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Abstract: Plant microRNAs (miRNAs) have recently been reported to be involved in the cross-kingdom
regulation of specific cellular and physiological processes in animals. However, little of this
phenomenon is known for the communication between host plant and insect herbivore. In this
study, the plant-derived miRNAs in the hemolymph of a cruciferous specialist Plutella xylostella
were identified by small RNAs sequencing. A total of 39 miRNAs with typical characteristics of
plant miRNAs were detected, of which 24 had read counts ≥ 2 in each library. Three plant-derived
miRNAs with the highest read counts were validated, and all of them were predicted to target
the hemocyanin domains-containing genes of P. xylostella. The luciferase assays in the Drosophila
S2 cell demonstrated that miR159a and novel-7703-5p could target BJHSP1 and PPO2 respectively,
possibly in an incomplete complementary pairing mode. We further found that treatment with
agomir-7703-5p significantly influenced the pupal development and egg-hatching rate when reared
on the artificial diet. The developments of both pupae and adults were severely affected upon their
transfer to Arabidopsis thaliana, but this might be independent of the cross-kingdom regulation of
the three plant-derived miRNAs on their target genes in P. xylostella, based on expression analysis.
Taken together, our work reveals that the plant-derived miRNAs could break the barrier of the insect
mid-gut to enter the circulatory system, and potentially regulate the development of P. xylostella.
Our findings provide new insights into the co-evolution of insect herbivore and host plant, and novel
direction for pest control using plant-derived miRNAs.
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1. Introduction

MicroRNAs (miRNAs) are small non-coding RNAs of 19–24 nucleotides [1]. In both animals
and plants, miRNAs play an important role in post-transcriptional regulation by interacting with
target mRNAs involved in cell differentiation, apoptosis, metabolism and response to environmental
stress [2]. However, the miRNAs in the two kingdoms are quite different with the plant precursor
miRNA molecules being longer and more variable than those of animals [3]. Proteins participating in
the biogenesis of miRNAs also differ between plants and animals [4,5] with 2′-O-methylation at 3′

end by the methyltransferase Hua enhancer 1 (HEN1) being involved in plants [6]. Animal miRNAs
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regulate gene expression through the 3′-UTR regions of their target mRNAs to repress translation,
while most plant miRNAs mediate cleavage of target mRNAs in the coding regions [7].

It has been reported that plant miRNAs are able to pass through the strict gastrointestinal barrier
of animals when ingested, circulating in the blood, and eventually exerting biological functions
by regulating gene expression in various tissues or cells [8–11]. MiRNA-mediated cross-kingdom
communication has been first reported in mammalian liver, where rice-derived miR168a alters the
physiological status of mice via its regulating of the low-density lipoprotein receptor adapter protein 1
(LDLRAP1) [12]. Plant-derived miRNAs have been closely associated with cancer development [13,14]
and viral infection [15,16]. These findings suggest that the miRNAs of plants when ingested may
contribute to the physiological changes of animals [17].

In insects, plant-derived miRNAs have been found to accumulate and move systemically in
lepidopteran (Helicoverpa zea and Spodoptera frugiperda) and coleopteran (Diabrotica virgifera virgifera)
insects under the controlled feeding experiments [18]. According to small RNA (sRNA) sequencing
and digital droplet polymerase chain reaction (PCR), several mulberry miRNAs can enter different
tissues of silkworm with no effect on potential target genes and phenotype [19]. In honeybees,
pollen-derived miR162a enriched in beebread targets mTOR prevents the differentiation of larvae
into queens, which develop instead as workers [20]. The miR162a-mTOR network involved in caste
dimorphism is also conservative in the non-social insect, Drosophila melanogaster (common fruit fly) [20].
In two cereal aphids, Schizaphis graminum and Sipha flava, 13 sorghum miRNAs (eight known and five
novel) and three novel barley miRNAs have been detected and are predicted to target aphid genes
involved in detoxification, and starch and sucrose metabolism [21].

However, the concept has been controversial since the first identification of the cross-kingdom
regulation of plant-derived miRNAs [12]. Other findings have shown that inadequate or little general
uptake of dietary miRNAs can be found in different tissues of adult bees [22] and in the plasma of
mammalian blood cells, as an example, with routine plant ingestion [23,24]. Further, two independent
studies through the bioinformatic approach and diet feeding experiment revealed the non-universality
of dietary uptake and an absence of cross-kingdom gene regulation by plant miRNAs [18,25]. Further
research is therefore essential to investigate the possibility of such a concept in other species.

Currently, miRNAs studies related to Plutella xylostella, a worldwide destructive pest of cruciferous
vegetables [26–28], are mainly targeting insecticide resistance [29–31] and immune response [32,33].
As an oligophagous insect herbivore, P. xylostella may have long been evolving with miRNAs derived
from host plants. Therefore, in this study, we explored whether plant-derived miRNAs could be
detected in the circulatory system and exert functions in P. xylostella using high-throughput sequencing,
molecular, cellular and biological assays.

2. Materials and Methods

2.1. Insects and Sampling

The insecticide-susceptible G88 strain of P. xylostella was maintained under laboratory conditions
and on a commercially-available artificial diet (#F9772-DBM, Frontier Scientific Services, Newark, DE,
USA) for three years without exposure to any host plant. The GC strain of P. xylostella was established
by transferring the newly emerged 1st instar G88 onto Col-0 type A. thaliana until 4th instar for sampling.
Insects were reared at 25 ± 1 ◦C, an RH of 60 ± 5% and a photoperiod of 16:8 h (L:D).

2.2. Plants

Arabidopsis thaliana (Col-0 ecotype) was used in this study. Seeds were surface-sterilized for 5 min
with 75% ethanol and washed five times using sterile water. Seeds were suspended in sterile water
and then vernalized at 4 ◦C in the dark for three days before germination.
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Seedlings were grown at 25 ◦C, under a 16:8 h photoperiod, on vermiculite, and were provided
with a commercial nutrient solution (Coolaber, Beijing, China) every day. The intensity of light was set
to 2,000 lux and RH at 65 ± 5%.

2.3. Small RNA Sequencing

To build two small RNA (sRNA) libraries of the GC strain, for each library, the hemolymph of
30 first-day 4th instar larvae were dissected and pooled. Hemolymph samples were collected in the
lysis buffer of a Quick-RNA Tissue/Insect Microprep kit (#R2030, ZymoResearch, Irvine, CA, USA)
using a glass needle, and centrifuged at 13,000× g for 1 min at room temperature for RNA extraction,
using the same kit according to the manufacturer’s instructions. Sequencing libraries were constructed
using the NEBNext® UltraTM small RNA Sample Library Prep Kit for Illumina, and the sequencing
procedure was performed by Biomarker Technologies Corporation (Illumina HiSeq2500, Beijing, China).
Clean reads were compared to the known plant microRNA (miRNA) precursors deposited in the
online miRBase (version 21, http://www.mirbase.org/). Unknown plant miRNAs were inferred by
miRdeep2 software using the settings of “-g -1 -l 250 -b 0” based on the information of precursors in
the genome location and their structural energies [34]. The identified miRNAs that were supposed to
be plant-derived were further used to map the P. xylostella genome using Bowtie [35] with a default
parameter to exclude the possibility of the presence of these miRNAs.

2.4. RNA Extraction and qRT-PCR

For miRNA profiling, total RNA was extracted using the Quick-RNA Tissue/Insect Microprep kit
(#R2030, ZymoResearch, Irvine, CA, USA) according to the manufacturer’s instructions. The quality and
concentrations of total RNA were estimated by electrophoresis and a NanoDrop 2000 spectrophotometer
(Thermo Fisher Scientific, Shanghai, China). The first-strand cDNA of miRNA was synthesized using
the stem-loop strategy and a GoScriptTM Reverse Transcription System kit (#TM316, Promega, Madison,
WI, USA). The miRNA-specific reverse primer was synthesized by adding the reverse complementary
sequence of the last 8 bp of mature miRNA to the 3′ terminal of the common stem-loop structure
(Table S1). The remainder of the sequence of mature miRNA was added to a universal adapter at the 5′

end as the forward primer paired with a universal reverse primer. The relative levels of miRNAs were
normalized using the U6 snRNA gene [36].

For the RNA extraction of each of the three biological replicates, six larvae of the 3rd instar or
four larvae of the 4th instar were collected and pooled. The pooled samples were frozen in liquid
nitrogen immediately and stored at −80 ◦C until use. For mRNA profiling, total RNA was isolated
using TRIzol reagent (#15596018, Invitrogen, Waltham, MA, USA). according to the manufacturer’s
instruction. The quality and concentrations of total RNAs were estimated by electrophoresis and the
NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Shanghai, China). The first-strand cDNA
was synthesized using a GoScriptTM Reverse Transcription System kit (#TM316, Promega, Madison,
WI, USA). The gene specific primer pairs were presented in Table S1. EF1 was used as the internal
control gene for normalizing the mRNA expression levels [37].

Quantitative real-time polymerase chain reaction (qRT-PCR) assays for miRNA and mRNA were
conducted on the Real time polymerase chain reaction (PCR) system (CFX96, Bio-rad, Hercules, CA,
USA). For each biological replicate, the qRT-PCR tests were conducted using three technical replicates.
The reaction condition was as follows: 95 ◦C for 3 min, 40 cycles at 95 ◦C for 30 s and 58 ◦C for 30 s.
At the end of the cycling, melting curves of the resulting PCR products were obtained by gradually
increasing the temperature from 55 ◦C to 95 ◦C with an increment of 0.5 ◦C /5 s to check the specificity
of the primers. The qRT-PCR data were analyzed using methods of 2−∆∆Ct [38] for comparing the
miRNA/mRNA expression levels between the control and treatments, or 2−∆Ct [39] for comparing
expression levels between two strains.

http://www.mirbase.org/
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2.5. Target Prediction and Transcriptome Sequencing

Based on the CDSs of the P. xylostella genome and a UTR dataset for 3,050 genes obtained from
DBM-DB [36], the potential target binding sites of three miRNAs were predicted by miRanda [40] and
RNAhybrid [41] using the built-in default parameter and the parameter of Drosophila melanogaster,
respectively, with a setting of minimal free energy (mfe) ≤ −15 kcal/mol.

For transcriptome sequencing, total RNA was isolated from G88 larvae at 24 h post-injection of
each of three miRNA agomirs. Larvae treated with agomir-NC were used as the control. Six larvae were
pooled for each replicate, and two replicates were prepared for each treatment. A total of 8 RNA samples
were sequenced and analyzed at BGI Genomics Company (BGISeq-500, Shenzhen, China). Genome
information of P. xylostella were downloaded from DBM-DB [42]. Differentially-expressed genes
between the miRNA agomir treatment and the control were annotated and classified with GO terms
and the KEGG pathway, of which down-regulated genes were used for generating intersection genes
with in silico results. The enriched GO term/KEGG pathway was defined as a set of genes, which were
annotated to a specific GO term/KEGG pathway and overrepresented in the differentially-expressed
genes when compared with the number of genes in the genome annotated to this specific GO term/KEGG
pathway [43].

2.6. Cell Line and Luciferase Assays

The Drosophila S2 cell line was maintained at 24 ◦C in Grace medium plus 10% fetal bovine serum
(FBS) (#16140, Gibco, Waltham, MA, USA). The potential miRNA target sites (Table S1) were added
with the restriction enzyme sites of SacI and SalII, which were complementary to multiple cloning sites
of pmirGLO vector (#E1330, Promega, Madison, WI, USA), and ligated into the vector in the original
orientation (wild-type). Mutations were introduced at the binding region of the miRNA target sites,
which were used as the negative control (mutant). The S2 cells plated in 96-well plates (#3988, Costar,
New York, NY, USA) were co-transfected with 100 ng of each plasmid, 100 nM agomir or agomir-NC
(negative control with no similarity to the miRNAs in the miRBase), and 2 µL CellfectinII reagent
(#10362100, Invitrogen, Waltham, MA, USA). The S2 cells were analyzed for luciferase activity using the
Dual-Glo® Luciferase Assay System and GloMax® 20/20 Luminometer (#E2920, Promega, Madison,
WI, USA) at 48 h post-transfection. The relative luciferase activity (firefly luciferase/renilla luciferase) of
the group containing agomir-NC and the wild-type pmirGLO vector was used as our control. For each
transfection, the relative luciferase activity was averaged from five biological replicates.

2.7. miRNA Agomir Treatments

The agomirs (double-strand mature miRNAs) of miR-159a, miR-166a-3p and novel-7703-5p
were synthesized by Sangon Biotech (Shanghai, China) (Table S1). The anti-sense strand of agomir
was modified with cholesterol and four thioskeletons at the 3′-terminal, four thioskeletons at the
5′-terminal, and 2′-methoxy groups for the entire strand. First-day 3rd instar larvae of the G88 strain
were selected for injection (69 nL of each miRNA agomir at 100 µM per larva) using nanoliter injection
2000 (World Precision Instruments, USA). Larvae injected with agomir-NC were used as the control
group. For phenotypic investigation, three biological replicates were used, and each replicate contained
20 larvae treated with miRNA agomir or agomir-NC.

2.8. Western Blots

Total proteins were extracted using a phenol/SDS extraction method [44] and quantified by a BCA
Protein Quantification Kit (Yeasen, Shanghai, China). The heat-denatured proteins were subjected
to 10% SDS-PAGE electrophoresis and then transferred to a PVDF membrane (Millipore, Burlington,
MA, USA). After blocking in BSA (1:1000, Yeasen, Shanghai, China) at room temperature for 1 h,
the membrane was incubated in anti-PPO2 polyclonal antibody (1:1000) or anti-tubulin antibody
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(1:3,000) at 4 ◦C overnight. After that, one of the secondary antibodies was added, and the reactant
was incubated at room temperature for 1 h.

The immunological blots were detected using ECL Western Blot Kit (#1705060S, Bio-rad, Hercules,
CA, USA) and photographed using a Fusion FX imaging system (version 7.0, Vilber, Marne-la-Vallée,
France). The density of the bands was analyzed using ImageJ (version 1.52) [45].

2.9. Statistical Analysis

Data were presented as mean ± SD and analyzed by IBM SPSS Statistics version 21 software
(Columbia, Carolina, USA). Student’s t test or one-way Analysis of Variance (ANOVA) followed by
Tukey’s multiple comparisons was used to determine the significant difference at p-value < 0.05.

2.10. Data Availability

The raw sequence data of sRNA-seq and RNA-seq have been deposited in the Genome Sequence
Archive (GSA) [46] in the BIG Data Center [47] operated by the Beijing Institute of Genomics (BIG),
Chinese Academy of Sciences, under accession numbers CRA001879 and CRA001896, respectively,
which are publicly accessible at http://bigd.big.ac.cn/gsa.

3. Results

3.1. Characterization of Plant-Derived miRNAs in Larval Hemolymph of P. xylostella

The two sRNA libraries of the larval hemolymph of the GC strain shared 89.57% common reads
(Figure 1A). After filtering rRNAs, tRNAs, scRNAs, snRNAs, snoRNAs and repeats-associated reads,
the residual unannotated reads that included miRNAs accounted for more than 50% (Figure 1B,C).
A total of 39 miRNAs, including 33 previously-reported and 6 novel sequences from the larval
hemolymph of P. xylostella were well aligned to the genome of Arabidopsis thaliana (Table 1). After filtering
those miRNAs with read counts < 2 in each library, the final miRNA set contained 21 known and three
novel sequences. The Bowtie-based mapping result showed that none of the 39 miRNAs could be
mapped to our P. xylostella genome, indicating that they are all plant-derived. The length distribution
of these miRNAs was dominant at 21 nt (Figure 1D) and the first base at 5′-end had a bias for U
(Figure 1E), which were consistent with the specific recognition and cleavage mode of Dicer-like
enzymes (DCL1) on plant miRNAs precursor.

To confirm that these plant-derived miRNAs were not from contamination during sRNA-seq
or sample preparation, stem-loop PCR was used to clone three plant miRNAs with top high read
counts (>100), including miR159a, miR166a-3p and novel-7703-5p (Table 1). All of these miRNAs were
validated using Sanger sequencing and were consistent with sequences from sRNA-seq. The relative
levels of three miRNAs in the larval hemolymph of the GC strain were significantly higher than in
the G88 strain, although all of them were also detected in the G88 strain (Figure 1F), which may be
due to the plant-derived additive in the artificial diet (#F9772-DBM, Frontier Scientific Services, USA),
including linseed oil, soy flour and wheat germ.

By searching mature sequences of miR159a, miR166a-3p and novel-7703-5p with that of other
species in the miRBase (version 22) [48], we found that both miR159a and miR166a-3p widely existed
in monocotyledons, Brassicaceae, Fabaceae, and Rosaceae.

The mature sequence of miR159a varied at both ends, while miR166a-3p was highly conserved
(Figure S1A,B). No existing sequences of other plants in the miRBase were similar to novel-7703-5p,
except for A. thaliana. To further test the conservative nature of miR159a, miR166a-3p and novel-7703-5p
in the host plant, we used stem loop PCR to clone these miRNAs in cabbage (Brassica oleracea), oilseed
rape (Brassica napus), and radish (Raphanus sativus). Their mature sequences were identical in the tested
host plants (Figure S1C–E), which might imply a universal connection between these miRNAs and
P. xylostella.

http://bigd.big.ac.cn/gsa


Biomolecules 2019, 9, 602 6 of 17

Table 1. Plant-derived microRNAs (miRNAs) identified in the hemolymph of P. xylostella.

Name Mature Sequence (5′–3′) Read Count

Rep1 Rep2

miR156a-5p UGACAGAAGAGAGUGAGCAC 6 3
miR156b-3p UGCUCACCUCUCUUUCUGUCAGU 6 4
miR157a-5p UUGACAGAAGAUAGAGAGCAC 0 2

miR159a UUUGGAUUGAAGGGAGCUCUA 204 313
miR159b-3p UUUGGAUUGAAGGGAGCUCUU 42 80

miR159c UUUGGAUUGAAGGGAGCUCCU 15 18
miR160a-5p UGCCUGGCUCCCUGUAUGCCA 1 1

miR161.1 UGAAAGUGACUACAUCGGGGU 1 3
miR162a-3p UCGAUAAACCUCUGCAUCCAG 50 58

miR164a UGGAGAAGCAGGGCACGUGCA 6 9
miR164c-5p UGGAGAAGCAGGGCACGUGCG 3 0
miR165a-3p UCGGACCAGGCUUCAUCCCCC 1 3
miR166a-3p UCGGACCAGGCUUCAUUCCCC 120 151
miR167a-5p UGAAGCUGCCAGCAUGAUCUA 24 16

miR167d UGAAGCUGCCAGCAUGAUCUGG 22 13
miR168a-3p UCGCUUGGUGCAGGUCGGGAA 4 9
miR168a-5p CCCGCCUUGCAUCAACUGAAU 3 8
miR171a-3p UGAUUGAGCCGCGCCAAUAUC 0 2

miR172a AGAAUCUUGAUGAUGCUGCAU 7 3
miR172c AGAAUCUUGAUGAUGCUGCAG 2 0
miR319a UUGGACUGAAGGGAGCUCCCU 8 17

miR390a-5p AAGCUCAGGAGGGAUAGCGCC 1 4
miR394a UUGGCAUUCUGUCCACCUCC 6 7
miR395a CUGAAGUGUUUGGGGGAACUC 6 10

miR396a-3p GUUCAAUAAAGCUGUGGGAAG 58 85
miR396a-5p UUCCACAGCUUUCUUGAACUG 24 28
miR396b-3p GCUCAAGAAAGCUGUGGGAAA 1 0
miR396b-5p UUCCACAGCUUUCUUGAACUU 23 29
miR398a-3p UGUGUUCUCAGGUCACCCCUU 0 2
miR398b-3p UGUGUUCUCAGGUCACCCCUG 0 2
miR403-3p UUAGAUUCACGCACAAACUCG 7 8
miR408-3p AUGCACUGCCUCUUCCCUGGC 6 1
miR858b UUCGUUGUCUGUUCGACCUUG 11 17

novel-2599-3p AUCCGUGGUUUCGCGUAUCGGC 0 4
novel-2783-3p CGCGGAGAAGGGGAAGGGGUGCU 0 7
novel-6634-5p CUGAGAAUUUCUGGAAGAGCUC 9 15
novel-7211-3p UCUCGGACCAGGCUUCAUUCC 10 8
novel-7477-5p GACUGUAAGGCUGUGGAC 5 1
novel-7703-5p CGAGAAUUUCUGGAAGAGCU 100 101
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Figure 1. Plant-derived miRNAs in the larval hemolymph of P. xylostella. (A) Comparison of small
RNA (sRNA) reads from the two replicates of GC strain libraries including common and specific reads.
(B) and (C). sRNA classification (B) and annotation (C) for the two replicates of the GC strain libraries.
(D) Length distribution of plant-derived miRNAs. (E) First base bias at 5′-end of plant-derived miRNAs.
(F) Quantitative real-time polymerase chain reaction (qRT-PCR) validation of miR159a, miR166a-3p
and novel-7703-5p in the hemolymph of the 4th instar larvae of the G88 and GC strains. Data were
presented as mean ± SD (Student’s t test, * p < 0.05, *** p < 0.001).

3.2. Target Prediction of Plant-Derived miRNAs in P. xylostella

Based on the predicted CDSs of the P. xylostella genome [49] and a UTR dataset for 3,050 genes
generated by a previously reported transcriptome data [43], two types of miRNA target prediction
software, miRanda [40] and RNAHybrid [41], were used to predict the target genes and their
corresponding binding sites using the built-in default parameter and the parameter of Drosophila
melanogaster, respectively. The predicted target genes from both software were integrated for each of
the miRNAs for further analysis (Tables S2–S4).

To further improve the accuracy of in silico prediction, we used RNA-seq to screen the differentially
expressed genes (DEGs) in the 3rd instar larvae of the G88 strain in response to the injection of each
miRNA agomir. The relative levels of the three miRNAs showed a peak at 24 h post-injection and
decreased rapidly by 48 h (Figure S2). Therefore, RNA-seq was performed to capture the global change
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of gene expression in the larvae of P. xylostella treated with a miRNA agomir at 24 h. Compared
with the negative control, the total numbers of DEGs were 1,969, 1,242 and 2,280 for treatments of
agomir-159a, agomir-166a-3p and agomir-7703-5p, respectively. Most of the DEGs were up-regulated
with few of them down-regulated (Figures S3–S5). Annotation through GO terms and KEGG pathways
for gene enrichment analysis of the DEGs between each treatment and the control suggested that
miR159a, miR166a-3p or novel-7703-5p might potentially influence cellular and metabolism processes
in P. xylostella (Figures S3–S5).

Given that miRNAs are known to mostly mediate the down-regulation of the target genes,
the down-regulated DEGs in each agomir treatment were considered to be the corresponding target
genes. Based on the intersection of in silico prediction and down-regulated genes from RNA-seq
data, we identified 12, 1 and 8 target genes for miR159a, miR166a-3p and novel-7703-5p, respectively
(Table 2). Three of these target genes belonged to the arthropod hemocyanin superfamily, members of
which participate in multiple important functions in the hemolymph of arthropods [50]. They were
predicted to encode basic juvenile hormone-suppressible protein 1 (BJHSP1, Px006820), basic juvenile
hormone-suppressible protein 2 (BJHSP2, Px007031) and phenoloxidase subunit 2 (PPO2, Px002274)
targeted by miR159a, miR166a-3p and novel-7703-5p, respectively (Figure 2A–C). All three conserved
hemocyanin domains (C, M and N) were contained but differently organized within each of the three
target genes (Figure S6).Biomolecules 2019, 9, x 10 of 19 
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Figure 2. Prediction and validation of target genes of plant-derived miRNAs in P. xylostella.
(A–C). Putative binding modes of miR159a and Px-BJHSP1 (A), miR166a-3p and Px-BJHSP2 (B),
and novel-7703-5p and Px-PPO2 (C) in CDS region. The mfe was indicated above the hybrid. (D–F).
Relative expression levels of Px-BJHSP1, Px-BJHSP2 and Px-PPO2 at 24 h post-injection of corresponding
miRNA agomir. Data were presented as mean ± SD (Student’s t test, * p < 0.05, ** p < 0.01, *** p < 0.001).
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Table 2. Predicted target genes down-regulated in miRNA agomir treatments.

miRNA Gene ID Agomir-NC 1 miRNA
Agomir 1 log2 Ratio 2 q-Value 3 p-Value 3 Annotation (DBM-DB)

miR159a

Px000121 28.56 0 −5.77 6.95E-08 3.88E-08 Peroxisomal targeting
signal 1 receptor

Px002198 1463 383 −1.87 8.38E-137 3.78E-138 4-coumarate-CoA
ligase-like 5

Px002761 88 26 −1.69 1.87E-08 9.88E-09 uncharacterized protein

Px003612 1317.25 604.38 −1.06 5.86E-53 6.26E-54
Sterol

O-acyltransferase 2

Px006820 59809 362 −7.3 0 0
Basic juvenile

hormone-suppressible
protein 1

Px006897 1731.5 762.4 −1.12 1.42E-75 1.12E-76 Venom serine protease 34

Px007030 21806.66 205.71 −6.66 0 0
Basic juvenile

hormone-suppressible
protein 2

Px007031 47614.34 4669.29 −3.28 0 0
Basic juvenile

hormone-suppressible
protein 2

Px009267 54 11 −2.23 1.22E-07 7.03E-08
Nucleic-acid-binding
protein from mobile

element jockey
Px010115 97.12 38.01 −1.29 1.39E-06 9.05E-07 Moricin-like peptide C5
Px013616 76.95 13.11 −2.49 1.64E-11 6.62E-12 Unknown
Px015810 193 91 −1.02 1.83E-08 9.64E-09 uncharacterized protein

miR166a-3p Px007031 47614.34 852.67 −5.83 0 0
Basic juvenile

hormone-suppressible
protein 2

novel-7703-5p

Px002274 4409.62 1854.67 −1.08 1.34E-174 7.24E-176 Phenoloxidase subunit 2

Px003522 348.65 15.57 −4.31 8.01E-73 1.03E-73 Phospholipase
A-2-activating protein

Px003840 72050.28 29765.48 −1.1 0 0 Actin, muscle

Px004854 1931.79 808.05 −1.09 3.96E-78 4.69E-79 Ecdysteroid
UDP-glucosyltransferase

Px006730 10017.44 4288.62 −1.05 0 0
Pyruvate dehydrogenase

E1 component subunit beta,
mitochondrial

Px007989 72.83 29.51 −1.13 1.37E-04 1.57E-04 Elongation factor Tu,
mitochondrial

Px008572 48906.53 18617.36 −1.22 0 0 Transketolase
Px009077 7787.63 2753.94 −1.33 0 0 ATP-citrate synthase

1 The agomir-NC and miRNA agomir indicated the gene expression levels (fragments per kilobase of exon per million
reads mapped, FPKM) in the control and treatment groups, respectively. 2 Log2 ratio indicates log2 transformation of
ratio of FPKM values between miRNA agomir and agomir-NC treatments. 3 The p-value and q-value (the corrected
p-value) were considered to be significant at 0.01 and 0.001, respectively

3.3. Suppression and Binding of Plant-Derived miRNAs to Target Genes in P. xylostella

To understand whether the expression of target genes could be regulated by three plant-derived
miRNAs in vivo, we injected the 3rd instar larvae with each miRNA agomir and measured the
expression using qRT-PCR. The results showed that the expression levels of the target genes were
significantly suppressed when compared with the control (Figure 2D–F). We further examined the
protein levels of PPO2 in response to the agomir-7703-5p treatment using Western blot and found that
PPO2 levels were decreased at 24 h post-injection and soon recovered by 48 h (Figure 3), showing a
same pattern as the gene expression.

The potential binding sites for miR159a, miR166a-3p and novel-7703-5p, in an incomplete
complementary pairing mode, were all located in the open reading frame of their target genes
(Figure 2A–C). To test whether miR159a, miR166a-3p and novel-7703-5p could bind to their target
genes in vitro, the binding sites were inserted into downstream of the luciferase gene in the pmirGLO
vector and transfected into S2 cells. The normalized luciferase activity was significantly increased
when binding sites of miR159a and novel-7703-5p were mutated, while there was no obvious change
using the vector containing the mutated binding site of miR166a-3p (Figure 4). These results indicated
that miR159a and novel-7703-5p had a direct relationship with BJHSP1 and PPO2, respectively. Further,
we noticed that there might be an unexpected interaction between agomir-NC and the potential binding
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site of novel-7703-5p on PPO2. However, the degree of binding by agomir-NC on PPO2 might be less
than that of novel-7703-5p (Figure 4C).
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Figure 3. Changes of the protein level of PPO2 in response to the agomir-7703-5p treatment. (A) and
(B). Western blots against PPO2 (left) and normalized PPO2 expression levels (right) at 24 h (A) and
48 h (B) post-injection of agomir-7703-5p. Tubulin was used as a loading control. WT: Untreated larvae;
agomir-NC: Larvae treated with control miRNA; agomir-7703-5p: Larvae treated with agomir-7703-5p.
Integrated densities of protein bands were calculated using ImageJ and PPO2 levels were normalized
against tubulin levels. Data were presented as mean± SD (Student’s t test, n.s. indicated non-significant,
** p < 0.01).
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Figure 4. Determination of interaction of miRNAs and target binding sites. (A–C). Luciferase assays of
miR159a agomir (A), miR166a-3p agomir (B) and novel-7703-5p agomir (C), together with the wild-type
(WT) and mutant (Mut) binding sites. Agomir-NC was used as the negative control miRNA. The mean
of the relative luciferase activities of the control group was set to 1. Data were presented as mean ± SD
(one-way Analysis of Variance (ANOVA) followed by Tukey’s multiple comparisons, different letters
above the columns indicated significant difference at p < 0.05).
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3.4. Effects of Plant-Derived miRNAs on the Development of P. xylostella

To further explore the effects of plant-derived miRNAs on the development of P. xylostella,
biological parameters reflecting the fitness were compared between the miRNA agomir treatments and
agomir-NC control. We found that there were no significant differences in the survival rate of larvae
between the control and treatments at 24 h and 48 h post-injection, as well as for the weight of the
pupae, rate of pupation, number of laid eggs and the hatching rate (Figure S7). However, treatments of
agomir-166a-3p and agomir-7703-5p significantly shortened the duration of the larval stage compared
with the control (Figure 5A). Further, the agomir-7703-5p treatment also significantly resulted in the
prolongation of the pupal stage, a higher percentage of abnormalities of the pupae and a decrease in
the adult emergence rate (Figure 5B–D). Abnormal pupae died soon after emergence, with their body
turning black and wizened (Figure 5E).Biomolecules 2019, 9, x 13 of 19 
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examined the relative levels of the three miRNAs in intact leaves of A. thaliana and the leaves fed by the 3rd 

Figure 5. Effects of plant-derived miRNAs on the development of P. xylostella. (A) and (B). Larval (A)
and pupal (B) durations after miRNA agomir treatments. Data were presented as mean ± SD (Student’s
t test, * p < 0.05). (C) Adult emergence rates after miRNA agomir treatments. Data were presented as
mean ± SD (Student’s t test, ** p < 0.01) (D) Percentages of abnormalities of G88 pupae after miRNA
agomir treatments. (E) Abnormal pupae produced by miRNA agomir treatments compared with the
control. Data were presented as mean ± SD (Student’s t test, * p < 0.05).

3.5. Link of Decreased Fitness of the Larvae on Host Plant with Plant-Derived miRNAs

After the transfer of newly-emerged 1st instar larvae of the G88 strain onto A. thaliana, there was
little impact on the duration and the survival rate of larvae, pupal duration and adult emergence rate
(Figure S8). However, the pupal weight, pupation rate, number of laid eggs and hatching rate were
significantly reduced when compared with the G88 individuals feeding on artificial diet (Figure 6),
indicating influence on the quality of pupae and adults rather than the larvae of P. xylostella.
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Figure 6. Comparison of performance between G88 and GC strains. (A) and (B). Weight of pupa (A)
and pupation rate (B). Data were presented as mean ± SD (Student’s t test, * p < 0.05, **** p < 0.0001).
(C) and (D). Total number of eggs laid by single pair of male and female adults during the first three
days (C) and hatching rate (D). Data were presented as mean ± SD (Student’s t test, **** p < 0.0001).

To test whether plant-derived miRNAs were involved in a plant defense to an insect herbivore,
we examined the relative levels of the three miRNAs in intact leaves of A. thaliana and the leaves fed
by the 3rd instar larvae of the G88 strain for 8 h, based on when most defense-related transcripts are
up-regulated [51]. The results showed that the levels of miR159a, miR166a-3p and novel-7703-5p
in leaves damaged by P. xylostella were significantly reduced as compared with that of fresh intact
leaves (Figure 7A), which might exclude the possibility of any natural occurrence of defensive
plant-derived miRNAs.
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Figure 7. Expression of the plant-derived miRNAs and corresponding target genes in P. xylostella after
host transfer. (A) Expression of miR159a, miR166a-3p and novel-7703-5p in intact leaves of A. thaliana
and leaves fed by the 3rd instar larvae of G88 for 8 h. Data were presented as mean ± SD (Student’s t
test, ** p < 0.01 *** p < 0.001,) (B–D). Expression of BJHSP1 (B), BJHSP2 (C) and PPO2 (D) in the 3rd

instar larvae, 4th instar larvae and newly-emerged pupae of G88 and GC strains. Data were presented
as mean ± SD (Student’s t test, * p < 0.05, ** p < 0.01).
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We also compared the expression levels of the target genes BJHSP1, BJHSP2 and PPO2 in the
3rd and 4th instar larvae and newly-emerged pupae between the G88 and GC strains. In most cases,
the relative expression levels of the three target genes in the GC strain were significantly higher than
that of the G88 strain, except for BJHSP1, which was expressed at a higher level in the 4th instar
larvae of the G88 strain (Figure 7B–D). This seemed to be consistent with our finding that the three
plant-derived miRNAs were unlikely to be a key factor in conferring the resistance of the host plant to
an insect herbivore.

4. Discussion

In this study, plant-derived miRNAs in P. xylostella were comprehensively investigated in the
larval hemolymph of the 4th instar larvae. We found that a plant-derived miRNA novel-7703-5p could
down-regulate both at the transcriptional and protein levels of PPO2 and was connected to the death of
pupae. Although the cross-kingdom gene regulation of dietary miRNAs has long been controversial,
our study is among the first to provide evidence of such a phenomenon in a host plant-insect pest
system. Our results support the idea that miRNAs are interrelated mediators of disparate species,
which can be transferred from a low trophic level through the food chain and exhibit biological activities
at a high trophic level [8–12].

It is assumed that the abundance of plant miRNAs detected in animal tissues should correlate with
the miRNA abundance in plant tissues unless a particular miRNA is highly stable or given priority to
be absorbed in animals [12]. For example, the average read count of mulberry miR166b in silkworm is
low, and is nonfunctional in cross-kingdom gene regulation [19]. However, the read count of miR162a
in the food of honeybee larvae is relatively high (362), and shows a significant effect on cross-kingdom
gene regulation [20]. Based on this notion and the sRNA-seq data, we found that the average read
counts of the top three plant-derived miRNAs in P. xylostella, miR159a (258), miR166a-3p (135) and
novel-7703-5p (100), were also relatively high. We therefore hypothesized that these plant-derived
miRNAs might have reached the concentration required for their absorption in P. xylostella. However,
the relative levels of these miRNAs were significantly reduced in the larva-infested leaves compared
with that of fresh leaves, indicating that the feeding of insect herbivores was able to influence miRNAs
expression of host plants.

The expression levels of targets genes of the three plant-derived miRNAs in the GC strain after
ingesting plant tissues were higher than that of the G88 strain in most developmental stages, although
the overall performance of the GC strain was poorer than the G88 strain. This contradicted our findings
that the direct injection of high doses of miRNA agomirs led to an inhibition of target genes and
significantly affected the development and reproduction of P. xylostella. These results suggest that the
normal number of miRNAs ingested from plants may not always be fully utilized and be effectively
functional in herbivores [52]. Therefore, further studies on the factors contributing to the induction
of miRNAs in natural host plants, which have a cross-kingdom regulatory potential with insect
genes [53,54], may provide a novel direction to develop pest control free from genetic transformation.

Both in vivo and in vitro experiments showed that miR159a and novel-7703-5p could alter the
transcriptional levels of BJHSP1 and PPO2 and even affect the physiological processes of P. xylostella.
It is suggested that these exogenous miRNAs are able to resist a harsh digestive tract environment,
penetrate the gut cells, and be transported to target tissues or cells via the hemolymph [9,10]. The high
selectivity of insect gut epithelial cells is one of the most stringent biological barriers, and both normal
and pathological changes of the barrier may limit or affect the uptake of small RNA molecules [55–57].
The efficiency of short interfering RNAs (siRNAs) absorption and RNA interference (RNAi) greatly
varies among insect species [58]. Lepidopteran insects often require a high level of siRNAs to induce
RNAi, but much less siRNAs may be provided in the food sources [59]. Some studies believe that
miRNAs freely transported across species may be related to the effective utilization of host RNAi
pathways [60]. To safely transport and protect from degradation, miRNAs loaded within RISC
complexes are usually encapsulated in microvesicles, exosomes and apoptosomes [61]. Along with the
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circulatory system, miRNAs are transported to the target cells and fully used by the RNAi machinery
inside the cells [62]. Plant miRNAs are extraordinarily stable under extreme conditions, such as the
presence of RNase, high temperature, overextended storage time, repeated freezing and thawing,
since they are processed with 2′-O-methylation on their 3′end and protected by binding with membrane
proteins [12,13,15,63]. However, the specific mechanism of how plant miRNAs make their ways to the
target cells of animals and become active molecules remains to be further investigated.

The homologous mature sequences of miR159a, miR166a-3p and novel-7703-5p have been found
to be present and conservative in diverse cruciferous plants, which may indicate that the crucifer
explores these miRNAs to interact with P. xylostella. These three miRNAs shared no similarity in
sequences but had a similar potential to target the genes containing hemocyanin domains, which play
important roles in the hemolymph of arthropods [50]. These results differed from the findings of
other insect herbivores [19–21], making hemolymph a hot spot for cross-kingdom gene regulation.
Considering that the plant-derived miRNAs in insect hemolymph possibly use the RISC complex of
host for regulating host gene expression, we assume that plant-derived miRNAs may function in insect
hemolymph through a similar mode to animal miRNAs [7]. However, the predicted results combined
with the RNA-seq of miRNA agomir treatments and luciferase assays showed that the binding sites of
three plant-derived miRNAs were all located in the coding regions of their target genes, implying that
plant-derived miRNAs might also exert cross-kingdom gene regulation through cleavage on the target
mRNAs in a manner commonly used by plants [4].

Overall, the natural uptake and utilization of small RNA molecules in plants by herbivorous
insects can become a novel avenue to understand the complex plant-insect interactions and develop
new technologies for pest management based on miRNA.
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