecular weight of dopamine (153 .18 g/m ol) if not already in a molar value, and 

multiplying the density of tissues or fluid s (kg/L or kg/m^3)

b
Estimate obtained from graph because no values given in text, or averaged values if multiple control values were given

c
Value obtained from one or an average of treatment groups other than control because no absolute control given

d
Averaged male and female control groups
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