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Tree cover differentiates forests from savannas and grasslands. In tropical
floodplains, factors differentiating these systems are poorly known, even
though floodplains cover 10% of the tropical landmass. Seasonal inundation
potentially presents trees with both challenges (soil anoxia) and benefits
(moisture and nutrient deposition), the relative importance of which may
depend on ecological context, e.g. if floods alleviate water stress more in
more arid ecosystems. Here, we use remotely sensed data across 13 large tro-
pical and sub-tropical floodplain ecosystems on five continents to show that
climatic water balance (i.e. precipitation—potential evapotranspiration)
strongly increases floodplain tree cover in interaction with flooding, fire
and topography. As predicted, flooding increases tree cover in more arid
floodplains, but decreases tree cover in climatically wetter ones. As in
uplands, frequent fire reduced tree cover, particularly in wet regions,
but—in contrast with uplands—lower elevation and sandier soils decreased
tree cover. Our results suggest that predicting the impacts of changing cli-
mate, land use and hydrology on floodplain ecosystems depends on
considering climate-disturbance interactions. While outright wetland con-
version proceeds globally, additional anthropogenic activities, including
alteration of fire frequencies and dam construction, will also shift floodplain
tree cover, especially in wet climates.
1. Introduction
Variation in tropical tree cover has been linked to rainfall [1–3], fire [2,4,5], soils
[4,6], and, in places, herbivory [5,7,8]. These factors combine to differentiate
high tree cover forests from low tree cover savannas and grasslands [2,3,5,9]
with consequences for community composition [10] and ecosystem services
[11]. Although broad, the existing literature has explicitly excluded or simply
ignored tree cover determinants in seasonally flooded habitats [3,9], despite
the fact that nearly 10% of the global terrestrial tropics is periodically inundated
by floodwaters [12]. These habitats include highly biodiverse forests [13], large
terrestrial carbon stocks [14], productive inland fisheries [15], and critical water
sources for both people and wildlife [16], and tree cover shapes their local
species composition [10], biogeochemical sinks [17] and hydrology [18]. None-
theless, the relative importance of climate, soil composition, fire and
hydrological regimes to structuring tropical floodplain vegetation is unknown.

As a starting point, the factors that determine tropical upland (non-flooded)
vegetation structure also likely affect floodplain tree cover. In uplands, aridity
[2,3,9] and fire frequency [2,5,6] limit tropical tree cover by reducing tree and
sapling survival, growth, and competitive advantage against grasses. Higher
soil sand content is associated with higher tree cover [3,6,19], likely because
trees can grow deep roots to extract water from the deeper water tables in san-
dier regions [4,6,20]. By contrast, floodplain soils frequently have high water
tables [21], potentially limiting niche separation and suggesting the relationship
between soil composition and tree cover may be different from that in uplands.
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A more obvious upland–floodplain contrast is that flood-
plain trees must deal with inundation. Indeed, the large
literature on flood-induced mortality, plus plant physiologi-
cal and morphological adaptations to inundation [22–24],
suggest hydrological regimes might play a major role in
determining floodplain vegetation structure. Flooding can
present either a physiological challenge or an ecological
opportunity for trees. On the one hand, flooding waterlogs
soils, creating anoxic conditions that can kill roots, paradoxi-
cally starving plants of water needed for photosynthesis
[22,25]. These physiological constraints can be alleviated by
plastic or constitutive generation of hollow stems and other
intercellular spaces called aerenchyma, that allow diffusion
of oxygen from emergent tissues to submerged ones [22,25].
On the other hand, while anoxia is a barrier to survival for
many tree species, floods can also benefit trees by recharging
soil moisture [26] and depositing soil nutrients [27,28]. Tree
cover in flooding ecosystems appears to reflect this tension:
seasonally flooded tropical ecosystems exhibit a striking
range of vegetation structure, from near-treeless grasslands
(e.g. floodplains of northern Australia’s Kakadu and Kimber-
ley regions) to grassy systems with moderate tree cover (e.g.
the Pantanal) to tropical forests with near-complete tree cano-
pies (e.g. Amazonian várzea forests and igapó). We do not
currently understand why these habitats vary in structure
as much as they do, or specifically what the role of flooding
is relative to other environmental factors in shaping these
ecosystems.

The relative costs versus benefits of flooding for trees may
depend on aspects of flood regimes themselves, including
flood duration, frequency, depth and temporal predictability.
For instance, in the Amazon—probably the best-studied tro-
pical floodplain ecosystem—tree recruitment is slower in
areas with long (greater than 150 days) compared to short
(less than 70 days) hydroperiods [29], a pattern that is consist-
ent across riparian plants [23]. Similarly, deeper floodwaters
(relative to plant height) cause plant mortality [23]. In
addition, where flooding (either its duration or seasonality)
is more predictable, the evolution of flood adaptations such
as aerenchyma and lenticels may be more likely [30,31],
thereby easing tree survival in floodplains. Landscape pos-
ition also can affect flood regime impacts; e.g. areas with
raised and/or sloped topography tend to have water tables
that drop more quickly following precipitation events, alle-
viating anoxic conditions in the rhizosphere [21]. Upland
ecosystems do not have such elevational constraints on tree
cover.

Finally, these tree cover determinants may interact. In
arid, water-limited regions, floodwaters may alleviate water
stress by maintaining or recharging soil moisture [26],
whereas in high-rainfall regions where soils are already
close to water-saturated, flooding may create anoxia. High-
rainfall regions also burn relatively infrequently [32] and
trees in these ecosystems tend to be poorly adapted to fire
[33]; therefore, fires that do occur in these habitats may
have especially strong effects on tree survival.

Here, we examine how climate, fire, soils and flood
regimes affect tree cover in 13 seasonally flooded tropical
and sub-tropical floodplains. We use globally consistent data-
sets including satellite-derived tree cover estimates [34] and
remotely sensed monthly inundation maps [35] to compare
among relatively well-studied (e.g. the Amazon) and poorly
characterized (the majority of tropical floodplains; e.g.
Sudan’s Sudd) ecosystems. We expected (1) arid climates,
(2) frequent fire and (3) frequent, long-duration, and unpre-
dictable flooding to decrease tree cover, and that flood
effects would depend on ecological context, especially
climate.
2. Methods
(a) Study regions and data extraction
We studied 13 major tropical and sub-tropical floodplain ecosys-
tems on five continents (figure 1). We selected the regions to
capture hydrological and tree cover variation across the world’s
seasonal floodplains, but many also have significant biodiversity,
carbon storage, water supply and tourism values. We hand-digi-
tized the geographical extent of each ecosystem from a
georeferenced map of global inundation probability (fig. 6 in
ref. [35]), encompassing periodically flooded areas. In this step,
we used wide boundaries because we later took data-driven sub-
sets of each region.

We then identified areas within each ecosystem that were (a)
temporarily but not permanently flooded and (b) not deforested,
urban, or agricultural areas to leave only natural vegetation from
locations flooded at least once in 1993–2007. Specifically, we first
removed permanent water defined as locations inundated for
greater than or equal to 95% of observations in either of two
global, monthly inundation geo-databases, the Global Surface
Water dataset [36] and GIEMS-D3 [35]. The Global Surface
Water dataset was produced from the entire 1984 to 2015 Landsat
archive (30 m resolution optical imagery); GIEMS-D3 is a
monthly topographic downscaling (3 arc-second or approx.
90 m resolution) of inundation detections by a suite of visible,
near-infrared, and microwave sensors covering January 1993–
December 2007 [37,38]. GIEMS-D3 allows mapping of inunda-
tion beneath vegetation canopies, not detectable by the Global
Surface Water product [35,36,39]. We also removed areas that
were never inundated in the GIEMS-D3 dataset, and locations
within 25 km of a coastline because GIEMS-D3 data are contami-
nated by ocean signals (C. Prigent 2018, personal communication
[35]).

To identify urban areas, we used the GlobCover v. 2.2 land
cover classification for December 2004–June 2006 and removed
from our study regions all pixels classified as ‘Artificial surfaces
and associated areas (urban areas greater than 50%).’ Deforested
areas identified using the ‘lossyear’ layer from the Landsat-based
Global Forest Change dataset [34] were also removed study
regions.

We used two datasets to define and remove agricultural
areas. First, we removed all areas covered by the 1 km crop
mask from the Global Food Security Support Analysis Data to
exclude croplands [40,41]. Then, we additionally removed all
areas with greater than or equal to 20 tropical livestock units
per km2 as defined by Jahnke & Jahnke [42] and Jahnke et al.
[43] using modelled cattle, pig, goat and sheep densities from
the Livestock Geo-Wiki Project [44].

In each region, we extracted per cent tree cover and a set of
11 covariates hypothesized to affect vegetation structure for
3 arc-second pixels. Per cent tree cover was derived from a Land-
sat-based product produced by Hansen et al. [45] for the year
2010.

We included three predictors—climatic water balance, soil
sand content and fire frequency (number of times burned)—
that are well-known determinants of tree cover in upland tropical
ecosystems [3,4]. Annual climatic water balance (hereafter ‘water
balance’) was computed as the mean annual precipitation minus
annual potential evapotranspiration, both derived from the
WorldClim dataset [46]. Soil sand content at 5 cm depth was
extracted from the SoilGrids dataset [47] at 250 m resolution,
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Figure 1. Study regions. Blue shading (dark grey in print) in each region depicts the areal extent of natural vegetation floodplain pixels included in the analysis.
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and the number of times burned between May 2000 (the start of
the dataset) and December 2010 was computed from NASA’s
MODIS MCD64A1 burned area product [48].

Hydrological regime descriptors were computed from
GIEMS-D3 [35]. We calculated metrics for (i) flood frequency
(number of calendar years with flooding in at least one
month), (ii) flood duration (mean number of months flooded
annually), (iii) variance of flood duration; and (iv) variability of
flood seasonality. The last metric captures the across-years
frequency with which a pixel is in its most common state—
flooded or not—for each calendar month, and was calculated
for each pixel as follows:

variabilityof floodseasonality ¼meanacross months½min(15� x, xÞ�,

where x is the number of years in which the focal pixel was
flooded for a given month and 15 is the number of years in the
full GIEMS-D3 dataset. For example, a pixel that was flooded
in January, February and March in 5 of 15 years, and in April
in 3 of 15 years, but never between May and December would
take the value:

mean½minð15� 5 years, 5 yearsÞ, minð15� 5 years, 5 yearsÞ,
minð15� 5 years, 5 yearsÞ, minð15� 3 years, 3 yearsÞ

þ 8�minð15� 0 years, 0 yearsÞ� ¼ 18
12

¼ 1:5:

Larger values indicate greater within-month variability
among years in the status of inundation (flooded or dry) and
possible values for variability of flood seasonality in our
15-year dataset range from 0 (complete year-to-year consistency
in monthly flood status) to 7 (all months are flooded in exactly
7 or 8 of 15 years).

We calculated the metric variation in flood seasonality in
place of the more common Colwell’s predictability [49] because
our metric was computationally more efficient by several
orders of magnitude. We tested the validity of our more efficient
metric for the three smallest regions in this study, Gorongosa, the
Everglades and the Okavango, finding that our metric was corre-
lated to Colwell predictability at r =−0.992, −0.985 and −0.972.

Because the GIEMS-D3 data are limited in their ability to
resolve floods with small spatial extent (less than 60 km2; [35,37])
and cannot capture centennial-to-millennial periodicities or short-
term (e.g. 1 day) inundation, we included four topographic vari-
ables as proxies for these flood regime characteristics. First,
because higher elevation areas may escape flood impacts, we com-
puted the relative elevation for each pixel as metres above the
mean within-region elevation of floodplain pixels from the
3 arc-s SRTM digital elevation model [50]. Second, we included
topographic slope, computed as a percentage and also from the
SRTM dataset, because higher-slope areas may drain faster and
have lower water tables, helping to alleviate anoxia [21]. Third
and fourth, we computed the distance from the centre of each
GIEMS-D3 grid cell to the nearest river and the nearest large
river. Any river course may facilitate riparian/gallery forest tree
cover by increasing soil moisture, but larger rivers are more
likely to flood extensive areas. We used the 15 arc-s HydroSHEDS
river network [51] and defined large river cells in the data as those
draining an upstream region with area greater than or equal to
4000 15 arc-s grid cells (approx. 850 km2).
(b) Statistical modelling
We began analyses with random forest regressions to find the
relative importance of predictors for determining floodplain
tree cover. Random forest regression is a decision-tree-based
method that finds split-points in predictor values at which the
response can be partitioned into increasingly homogeneous
groups [52]. Random forest modelling is highly robust to non-
normal data, interactions, and to collinear predictors [53–55]. In
addition, and of most interest here, random forest regression



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

286:20191755

4
allows quantification of predictors’ relative importance. Specifi-
cally, variable importance is assessed by permuting predictor
values from a subset of the data held out of the model training
set, then comparing the fit of model-predicted tree cover to
actual tree cover values using the randomly permuted versus
original predictor values. We completed this procedure for
each predictor and computed the average increase in mean
squared error of predicted versus actual tree cover across
regression trees [53,56]. Larger values indicate a greater variable
importance, because they show that permuting a given
predictor’s values reduces fit to a greater degree.

We built one ‘global’ model pooling data from all regions in
our analysis to find the importance of predictors for determining
tree cover across our 13 globally distributed floodplain ecosys-
tems and built a separate model for each ecosystem to examine
the same within regions. In total, all 13 ecosystems included
41164 320 three arc-s pixels. Individual regions ranged in size
from 27 618 (Gorongosa) to 14 442 434 (Amazon) pixels (elec-
tronic supplementary material, table S1) and encompassed a
wide range of tree cover and predictor values (electronic
supplementary material, figures S1 and S2).

Despite its strengths for identifying important predictors and
dealing with collinearities, non-normality and higher-order inter-
actions, it can be difficult to interpret the directional effects of
weaker and non-monotonic predictors from random forest
regression. Often the direction of effects are visualized using par-
tial dependence plots [54], but interpretation of these plots is
subjective. We, therefore, used linear models—again one global
and one for each region—to determine the direction, strength
and significance of predictors’ effects on tree cover.

We centred and standardized the predictor variables by sub-
tracting the mean from each value and then dividing by the
predictor’s standard deviation. This rescales the variables
(means = 0, s.d. = 1) and expresses all parameter estimates as the
rate of change in tree cover per standard-deviation change in
the predictor, facilitating comparison of slopes among parameters.
Where predictors were collinear at greater than 0.70 [57] we
removed the less important predictor(s)— as determined by vari-
able importance scores in the random forest regression—from the
linear models.

In addition to main effects of all variables, we included the
interactive effects of water balance with fire frequency, slope,
elevation, flood frequency and duration, distance to the nearest
river and nearest large river, soil sand content and slope. We
included these interactions because our a priori hypotheses
included the expectation that climatic context might alter the
effects of fire and flooding.

We validated linear regression models in light of the assump-
tions of linear regression by inspecting diagnostic plots of the
model residuals. We used histograms of residuals to verify
their normality, plots of the residuals against fitted tree cover
to check for homogeneity of variance, and plots of standardized
residuals versus leverage to check for data points with dispro-
portionate influence on the regression results [58]. We found
no indication that these assumptions were violated.

All modelling was completed in software R [59]. Where we
report means, errors are given as ± 1 s.d. Further methodological
and modelling details are presented in the online electronic
supplementary material.
3. Results
R2 ranged from 0.16 to 0.81 in the random forest regressions
and 0.13 to 0.52 in the linear models, excepting the two driest
regions, the SSS Deserts and Northern Nile (electronic sup-
plementary material, table S2). In the case of the SSS
Deserts and Northern Nile, linear models explained very
little variation in the near constantly low tree cover and so
are not considered further.

Random forest regression models identified water balance
(average rank among predictors within regional models =
1.62 ± 0.50) and elevation (1.77 ± 1.2) as consistently the
most important predictors of floodplain tree cover (figure 2).
Water balance had a positive effect on floodplain tree cover
both at the global scale (table 1 and figure 3) and within
most regions (electronic supplementary material, table S3
and figures S3–S13). However, in four of the six climatically
wettest regions (Llanos, Tonle Sap, Beni and the Pantanal)
tree cover declined with increasing water balance.

Water balance affected tree cover not only through strong
direct effects but also by altering several other predictors’
effects on tree cover. For instance, floodplain tree cover gen-
erally increased strongly at higher elevations, but the effect
was especially robust in wetter regions, as indicated by the
positive water balance–elevation interaction in the global
linear model and in several within-region models (electronic
supplementary material, table S3, figure 3). Only in one
region (Kakadu–Kimberly) did tree cover increase at lower
elevation.

The effects of flood duration (and, in the two models
where flood duration was removed due to collinearity,
flood frequency) were not as strong as those of elevation or
the direct effects of water balance, but did vary with regional
water balance. Tree cover declined with increased flooding in
five of the six climatically wettest ecosystems (from the Pan-
tanal (−552 mm y−1) to the Amazon (713 mm y−1)) but
increased in the Kakadu–Kimberley (−1119 mm y−1), Sudd
(−1189 mm y−1) and Okavango (−1417 mm y−1) regions
(electronic supplementary material, table S3). In addition,
the water balance–flood duration interaction in the global
linear model and most regional models indicated that flood
duration had a stronger negative effect on tree cover in clima-
tically wetter areas (figure 3 and table 1; electronic
supplementary material, table S3).

Fire frequency had strong negative effects on floodplain
tree cover, again, especially in regions with high water bal-
ance. Tree cover in the global model and in all seven of the
climatically wettest regions decreased with increasing fire fre-
quency (table 1; electronic supplementary material, table S3;
figures 3, S3–S13). By contrast, fire effects on tree cover
were weakly negative or near-absent in the drier Kafue–
Zambezi, Kakadu–Kimberley, Sudd and Okavango regions.
Furthermore, negative water balance–fire frequency inter-
actions in the global model and in six of 11 regions
indicated fire had a stronger negative (or less positive)
effect in wetter locations (table 1; electronic supplementary
material, table S3 and figure 3).

Floodplain tree cover was positively related to slope,
except in the Sudd where there was a weak but statistically
negative effect, and in Gorongosa where there was no effect
of slope (table 1; electronic supplementary material, table
S3 and figures S3–S13).

At the global scale, floodplain tree cover declined with
increasing soil sand content (figure 2) and there was only a
small (though statistically significant) positive interaction of
water balance with soil sand content, indicating that sandier
soil was somewhat less of a hindrance to tree cover in wetter
climates. Within individual regions, soil sand content was
often ranked as an important predictor (figure 2), but the
direction of its effect was idiosyncratic (electronic
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supplementary material, table S3 and figures S3–S13), some-
times increasing (Tonle Sap, Everglades, Gorongosa, Kafue–
Zambezi and Sudd) and sometimes decreasing (Amazon,
Llanos, Beni, Pantanal, Kakadu–Kimberly, Okavango) tree
cover.

Neither metric of flood predictability had a reliably strong
influence on tree cover. Variance of flood duration and varia-
bility of flood seasonality were ranked 7th and 8th,
respectively, in the global random forest model’s variable
importance scores and variance of flood duration was only
weakly positively associated with tree cover in the associated
linear model. The directional influence of variance in flood
duration differed among regions, and this predictor was
never ranked better than fifth most important, meaning
there was little support for the idea that more seasonally pre-
dictable flood regimes would increase tree cover; indeed, the
strongest responses were positive associations of Llanos and
Sudd tree cover with variance of flood duration (electronic
supplementary material, table S3 and figures S9 and S12).

Finally, distance to the nearest large river was negatively
related to tree cover globally and in all ecosystems except the
Everglades (table 1; electronic supplementary material, table
S3 and figures S3–S13). Although weak (10th-ranked variable
importance globally) relative to the effects of water balance,
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elevation, fire, soil composition and flood duration, the effect
of distance to the nearest large river was moderate in the
Beni, Gorongosa and Llanos. Distance to the nearest river of
any size was consistently a weak predictor (11th-ranked glob-
ally), positively associated with floodplain tree cover globally,
but negatively related to seven regions’ tree cover.

4. Discussion
Here, we found that more arid climates and more frequent
fire both had generally strong, negative effects on tree cover
in tropical floodplains. Moreover, floodplain tree cover
decreased with increasing soil sand content, and tree cover
was much greater at higher elevations, likely a result of
long-term limitation of tree cover by flooding. The climatic
and fire regime results are consistent with those from
non-flooding systems [1–3,5]; however, the effect of soil
sand content is opposite to that in uplands [3,6,19], and
there is no consistent effect of elevation on tropical tree
cover outside floodplains, save for the near-binary effect of
montane tree lines.

Increasing climatic water availability increased tree cover,
but this effect saturated in climatically wetter regions (table 1;
electronic supplementary material table S3; and figure S3–
S13), as it does in upland savannas [3]. However, in contrast
to the effects in uplands, we even observed a reversal of this
effect—declining tree cover with increasing rainfall—in some
of the climatically wettest floodplain regions (Beni, Tonle Sap
and Pantanal). Trees in these wettest regions are likely
released from persistent water limitation and may experience
nutrient leaching [60] or decreased light availability due to
cloudiness [61], with potentially reduced productivity as a
consequence.

Water balance also created context-dependence in the
effects of fire, topography and flooding on tree cover. We
found that frequent fire was more strongly associated with
lower tree cover in wetter climates, mirroring upland ecosys-
tems where fire also has the biggest effects on woody plant
abundance at higher-rainfall sites [2]. Trees tend to be
poorly adapted to fire in moist tropical forests [33] where
fire is relatively rare [48], meaning trees are more likely to
die when fires do occur there. In contrast, many trees in
more arid climates survive regular, low-intensity fires
[19,33], accounting for the relative lack of an effect of fire in
climatically drier floodplains (figure 3). In addition, wetter
climates encourage higher fuel loads and fire intensity in
savannas [62]. Indeed, fire frequency had stronger negative
effects on tree cover in the Pantanal and Gorongosa, flood-
plain savannas with relatively wet climates compared to the
Okavango and Sudd, which are relatively dry floodplain
savannas and where fire frequency had little impact on tree
cover (electronic supplementary material, figures S6, S10–
S12). Fire-vegetation feedbacks are well known from upland
savannas [5], meaning that not only do fires create ecosys-
tems more dominated by herbaceous plants but also that
more herbaceous ecosystems tend to have higher fuel loads,
promoting fire frequency and intensity. The same feedbacks
are likely in floodplains.

The effects of topography and flooding also depended on
climate. Flooding increased tree cover in the driest systems,
perhaps by supplementing rainfall [63], but acted mainly to
limit tree cover in climatically wetter regions, likely via the
effects of anoxic soils and physical disturbance on tree
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growth and survival [24]. However, the effects of our flood
regime descriptors on floodplain tree cover were surprisingly
weak—given that even short-term inundation can cause soil
anoxia and decrease the growth and survival of many
woody plants—compared to the effects of climatic water
balance, elevation and fire [23,29].

While our flood regime descriptors were relatively weak
tree cover determinants in our study, our topographic variables
provided an additional proxy for flood regimes, especially
over longer timescales than captured by the 15-year GIEMS-
D3 dataset. Indeed, areas with higher elevations and steeper
slopes tended to have higher tree cover, both globally and
within regions. That these topographic effects on tree cover
are a proxy for flooding effects is further supported by the
fact that only in the Kakadu–Kimberley region—that with
the lowest flood duration (0.39 ± 1.06 months per year;
electronic supplementary material, figure S1) and frequency
(2.77 ± 3.65 out of 15 years)—were elevation and slope
effects weak. Field studies from the Okavango and Everglades
similarly show that topography influences flood susceptibility:
islands rising only slightly above the surrounding floodplain
floor are home to relatively dense aggregations of trees
[64,65]. Water tables beneath sloped and high-elevation terrain
tend to drop more quickly following rainfall and inundation,
likely reducing soil anoxia and its negative effects on trees
[21]. Moreover, topographic effects were stronger in climati-
cally wetter regions, as for flood frequency and duration, and
suggesting that the negative effects of flooding on trees
(likely via soil anoxia) are exacerbated where trees are less
limited by water. The importance of elevation versus flood fre-
quency, duration, and predictability may indicate that it is the
longer-term hydrological regimes, or the ages of floodplain
ecosystems, and not short-term hydrological dynamics,
which have shaped floodplain vegetation structure [24]. We
found little support for the longstanding theory (derived in
part from research in Amazonian flooded forests) which
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suggests that more predictable flood regimes might increase
tree cover because they are more conducive to the evolution
of flood-adaptive traits [27,30,66]. Still, variability of flood
regimes over longer timescales than the annual-to-decadal
scale captured by GIEMS-D3 inundation data may influence
functional trait evolution (e.g. [67]). The relatively long-term
stability of hydrological regimes over geological time in
some floodplains may have resulted in the regionally wide-
spread prevalence of effective flood-adaptive traits [24,68].
For example, the heavily treed Amazon floodplains have
flooded for millions of years compared to only several
thousand years of flooding in other climatically wet regions
like the Pantanal and Tonle Sap [24,66,69], resulting in
variation in flood responses that are biogeographic rather
than local in scale.

Tree responses to flooding include various morphological
traits that aid gas diffusion to the roots from tissues both
beneath and above the water line (e.g. aerenchyma, adventi-
tious roots, hypertrophied lenticels), glycolysis and other
anaerobic respiration pathways (especially for short-term
anoxic events), and annual dormancy during the flood
season [22,25,68]. At present, we have no comprehensive
understanding of the geographic or taxonomic distribution
of these traits, and future work in flooding ecosystems
should consider the distribution and effectiveness of these
biotic factors relative to flood regimes, phylogeny, biogeo-
graphic history and other environmental characteristics.
Despite the spatially extensive and species-rich nature of
some floodplain tree communities [24], targeted sampling
across local and regional flood frequency, duration, and pre-
dictability gradients for comparison of flood-adaptive traits
may allow better understanding of the within and between-
species factors that allow tree persistence in seasonally
flooded ecosystems and apparently somewhat irrespective
of flood regimes.

Unfortunately, we were not able to directly consider the
effects of flood depth, which local field studies show influ-
ences vegetation structure and composition [23], on tree
cover in flooding systems because flood depth is not yet mea-
surable or modelled at high spatio-temporal resolution at the
global scale (GIEMS-D3 relies on satellite observations, which
are extensive but not yet applied to modelling water depth
globally). However, it is possible that our analysis captured
the statistical effects of flood depth, since it is often highly
correlated with flood duration [26]. We also did not consider
the temporal sequence of flooded versus non-flooded
periods, although there is some evidence that alternation
between flooding and drought can limit tree diversity and
seedling recruitment in floodplains [70].

Higher soil sand content was associated with lower tree
cover at the global scale, although this effect was idiosyn-
cratic within individual floodplain ecosystems. This
contrasts with its effects in upland savannas, where sandier
soils tend to increase tree cover by promoting water infiltra-
tion and therefore root niche separation of trees and grasses
[3,6,19,20]. Infiltration depth may be less important in flood-
plains because wetland water tables are generally shallower
[21], precluding the possibility of root depth differentiation
between grasses and trees. Rather, our result that sandier
soil decreased tree cover suggests that negative effects of
high sand content on plants due to reduced nutrient avail-
ability [3,71] may predominate in floodplains. Further,
whereas previous studies of upland ecosystems have focused
on savannas and grasslands [3,6,19], we also included
forested floodplains, which are less likely to be water-limited
and which have little-if-any grass, again reducing the
expected influence of any mechanism reliant on competition
for soil water.

Proximity to rivers was also a relatively minor determi-
nant; somewhat higher floodplain tree cover closer to large
rivers (table 1; electronic supplementary material, table S3
and figures S3–S13; except in the Everglades) may indicate
that trees benefit from year-round access to water in riparian
zones [21].

Taken together, our results reveal that a suite of environ-
mental factors affect tree cover in flooding regions. Climatic
water balance (largely determined by rainfall and tempera-
ture) is fundamental and differentiates between systems in
dry versus wet contexts. Tree cover in dry floodplains
tended to increase slightly from flooding, which suggests
that soil moisture subsidies from floods probably help to alle-
viate water limitation/stress in those systems. By contrast,
tree cover in wetter floodplains tended to decline from
increased flooding, suggesting that the alleviation of water
stress increases the relative importance of anoxic stress. So
too, fire frequency: the effects of fire were much stronger in
wet than in dry systems, consistent with previous findings
in the non-flooding tropics.

These findings have implications for the responses of tree
cover to ongoing global changes in climate, fire regimes, land
use and hydrology. Our models predict that declines in pre-
cipitation and/or increasing evapotranspiration due to
climate change and climate–landcover feedbacks [72] will
reduce floodplain tree cover in all but the wettest regions,
where rainfall does not at present limit tree cover, consistent
with effects of aridification in upland ecosystems [2,3]. Mean-
while, savanna fire frequencies are decreasing [73], which will
encourage woody encroachment—a globally distributed
threat to grassland biodiversity [10,74]—in all but the most
arid grassy floodplains. By contrast, fires are rare but increas-
ing in frequency in wet tropical forests [32,73], which may
promote savannafication in some floodplain forests (table 1;
electronic supplementary material, figures S3, S4, S13, ref.
[81]) via extensive tree mortality and slow post-fire recovery
[75]. Our results also suggest that the ongoing proliferation
of dams [76] and the continuous inundation their impound-
ments create could decrease local tree cover by up to 15
percentage points in the climatically wettest regions (figure 3,
flood duration). Finally, while we focused on floodplains that
retain their natural vegetation, the extensive and continuing
loss of wetlands [36]—and the myriad services they pro-
vide—due to human encroachment and land development
underscores the importance of understanding and protecting
the structure and function of remaining wetlands.
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