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Abstract

Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) belong to an important therapeutic class 

for treatment of type 2 diabetes. Six GLP-1 RAs, each utilizing a unique drug delivery strategy, are 

now approved by the Food and Drug Administration (FDA) and additional, novel GLP-1 RAs are 

still under development, making for a crowded marketplace and fierce competition among the 

manufacturers of these products. As rapid elimination is a major challenge for clinical application 

of GLP-1 RAs, various half-life extension strategies have been successfully employed including 

sequential modification, attachment of fatty-acid to peptide, fusion with human serum albumin, 

fusion with the fragment crystallizable (Fc) region of a monoclonal antibody, sustained drug 

delivery systems, and PEGylation. In this review, we discuss the scientific rationale of the various 

half-life extension strategies used for GLP-1 RA development. By analyzing and comparing 

different approved GLP-1 RAs and those in development, we focus on assessing how half-life 

extending strategies impact the pharmacokinetics, pharmacodynamics, safety, patient usability and 

ultimately, the commercial success of GLP-1 RA products. We also anticipate future GLP-1 RA 

development trends. Since similar drug delivery strategies are also applied for developing other 

therapeutic peptides, we expect this case study of GLP-1 RAs will provide generalizable concepts 

for the rational design of therapeutic peptides products with extended duration of action.
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1. Introduction

Type-2 diabetes is a chronic metabolic disease characterized by hyperglycemia, reduced 

insulin secretion, and insulin resistance. If not properly treated, type 2 diabetes can result in 

serious or even fatal complications including blindness, limb amputation, kidney failure, and 

cardiovascular diseases. In 2017, the International Diabetes Federation estimated that, 

globally, 423 million people between the ages of 20 and 79 had diabetes, and that type 2 

diabetes comprised about 90% of these cases [1, 2]. That same year, the global economy 

spent an estimated 727 billion USD for diabetes treatment [1]. As both diabetes diagnoses 

and the life expectancy of individuals with diabetes continue to rise, the total number of 

diabetic patients is expected to reach 629 million by 2045 [1], resulting in an increasing 

demand for anti-diabetes therapies.

Historically, metformin has remained the first-line treatment for type 2 diabetes. Other long-

used therapeutic options to help manage glucose levels include insulin, sulphonylureas, and 

thiazolidinediones [3]. However, maintaining glucose homeostasis with these agents remains 

challenging for many patients [4]. Furthermore, some of these drugs—particularly insulin 

and sulfonylurea—lead to undesired risks including hypoglycemia and weight gain [5]. 

Thus, identifying new drug targets and developing more effective and safer treatments is 

necessary to achieve optimal management of type 2 diabetes.

Glucagon-like peptide-1 (GLP-1) emerged as a target for type-2 diabetes treatment due to its 

unique mechanism of action. GLP-1 is an endogenous incretin hormone produced by 

intestinal enteroendocrine L-cells following nutrient ingestion [6]. The initial product, 

GLP-1 (1-37), is quickly cleaved by enzymes, resulting two active truncated forms GLP-1 

(6-37) and GLP-1 (7-37) [7]. GLP-1 exerts multiple physiological effects by activating 

GLP-1 receptors distributed in various organs, including the pancreas, gastrointestinal (GI) 
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tract, brain, heart and the kidneys [7, 8]. When glucose levels are elevated, GLP-1 promotes 

insulin secretion in the pancreas but has minimal effect when glucose levels are normal [9]. 

This glucose-dependent insulinotropic effect is particularly favorable for diabetes treatment 

because it avoids the risks of hypoglycemia, a common side effect of some anti-diabetes 

drugs, including insulin [9]. GLP-1 also decreases glucagon secretion, further contributing to 

reduction of glucose levels [6, 10]. Studies have also suggested that GLP-1 can improve β-

cell function and inhibit β-cell apoptosis, both of which could prevent or slow the 

progression of β-cell failure in type 2 diabetes [6, 11, 12]. GLP-1 also displays positive 

effects on other tissues and organs. In the GI tract, GLP-1 slows gastric emptying, leading to 

lower postprandial glucose levels [13, 14]. By activating GLP-1 receptors in the nervous 

system, GLP-1 could enhance satiety and inhibit energy intake, which may help reduce 

bodyweight [15, 16].

Despite its potent anti-diabetes effects, the clinical application of native GLP-1 is hindered 

by its rapid clearance by the dipeptidyl peptidase-4 (DPP-4) enzyme in vivo, resulting in a 

half-life of only 2 minutes [17, 18]. GLP-RA developers have applied various half-life 

extending strategies and some of them have successfully resulted in FDA-approved diabetes 

products (Table 1). Simple sequential modification enhances DPP-4 resistance and improves 

GLP-1 receptor activation potency. This strategy led to the twice-daily and once-daily 

products, Byetta® and Adlyxin®, respectively. Sequence modification to enhance DPP-4 

resistance combined with covalent attachment of a fatty acid leads to slower absorption and 

mediates albumin binding in plasma, a strategy employed in the development of the once-

daily and once-weekly agents, Victoza® and Ozempic®, respectively. More complicated 

molecular modifications that led to the approval of once-weekly products include fusing 

either recombinant human serum albumin (Tanzeum®) or an antibody fragment 

crystallizable (Fc) moiety (Trulicity®) to a GLP-1 analog. Other GLP-1 modifications have 

also been tested, including GLP-1 RA modified either with a recombinant peptide polymer 

XTEN® (VRS-859) or polyethylene glycol (LY2428757). Both molecules progressed into 

clinic trials, leading to the possibility of once-monthly and once-weekly products, but the 

development of these molecules appears to have been halted. Controlled release GLP-RA 

products have also been developed including the FDA-approved once-weekly poly(lactide-

co-glycolide) microspheres (Bydureon®) and a once-yearly titanium implant (ITCA 650) 

which is currently under review by the FDA.

The employment of different half-life extension strategies, thus, results in significant 

differences in the pharmacokinetic profiles, efficacy, safety, and usability of these products, 

which in turn largely impacts the use and market penetration of GLP-1 RA products. In this 

review, we discuss the structure-activity relationship, pharmacokinetics, efficacy and market 

dominance of approved GLP-1 RA products, GLP-1 RA molecules in development and 

combination therapy strategies. The implementation of various creative delivery 

technologies for improving circulation half-life of molecules will likely be repeated for other 

peptide or protein products, making this review relevant for scientists working within the 

drug delivery field.
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2. Strategies to increase half-life

To design GLP-RAs with an increased circulation time, a broad array of half-life extension 

strategies has been utilized including sequential modification (Byetta® and Adlyxin®), 

attachment of a fatty-acid (Victoza® and Ozempic®), development of a polymer-based 

sustained release formulation (Bydureon®), fusion with human serum albumin (Tanzeum®), 

and fusion with the fragment crystallizable (Fc) region of a monoclonal antibody 

(Trulicity®) (Figure 1). In this section we review the structure-activity relationship behind 

the various half-life extending strategies in the context of GLP-1 RA development and, in 

turn, how these modifications impact pharmacokinetic parameters and dosing scheduling of 

the resulting GLP-1 RA products.

2.1 Critical structural elements of GLP-1 sequence

Early structure-activity studies of endogenous GLP-1 revealed the key sequence domains 

that correlate with potency and enzymatic degradation. Studies have suggested that the N-

terminal residues His7, Gly10, Phe12, Thr13 and Asp15 are essential for interaction with the 

GLP-1 receptor, as substituting these residues with L-Ala leads to a severe loss of affinity 

for its receptor [43]. Similarly, C-terminal positions Phe28 and Ile29 are also important for 

receptor binding due to their role in maintaining the peptide’s secondary structure [43]. 

Endogenous GLP-1 has a short plasma half-life because of its rapid degradation by DPP-4, 

which cleaves GLP-1 between the Ala8 and Glu9 amino acids [44]. In addition, neutral 

endopeptidase (NEP) plays a minor role in GLP-1 degradation by cleaving at six sites, 

Asp15-Val16, Ser18-Tyr19, Tyr19-Leu20, Glu27-Phe28, Phe28-Ile29 and Trp31-Leu32, 

within the central and C-terminal peptide domains [44].

Based on structure-activity studies, many GLP-1 analogs have been designed to evade 

enzymatic degradation while maintaining their potency. Because DPP-4 cleavage at Ala8-

Glu9 is the major reason for the rapid deactivation of native GLP-1, replacing Ala8 is a 

commonly used strategy to reduce DPP-4 degradation. For example, replacing Ala8 with a-

aminoisobutyric acid (Aib) was found to completely prevent DPP-4 degradation [45]. 

Similarly, in two other commercialized GLP-1 analogs, albiglutide and dulaglutide, Ala8 is 

substituted with Gly to prevent DPP-4 degradation (Figure 1).

2.2 Exendin-4 and its analogs

In addition to human GLP-1 analogs, a naturally-occurring peptide and a hormone found in 

the saliva of Gila monster (a venomous lizard), exendin-4, was identified as a GLP-1 RA 

(Figure 1). Although exendin-4 shares only 53% homology with human GLP-1, in vitro 
studies demonstrated that exendin-4 has a slightly higher potency than native GLP-1 [46], 

attributable to their high similarity of key N-terminal residues. Compared to native GLP-1, 

exendin-4 is more resistant to cleavage by DPP-4 due to a Gly to Ala substitution at the 

second position [47]. Furthermore, the Leu29-Ser39 segment of exendin-4 can form a 

tertiary fold, or “Trp cage”, which conformationally shields residues 21-39, protecting these 

sites from being cleaved by NEP 24.11 [48, 49]. The enzyme resistance results in a distinct 

metabolic pathway of exendin-4. Studies reported that exendin-4 is mainly degraded on 

kidney membranes and eliminated via glomerular filtration [50, 51]. In comparison, native 
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GLP-1 is eliminated by both the kidneys and liver while also subject to metabolism in 

peripheral tissues.

Exenatide, a synthetic version of exendin-4, was the first GLP-1 RA to be approved by the 

FDA under the brand name of Byetta® (Table 1). In 2009, Byetta® was approved as a stand-

alone therapy for type 2 diabetes by the FDA [19]. Byetta® is supplied in multi-dose 

prefilled pens consisting of 250 μg/ml synthetic exenatide solution in pH 4.5 acetate buffer 

with mannitol (tonicity-adjusting agent) and metacresol (preservative). It can be stored at 

2-8°C for 3 years before use, and stored at room temperature below 25 °C for 30 days after 

first use (Table 2) [19]. Byetta® is administered as a twice daily (BID) subcutaneous 

injection before each main meal (Table 1). Patients begin with a 5 μg dose for one month, 

followed by titration up to 10 μg [19]. Pharmacokinetic parameters of exenatide are 

summarized in Table 3. Peak plasma concentration is achieved about 2 hours post 

administration. The product half-life is 2.4 hours, which allows for twice-daily 

administration, and is a large improvement over endogenous GLP-1 [19]. Animal studies 

have shown that exenatide is mainly cleared by renal filtration.

Another successful GLP-1 RA, lixisenatide, was launched in the U.S. in July 2016 under the 

brand name Adlyxin® (Table 1). Modified from exendin-4, lixisenatide is a 44-amino-acid 

peptide with the C-terminal Pro replaced by 6 Lys residues (Figure 1). In vitro studies found 

that lixisenatide has four times greater affinity for the GLP-1 receptor than native GLP-1 and 

exenatide [52]. Adlyxin® is administered once daily at 10 – 20 μg per day (Table 1). The 

pharmacokinetic profile of lixisenatide is similar to that of exenatide with a characteristic 

kidney elimination and Tmax of 2 hours post administration. The apparent volume of 

distribution is 100 L, with approximately 55% of lixisenatide bound to plasma proteins in 

circulation (Table 3) [25]. The half-life of lixisenatide is 2.6 hours, which is similar to that of 

exenatide [25]; however, unlike exenatide, lixisenatide is indicated as a once-daily injection. 

This is partly due to lixisenatide’s better ability to slow gastric emptying, yielding a better 

glucose control and, thus, reduced administration frequency [53]. Similar to Byetta®, 

Adlyxin® is supplied in multi-dose prefilled pens. The formulation of Adlyxin® contains 

lixisenatide 50 or 100 μg/ml in pH 4.5 acetate buffer, with glycerol 85% (cosolvent), 

methionine (antioxidant) and metacresol (preservative). Adlyxin® can be stored at 2-8°C for 

2 years before use, and stored at room temperature below 30 °C for 14 days after first use 

(Table 2) [25, 31].

Although amino acid substitution is an effective strategy to reduce proteolytic degradation, 

modified GLP-1 analogs are still subject to rapid renal clearance, making it difficult to 

further prolong peptide circulation time. Thus, other drug delivery strategies were used to 

develop longer-acting GLP-1 RAs, as described below.

2.3 Fatty acid conjugates

Covalent attachment of a fatty acid, known as acylation, is used extensively to control the 

half-life of therapeutic peptides [54]. One example is the insulin detemir (Levemir®), in 

which myristic acid is introduced to insulin at position B29. The conjugation of myristic 

acid results half-life extension from 4-6 min (insulin) to 5-7 hours (insulin detemir).
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Acylation with fatty acids can increase the circulation time of therapeutic peptides by several 

mechanisms. First, acylated peptides could self-assemble to supramolecular structures due to 

their amphiphilic nature. Once subcutaneously injected, acylated peptide spontaneously 

forms a depo at the injection site, leading to a delayed absorption into systemic circulation 

[55]. In the case of acylated GLP-1 RAs, it was reported that liraglutide, a palmityolated 

GLP-1 RA, could self-assemble into hexa-, hepta- or octamers, depending on the pH and 

ionic strength [56-58]. When the acylated peptide monomer finally dissociates from the 

oligomer and enters blood circulation, it readily yet reversibly binds to serum albumin 

through hydrophobic and ionic interactions between the fatty acids and albumin [59, 60]. 

Albumin binding provides steric hindrance against enzymatic degradation of the acylated 

peptide and slows its renal clearance due to the large size of the peptide-albumin complex. 

The albumin-bound peptide is also hypothesized to interact with the neonatal Fc receptor 

(FcRn), allowing it to shuttle through the albumin recycling pathway and evade intracellular 

degradation, thus, significantly increasing the circulation half-life [61]. However, although 

the FcRn recycling is proposed as a half-life extension mechanism for albumin-bound 

peptides in general, to the best of our knowledge there is no existing experimental evidence 

that proves FcRn recycling occurs for acylated GLP-1 RAs.

The stability and potency of acylated GLP-1 RAs depends on the site of acylation, the 

bulkiness and length of the fatty acid chains, and the spacer used between the peptide and 

fatty acid [62-64], Because the N-terminus is key for receptor binding and activation, 

acylation in the N-terminal region leads to serious loss of potency. In contrast, C-terminal 

modifications have little impact on potency [63]. The spacers linking peptide segment and 

fatty acid chains also greatly affect the potency of acylated GLP-1 RAs [64]. While the 

bulkiness of fatty acid was found to negatively impact the potency of GLP-1 RAs, the length 

of the fatty acid had more complex effects [64]. The length of fatty acid chain is positively 

correlated with the binding affinity to albumin, leading to a longer circulation time [62, 64]. 

However, the peptide must dissociate from albumin to activate GLP-1 receptor, thus GLP-1 

RAs with longer fatty acid chain exhibit lower potency in the presence of serum [63, 64]. 

Therefore, the acylation site and the length of fatty acid chain must be selected to achieve 

the right balance between potency and in vivo stability.

The most successful example of an acylated GLP-1 is liraglutide, which was approved by 

the FDA in 2010 under the brand name Victoza®. Liraglutide, derived from native GLP-1, 

has a 16-C fatty acid linked to Lys26 with a γ-Glu spacer and substituting Arg for Lys at 

position 34 (Figure 1, 2) [65]. Once administered, the fatty acid chain causes 

oligomerization of liraglutide, enabling formation of oligomers at the injection site [56, 58]. 

The self-association of liraglutide leads to delayed absorption into systemic circulation, 

which was observed in clinical studies where intravenously administered liraglutide was 

found to have a shorter residence time than when administered subcutaneously [66, 67]. In 

plasma, liraglutide monomers dissociate from the oligomers [67] and bind to albumin within 

the central blood compartment [68]. In vitro studies showed that while liraglutide could be 

metabolized by DPP-4 and NEP in a manner similar to GLP-1, its degradation was much 

slower [69], possibly due to the steric hindrance provided by fatty-acid-bound albumin. 

Albumin binding also prevents renal filtration of liraglutide, evidenced by the fact that no 

intact liraglutide could be detected in patients’ urine in clinical studies [69]. Combined, 
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these factors all contribute to enhance the in vivo stability of liraglutide. Pharmacokinetic 

data showed that liraglutide has a longer half-life, about 9-13 hours [20], compared to the 

other short-acting GLP-1 Ras, such as exenatide (2.1 hours) [19]. This affords liraglutide the 

ease of once-daily injections. Pharmacokinetic analysis also suggests that, compared to 

exenatide BID, liraglutide has smaller peak-to-trough fluctuations and better continuous 

exposure [66]. Liraglutide (Victoza®) is approved in the U.S. as a second-line type 2 

diabetes treatment (Table 1). Victoza® is supplied in multi-dose prefilled pens. The 

formulation of Victoza® contains liraglutide 6 mg/ml in phosphate buffer with propylene 

glycol (cosolvent) and phenol (preservative). With a pKa of about 9.5, the solubility of 

liraglutide decreases below pH 7, requiring the formulation’s pH to be adjusted to 8.15 [70]. 

Victoza® can be stored at 2-8°C for 30 months before use. After first use, the product can be 

stored at room temperature at 2-8°C or 15-30°C for 30 days (Table 2) [20, 33]. Patients 

initiate the treatment with a 0.6 mg/dose for one week then increase to a 1.2 mg/dose. The 

dose can be increased to a 1.8 mg/dose for additional glycemic control (Table 1). In addition, 

a higher dose liraglutide (3 mg/dose) has also been approved by the FDA for weight 

management under the brand name Saxenda® [16].

Semaglutide—which was approved by the FDA in December 2017 under the brand name of 

Ozempic®—is a next generation GLP-1 RA based on liraglutide. Compared to liraglutide, 

semaglutide has an additional amino acid substitution in the 8th position from Ala to α-

aminobutyric acid (Aib) to avoid degradation by DPP-4 [64]. A longer stearic (C18) di-acid 

fatty chain was introduced into semaglutide, whereas liraglutide has a C16 fatty acid [64]. 

The spacer between the stearic di-acid chain and peptide backbone has been optimized [62], 

and the spacers composed of γGlu or 8-amino-3,6-dioxaoctanoic acid (ADO) were found to 

be optimal for the potency of GLP-1 RAs, though mechanisms are not clear. For 

semaglutide, the fatty di-acid chain is attached to Lys26 through one glutamic acid and two 

8-amino-3,6-dioxaoctanoic acid (ADO) moieties to achieve the optimal binding affinity [64]. 

Semaglutide shows a higher albumin binding affinity in comparison to liraglutide, which 

may be a result of the longer fatty acid side chain included in semaglutide [64]. The GLP-1 

receptor binding affinity of semaglutide is slightly lower than that of liraglutide, which can 

be attributed to the longer lipid chain and presence of the terminal acid group on steric acid 

[64]. In clinical studies, semaglutide was shown to be degraded by enzymes prior to renal 

extraction. Because of its slow enzyme degradation and reduced renal extraction, 

semaglutide has a half-life of 7 days, allowing for once-weekly administration (Figure 2, 

Table 3) [71]. Despite the reduced dosing frequency, the dose of semaglutide — initially 

0.25 mg/dose with the ability to increase to 1.0 mg/dose—is lower than that of liraglutide, 

which starts with a 0.6 mg/dose (Table 1) [26]. Similar to Victoza®, Ozempic® is supplied 

in multi-dose prefilled pens containing semaglutide 0.75 mg/ml in phosphate buffer (pH 7.4) 

with propylene glycol (cosolvent) and phenol (preservative). Ozempic® can be stored at 

2-8°C for 3 years prior to use. After first use, the product can be stored at room temperature 

at 2-8°C or 15-30°C for 56 days. (Table 2) [26, 35].

2.4 Albumin fusion

Albumin is well-recognized as a potential carrier of therapeutic peptides due to its long 

circulation half-life, ability to distribute broadly in the body and low immunogenicity. This 
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strategy has been successfully used in the development of the FDA-approved drug Idelvion® 

(albumin fusion of coagulation factor IX) [74]. Albumin conjugation likely improves GLP-1 

RA plasma half-life by several mechanisms, including providing steric hindrance from 

proteolysis and increasing molecular weight to reduce kidney filtration (Figure 3). In 

addition, covalent attachment to albumin may also prolong the peptide’s circulation time by 

a unique albumin recycling pathway through the neonatal Fc receptor (FcRn) [75]. 

Following endocytosis by endothelial cells, albumin binds to the FcRn receptor within the 

acidic lysosomal environment, which enables albumin rescue from degradation, transport 

back to the cell’s surface and return to the circulation [75, 76]. Such a recycling mechanism 

is believed to contribute to the prolonged half-life of endogenous albumin and, presumably, 

albumin-fusion proteins [77].

An albumin conjugation strategy was used to design albiglutide (Tanzeum®), which was 

approved by the FDA in 2014. Albiglutide is a recombinant protein composed of two copies 

of GLP-1 analogs fused to human albumin. The molecule has a Gly8 to Ala substitution in 

both copies of the GLP-1 analogs to improve resistance to DPP-4 degradation. Albiglutide is 

administered once weekly by subcutaneous injection and is thought to be absorbed through 

the lymphatic circulation [23]. The peak plasma concentration is achieved about 4 days after 

a single administration, and steady-state is obtained after the first 3-4 weekly doses (Table 3) 

[23]. Due to its high molecular weight, renal filtration is not expected to be an important 

elimination mechanism for albiglutide. Overall, albiglutide has an in vivo half-life of 6-8 

days, and is approved for once-weekly administration. In Tanzeum®, albiglutide is 

lyophilized with mannitol (stabilizer/tonicity adjuster), trehalose dihydrate (stabilizer/

tonicity adjuster), polysorbate 80 (surfactant), and sodium phosphate (pH adjuster). The 

lyophilized cake and solvent (water for injection) are supplied in single-dose dual-chamber 

pens (Table 2) [23, 36]. Reconstitution is needed prior to use to make the albiglutide solution 

of 60 mg/ml or 100 mg/ml for injection. The product can be stored 3 years at 2 – 8 °C or 4 

weeks at room temperature below 25 °C [23, 36]. Patients are initiated at 30 mg/dose 

(equivalent to 0.82 μmol GLP-1 RA per dose) and can be increased to 50 mg/dose (1.37 

μmol/dose) if necessary (Table 1) [23].

2.5 Fc fusion

Fc fusion is another established strategy to prolong the half-life of therapeutic peptides. 

Several Fc fusion products, such as etanercept (TNFR-Fc fusion protein, Enbrel®) and 

aflibercept (VEGFR-Fc fusion, Zaltrap®), are approved by the FDA [79]. Overall, 

incorporating the Fc domain of IgG prolongs a peptide’s circulation time through several 

mechanisms. First, the Fc domain can endow hybrid proteins with a longer in vivo 
circulation time through its interactions with FcRn. Similar to albumin’s recycling process, 

FcRn can bind with the Fc domain in an acidic endosomal environment to protect the Fc 

domain from degradation, while disassociating from the Fc domain in neutral pH 

environment outside the cell [80]. The important role played by FcRn in prolonging a 

peptide half-life was evidenced in Suzuki et al. [81], where the affinities of Fc-fusion 

proteins for FcRn were closely correlated to their half-lives. Fc fusion also reduces renal 

filtration of peptides by increasing their molecular weight, which is especially favorable for 

GLP-1 RAs that are eliminated primarily by the kidney [19]. Fc fusion also reduces DPP-4 
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degradation of GLP-1, likely due to steric hindrance by the bulky IgG fragment [82]. From a 

technological viewpoint, Fc-fusion to GLP-1 allows for an easier purification process 

relative to albumin fusion due to widely available protein A binding columns used for IgG 

purification [83].

An important concern associated with the development of GLP-1 Fc fusion products is their 

potential safety risk arising from the ability of the Fc fragment to trigger antibody-dependent 

cell-mediated (ADCC) cytotoxicity and complement-mediated cell lysis through Fc-γ 
receptor interactions. When compared to the IgG1 Fc domain, the IgG2 and IgG4 Fc 

domains may be more favorable in the development of GLP-1 RAs due to their lower 

affinity for Fc-γ and complement receptors [84, 85]. The potency of GLP-1 RA after Fc 

fusion is another concern, as linking the GLP-1 analog with the IgG1 hinge region directly 

results in a severe loss of potency, suggesting a suitable spacer is needed for potency 

retention [86].

The most successful GLP-1 product employing the Fc-fusion strategy is dulaglutide 

(Trulicity®), approved by the FDA in 2014 as an adjunctive therapy for type 2 diabetes. 

Dulaglutide is a disulfide-bonded homodimer fusion peptide with each monomer consisting 

of one GLP-1 analog moiety and one IgG4 Fc region (Figure. 1 and 4). Within the GLP-1 

analog, Ala8 is replaced by Gly to resist DPP-4 degradation, and Gly36 is substituted for 

Arg to avoid a potential T-cell epitope interaction [86]. The IgG4 Fc region was selected and 

its sequence modified at several positions to further reduce its interaction with the Fc-y 

receptors to avoid ADCC immunologic side effects [86]. A spacer comprising 16 amino 

acids was added between the GLP-1 analog and the Fc moiety to prevent activity loss. 

Dulaglutide has an extended half-life of 4.7 days, allowing for once weekly dosing. 

Trulicity® is supplied in single-dose pens or syringes. The formulation consists of 

dulaglutide solution at a concentration of 1.5 mg/ml or 3 mg/ml in citrate buffer with 

mannitol (stabilizer/tonicity adjuster) and polysorbate 80 (surfactant) [37]. The product can 

be stored at 2 – 8 °C for 2 years or below 30 °C for 14 days (Table 2) [24, 37]. Patients begin 

therapy with a 0.75 mg/dose once weekly (corresponding to 0.024 μmol GLP-1 RA/dose), 

and the dose can be doubled for additional glycemic control (Table 1) [23].

2.6 Sustained-release drug delivery systems

Another strategy to achieve sustained plasma levels of GLP-1 RAs is by taking advantage of 

drug delivery systems. Various systems including polymeric hydrogels [88], nanoparticles 

[89] and microparticles [90] have been tested in preclinical studies. However, only 

poly(lactic-co-glycolic acid) (PLGA) based implants of GLP-1 RA have been approved by 

the FDA thus far. PLGA is well accepted by regulatory authorities as a safe and efficacious 

way to deliver therapeutic peptides [91, 92]. Lupron Depot®, a microsphere formulation of 

leuprolide acetate and Zoladex®, a millicylinder formulation of goserelin, are examples of 

FDA approved PLGA-based sustained release products [93, 94]. In these products, peptides 

are loaded within a PLGA polymer which slowly degrades in the body, allowing for 

sustained release of the therapeutic peptide. For example, Lupron Depot® can release the 

loaded leuprolide over an extended period of 1 or 6 months, depending on the specific 
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polymer formulation used [95]. Such an extended release profile enables maintenance of 

target peptide concentrations with fewer administrations, thus improving patient compliance.

The PLGA delivery approach was applied in the design of a polymer microsphere 

formulation of exenatide in collaboration between Eli Lilly, Amylin and Alkermes [96]. 

Although the degradation of PLGAs can be tuned from a few weeks to more than six 

months, exenatide PLGA microspheres fall short of a more desirable monthly 

administration, and the final product, Exenatide QW (Bydureon®), was launched as a once-

a-week product [96]. Once injected subcutaneously, the 60-μm-diameter microspheres 

hydrate and adhere to each other, forming a matrix drug reservoir in situ. A discontinuous 

drug release profile with a low initial burst and two peaks of drug release at the 2nd and 7th 

week is observed, corresponding to different mechanisms of exenatide release from 

microspheres (Figure 5A and B) [79]. During the first 48-hour “burst release” stage 

exenatide is released from the surface and surface pores of the microspheres. This product 

was specifically designed to have low initial drug burst in order to avoid nausea and 

vomiting side effects [96]. The second stage is characterized by the slow diffusion of 

exenatide out of the polymer matrix with the maximum diffusion rate and corresponding 

plasma concentration peak achieved at about 2 weeks. The third stage of drug release results 

from the hydrolysis and erosion of the PLGA polymer [96]. The maximum drug-release rate 

at this stage is achieved at 7 weeks, which is evidenced by the second peak of the blood 

concentration-time curve. The overall release of exenatide can last for 11 weeks [21]. After 

the first 6-7 weekly administrations of Bydureon®, a stable steady state plasma level of 

exenatide is achieved at 300 pg/ml as peaks and valleys from weekly dosages at different 

injection sites begin to overlap (Figure 5C) [97]. From the formulation perspective, 

Bydureon® is supplied as single-dose trays and single-dose dual-chamber pens where the 

exenatide PLGA microparticle powders and diluent are supplied separately. Prior to use, 

patients need to resuspend the PLGA microparticles containing 2 mg exenatide in 0.65 ml 

phosphate buffer, which also contains sodium chloride (tonicity adjuster), 

carboxymethylcellulose sodium (suspending agent) and polysorbate 20 (surfactant) (Table 2) 

[21]. To achieve better usability, a new formulation, Bydureon® Boise™, was developed and 

approved by the FDA in 2017. In Bydureon® Boise™, the PLGA powders are suspended in 

medium chain triglycerides supplied in single-dose autoinjectors, which avoids the 

cumbersome procedures before use and enhances the patient experience [39]. Despite the 

different formulations, Bydureon® and Bydureon® Boise™ are both administered 

subcutaneously with 2 mg/dose and have similar pharmacokinetics profiles (Table 1) [21, 

39]. Bydureon® can be stored at 2 – 8 °C for 3 years or at the room temperature below 

25 °C for 4 weeks (Table 2) [21, 38].

As discussed above, one of the drawbacks of PLGA microparticles in the Bydureon® 

formulation is that they cannot deliver GLP-1 RAs at a steady rate. To address this problem 

and achieve steady and continuous delivery of GLP-1 RAs, other controlled-release devices 

such as osmotic pumps have been developed. One representative product is ITCA 650, 

developed by Intarcia Therapeutics. ITCA 650 is a subcutaneously implanted matchstick-

sized osmotic mini-pump, which continuously releases exenatide for 6 months in a zero-

order manner, making twice-yearly administration possible [98]. The zero-order release of 

exenatide results in a favorable pharmacokinetic profile of ITCA 650 for several reasons. 
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Pharmacokinetic studies showed the ITCA 650 could achieve steady-state exenatide 

concentration within 5 days following implantation, compared to 6-7 weeks for exenatide 

QW [42]. The plasma concentration of exenatide remained steady over the period of 

treatment [42]. Furthermore, the drug treatment can be discontinued if necessary by removal 

of the implant. In the clinical trials, once the implanted pump was removed, exenatide levels 

became undetectable by 24 hours [42]. A New Drug Application for ITCA 650 was 

submitted to the FDA in November 2016 [99]. If approved, it would be the first needle-free 

GLP-1 RA on the market.

2.6 Other approaches for half-life extension

PEGylation is another common strategy for enhancing in vivo stability of therapeutic 

peptides. PEGylation increases molecular size and provides steric hindrance to reduce renal 

filtration and protect peptide from enzymatic degradation [101]. PEGylated GLP-1 analogs 

have been investigated by several groups. Lee et al. [102] synthesized N-terminally 

PEGylated PEG2k-N-GLP-1 and Lys26- or Lys34-modified PEG2k-Lys-GLP-1s. The in 
vitro study showed that PEG2k-N-GLP-1 exhibited a significant reduction in potency, which 

is likely due to the steric hindrance of PEG shielding the GLP-1 receptor interaction [102]. 

PEG2k-Lys-GLP-1, however, showed a similar potency to native GLP-1 [102]. Stability 

studies found that PEG2k-Lys-GLP-1 was resistant to DPP-4 degradation and had a longer 

mean retention time in vivo [102]. One PEGylated GLP-1 analog, LY2428757, advanced to 

clinical testing by Eli Lilly & Co. for once-weekly administration. To the best of our 

knowledge, the exact structure of LY2428757 has not been disclosed. The Phase 2 clinical 

trial was completed in 2010 [103], however, no further information is available about this 

product’s development status. As an alternative to PEG, XTEN® is a series of recombinant 

protein polymers which are specifically designed for fusion to therapeutic peptides to 

achieve long circulation in vivo [104]. The XTEN-GLP-1 fusion protein, VRS-859, was 

tested in a Phase I clinical trial conducted by Versartis in 2010 as a once-monthly 

administration [105]. However, the development of this product has also likely been 

discontinued.

3. The effects of GLP-1 RA delivery strategies on product efficacy and 

safety

Different modification strategies not only affect the pharmacokinetic profiles of GLP-1 RAs 

but also strongly influence their efficacy, safety profile and usability. The main 

pharmacological efficacy biomarkers determined in Phase 3 studies for GLP-1 RAs are 

summarized in Table 4. Based on the pharmacokinetic properties, GLP-1 RAs could be 

roughly divided into short-acting agonists which are administered once or twice daily, and 

long-acting agonists which are administered once weekly. The two groups of GLP-1 RAs, 

while sharing many similarities, present different pharmacodynamic features and, thus, yield 

different antidiabetic efficacy.

3.1 Glycemic control patterns

GLP-1 RAs can efficiently regulate plasma glucose levels through multiple mechanisms, 

including stimulation of insulin production, inhibition of glucagon secretion and slowing 
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gastric emptying. Though both short-acting and long-acting GLP-1 RAs show favorable 

glucose control efficacy, they have different effects on fasting plasma glucose (FPG) and 

postprandial plasma glucose (PPG) levels. Clinical studies have demonstrated that short-

acting GLP-1 RAs have a greater efficacy in lowering PPG level, while long-acting GLP-1 

RAs predominantly affect FPG levels. For example, in a head-to-head clinical trial 

comparing exenatide BID (Byetta®) and exenatide QW (Bydureon®), patients treated with 

exenatide BID had a lower PPG, while patients treated with exenatide QW had a lower FPG 

[106]. As exenatide was the same active ingredient in both groups, this data suggests that PK 

profile significantly influences pharmacological activity of short-acting versus long-acting 

GLP-1 RAs, resulting in differential reduction of PPG and FPG levels.

It is believed that a product’s effect on FPG level is directly related to pharmacokinetics of 

GLP-1 RA and GLP-1 receptor activation pattern, which, in turn, leads to the differential 

secretion of insulin and glucagon during a fasting state [107]. Short-acting GLP-1 RAs 

usually have limited drug exposure within the body due to rapid elimination. Exenatide, for 

example, administered one hour before the morning and evening meal, is almost completely 

eliminated from the plasma after 10 hours [108]. Thus, the GLP-1 plasma concentration in 

the middle of the day and overnight is low, leading to modest efficacy on FPG regulation. On 

the contrary, long-acting GLP-1 RAs that are present in the circulation between injections 

enables sustained GLP-1 receptor activation and continuous stimulation of insulin secretion. 

In the clinical trial comparing exenatide BID (Byetta®) and liraglutide (Victoza®), the 

fasting insulin level of the Victoza®-treated group increased on average by 12.43 pmol/L, 

while that of Byetta® decreased by 1.38 pmol/L [109]. Increased insulin secretion during a 

fasting state was also observed for other long-acting GLP-1 RAs such as dulaglutide 

(Trulicity®) [110] and albiglutide (Tanzeum®) [111].

The efficacy of GLP-1 RAs on PPG, however, is thought to primarily result from delayed 

gastric emptying rather than stimulation of insulin production [112]. An inverse relationship 

between gastric emptying rate and PPG has been demonstrated in clinical trials [113, 114]. 

Short-acting GLP-1 RAs such as exenatide BID (Byetta®) and lixisenatide (Adlyxin®) can 

significantly delay gastric emptying processes in vivo. The delayed gastric emptying leads to 

the reduced plasma glucose excursion. As a result, postprandial insulin concentrations are 

actually dose-dependently decreased, by exenatide and lixisenatide despite the known ability 

of GLP-1 RAs to stimulate insulin production [113, 114]. On the other hand, long-acting 

GLP-1 RAs have only a modest effect on gastric emptying, possibly caused by 

tachyphylaxis due to continuous activation of the GLP-1 receptor [115, 116]. For example, 

in a clinical study comparing exenatide BID (Byetta®) and exenatide QW (Bydureon®), it 

was found that after 14 weeks of administration, Byetta® still induced significant retardation 

of gastric emptying, while Bydureon® had little effect on gastric mobility [106]. 

Consequently, long-acting GLP-1 RAs typically lead to less profound reductions of PPG 

compared to short-acting GLP-1 RAs [112].

3.2 Impact of various GLP-1 RAs on glycated hemoglobin (HbA1c) levels

Glycated hemoglobin (HbA1c) is a biomarker extensively used by diabetologists to evaluate 

the ability of patients to control overall blood sugar level over periods of weeks to months. 
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The higher the HbA1c level, the worse a patient’s glycemic control and the higher the 

likelihood that that individual will develop diabetes-related complications [117]. All 

commercialized GLP-1 RAs have proved to effectively reduce levels of HbA1c (Table 4). 

Though directly comparing the HbA1c reduction of different GLP-1 RAs is challenging, 

several head-to-head clinical studies have provided insight into differences between these 

products based on the pharmacodynamic and efficacy results from clinical trials [118]. 

Compared with short-acting products, long-acting GLP-1 RAs usually present better efficacy 

in reducing HbA1c, which may result from their ability to better control FPG levels. The 

DURATION-1 and DURATION-5 clinical trials, which directly compared exenatide BID 

(Byetta®) to exenatide QW (Bydureon®), reported better HbA1c level reduction for 

Bydureon® [119, 120]. Another clinical trial, LEAD-6, showed greater reduction of HbA1c 

levels in patients treated with long-acting Victoza® relative to short-acting Byetta® (−1.12% 

versus −0.79%, p < 0.0001) [109]. Similarly, dulaglutide (Trulicity®) reduced HbA1c levels 

more effectively than exenatide twice daily (Byetta®) in the AWARD-1 trial (−1.51% for 

dulaglutide 1.5 mg, −1.30% for dulaglutide 0.75 mg versus −0.99% for exenatide twice 

daily, p < 0.001 for both dulaglutide groups relative to exenatide) [121].

Differences in efficacy among GLP-1 RAs belonging to the same class seem less significant. 

No statistically significant differences were found between the short-acting compounds 

Byetta® and Adlyxin® in the head-to-head GetGoal-X trial [53]. Among long-acting GLP-1 

RAs, the HbA1c-reduction efficacy of Victoza® (liraglutide) was not significantly different 

from that of Trulicity® (dulaglutide) [121] or Tanzeum® (albiglutide) [122]. The 

DURATION-6 trial demonstrated that Victoza® showed greater reduction of HbA1c levels 

than Bydureon® [123]. However, additional retrospective meta-analyses of various clinical 

data sets found no meaningful difference in HbA1c reduction between Victoza® and 

Bydureon® [124-126].

3.3 Weight loss

GLP-1 receptor activation may lead to significant weight loss by suppressing appetite, thus 

reducing calorie intake [127]. Though delayed gastric emptying and GI side effects of 

GLP-1 RAs are tempting explanations for the weight loss, their correlation with weight loss 

in diabetic patients was contradicted by several clinical trials [128, 129]. Instead, the 

anorectic effect of GLP-1 RAs was found to be responsible for the weight loss, which is 

mainly attributed to the satiating effect or rapid hunger satisfaction after the start of a meal. 

This effect is a result of peripheral and central GLP-1 receptor activation, and is afforded by 

the ability of GLP-1 RAs to cross the blood brain barrier (BBB) [130]. In one study, vagal 

deafferentation attenuated the anorectic effects of exendin-4 and liraglutide [130]. Another 

recent study showed that liraglutide can activate the GLP-1 receptor on appetite-regulating 

neurons in the arcuate nucleus (ARC), which may mediate its long-term weight loss 

effects[131]. Collectively, GLP-1 RAs show varied effects on weight loss, which may result 

from multiple factors. For example, unlike liraglutide, clinical studies with albiglutide 

resulted in little weight loss, potentially attributed to limited penetration of the large 

molecular weight of albumin fusion proteins into the central nervous system, the major site 

of action [132].
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3.4 GLP-1 RA safety issues

The most frequently-observed side effects of GLP-1 RAs are gastrointestinal in nature, 

including nausea, diarrhea and vomiting. Nausea is the most commonly-reported adverse 

effect, though it usually decreases over time as a patient’s tolerance toward GLP-1 

administration increases [139]. Nausea directly correlates with plasma levels of GLP-1 RAs 

and, thus, is more profound in short-acting GLP-1 RA products relative to long-acting 

GLP-1 RAs due to high peak peptide plasma concentration and large peak-to-through ratios 

[140]. For example, in several clinical studies, between 33% and 57% patients treated with 

exenatide [141] and between 24% and 76% of patients treated with lixisenatide [53, 134, 

142-148] reported nausea. In contrast, only 9.9% to 16% patients treated with albiglutide 

[122, 137, 149-152] and 6.6% to 28% of patients treated with dulaglutide [121, 136, 

153-156] experienced nausea. In a head-to-head clinical trial comparing exenatide BID 

(Byetta®) and exenatide QW (Bydureon®), the incidence of nausea in patients treated with 

Byetta® was 35% compared to 14% in those treated with Bydureon® [119]. This difference 

could be explained by the decreased fluctuation of plasma-drug concentrations seen with 

long-acting products, particularly the avoidance of the high peak concentrations seen with 

GLP-1 RAs [119].

Injection site reactions are another common side effect of GLP-1 RAs. The incidence of 

injection site reactions differs among GLP-1 RAs with different molecular structures. For 

short-acting GLP-1 RAs, such as Byetta®, Victoza® and Adlyxin®, the incidence of 

injection site reactions is relatively low (< 5%) [121, 123, 134, 142, 148, 157]. For long-

acting GLP-1 RAs, 8% to 16% patients treated with Tanzeum® had injection site reactions 

[122, 137, 149-152]. In addition, less than 5% of patients treated with Trulicity® 

experienced injection site reactions [121, 136, 153-156]. Formulation factors also affect the 

incidence of injection site reactions. Bydureon® administration leads to a higher incidence 

of injection site reactions compared to Byetta® [158]. Particularly, injection of Bydureon® 

can cause a bump at the injection site and local inflammatory response, which may lead to 

discontinuation of the drug [106, 159].

Development of anti-drug antibodies is a common concern with therapeutic peptides and 

proteins. For GLP-1 RAs, exenatide seems to have the highest incidence of antibody 

formation, which be due to its relatively low homology to human GLP-1 (53%). About 37% 

of patients treated with Byetta® and 57% patients treated with Bydureon® tested positively 

for the presence of anti-drug antibodies [158]. While low titers of the antibody have little 

impact on the drug’s efficacy and safety profiles, high titers may reduce the efficacy of 

exenatide [158]. For comparison, only 8.6% of patients treated with liraglutide generated 

antibodies, which can be explained by the higher sequence homology with GLP-1 [160]. 

Incidence of anti-drug antibodies was much lower for albiglutide and dulaglutide. In Phase 3 

clinical trials, anti-drug antibodies were detected in 3.0% to 7.0% of patients treated with 

albiglutide [122, 146, 149, 161, 162] and 2.2% of patients treated with dulaglutide [136]. In 

both cases, the presence of anti-drug antibodies was not correlated with relevant 

hypersensitivity events.

There are also concerns that long-term usage of GLP-1 RAs may cause pancreatitis or even 

lead to the development of pancreatic cancer. In a mouse study, exendin-4 induced 
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pancreatic duct gland expansion in rats and exacerbated chronic pancreatitis [163]. Elashoff 

et al. analyzed data from the FDA database and found that patients treated with exenatide 

had a 6-fold higher incidence of pancreatitis compared to those treated with other diabetes 

medications, such as rosiglitazone, nateglinide, repaglinide and glipizide [164]. However, in 

the studies directly conducted by the FDA, no correlation between exenatide and pancreatic 

injury was found in animal models, and no compelling evidence was found to link the use of 

exenatide with an increased risk of pancreatitis or pancreatic cancer [165]. Because of these 

inconsistent results, no final conclusion has been made regarding correlations between 

exenatide use and serious adverse pancreatic events [165].

Liraglutide was found to be associated with thyroid cancer in rodents. Further studies found 

that long-term activation of GLP-1 receptors could stimulate calcitonin secretion and induce 

C-cell hyperplasia, which increases the incidence of medullary thyroid cancer in mice [166]. 

Such observations raise safety concerns about GLP-1 RAs. However, in humans, liraglutide 

was found to have no significant effect on calcitonin secretion [167]. In a meta-analysis, no 

correlation was found between liraglutide and an increased risk for thyroid cancer [168]. 

Thus, the correlation between GLP-1 RAs and thyroid cancer is not yet clear. However, 

based on these results, liraglutide is contraindicated in patients with a history of medullary 

thyroid cancer.

4. Combination treatments

Because of the complex pathological processes of type 2 diabetes, optimal glucose control 

typically requires multifaceted therapeutic strategies. The combination of GLP-1 RAs and 

basal insulin is frequently used because of the complementary effects of both agents on 

glucose control. Basal insulin consistently increases insulin levels and lowers FPG. 

Meanwhile, GLP-1 RAs stimulate insulin secretion in a glucose-dependent manner which 

provides better control over PPG. Also, adding GLP-1 RAs could counteract the 

hypoglycemia and weight gain frequently resulting from insulin therapy [169]. However, in 

clinical practice, healthcare providers may find it challenging to adjust the dose of each drug 

in combination to achieve optimal glucose control while avoiding side effects, hindering the 

practical application of combination therapy. To address this problem and to gain market 

advantage, pharmaceutical companies have developed various combination therapy products 

for type 2 diabetes. Novo Nordisk developed an insulin degludec/liraglutide combination 

named Xultophy® 100/3.6, or IdegLira [27]. Sanofi developed titratable lixisenatide and 

insulin glargine combination SOLIQUA® 100/33 (also named LixiLan or IGlarLixi) with a 

fixed ratio of 100 Units/mL lixisenatide to 33 mcg/mL insulin glargine [28]. Both 

Xultophy® and SOLIQUA® were approved by the FDA in November 2016.

It is noteworthy that although GLP-1 and insulin combination therapy may provide 

convenience in practice, combination therapy comes at the cost of diminished dosing 

flexibility of both drugs, raising concerns about whether the specific combination therapy 

actually achieves better therapeutic efficacy than two drugs that are titrated separately. To 

prove the superiority of the combination therapies, clinical trials were designed to test 

whether the combination has a superior efficacy over monotherapy. The Xultophy® 

DUAL™ Phase 3 clinical trials showed combination therapy leads to greater HbA1c 
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decrease and weight loss compared to insulin monotherapy [170]. As for SOLIQUA®, the 

clinical trial showed that a larger proportion of patients reached H1A1c target levels 

compared to patients treated with insulin alone [171].

5. GLP-1 RA market dominance analysis

Pharmaceutical sales are affected by a variety of factors, including product efficacy, safety 

and the ability to fulfill an unmet need within the target therapeutic area. Other factors such 

as first-to-market, patent exclusivity status, marketing strategy, product pricing and 

government price controls, and geography of drug approval also have a substantial impact on 

total sales and ultimate market share. In the context of the diabetes therapeutic market, other 

points to consider are country specific disease treatment guidelines and pricing/

reimbursement decisions [172, 173]. While it can be difficult to predict which factors will be 

most relevant in affecting commercial success from one product to the next, it is possible to 

observe sales trends and make pharmacoeconomic assessments within the current global 

GLP-1 market. Figure 7 and Table 5 show market shares of GLP-1 RA products in 2016 and 

2017. The figure illustrates the overall market dominance of Victoza®, growing market 

share of Trulicity® and steady presence of Bydureon®. The rest of the market was shared by 

Byetta®, Tanzeum®, and Adlyxin®.

Byetta® was first launched in the U.S. in 2005 and was the only GLP-1 RA on the market 

until the approval of Victoza® in 2010. The drug reached $678.5 million peak sales in 2008. 

Despite the overall growth in the diabetes market, sales of Byetta® steadily declined to $254 

million (5.1% market share) in 2016 and $176 (2.7% market share) in 2017 (Figure 7, Table 

5) due to competition from other safer and more convenient GLP-1 RAs. Byetta® is 

expected to lose patent protection soon, and a generic injectable exenatide has been filed 

with the FDA [174]. Introduction of generic versions of Byetta® could affect the market, as 

generic drugs provide cheaper treatment alternatives preferable to patients, prescribers, and 

payers [175]. The introduction of low-price GLP-1 RA generics will certainly change sales 

dynamics and prescribing habits, especially within healthcare systems under financial 

scrutiny.

A more convenient once-daily dose product, Victoza®, was introduced into the U.S. market 

in 2010 by Novo Nordisk. Victoza® is supplied in an easy-to-use self-injector and offers 

therapeutic efficacy similar to Byetta® but with a reduction in side effects [109]. Victoza® 

immediately gained market share with 2011 sales of $1,289.7 million relative to $517.7 

million for Byetta® [176, 177]. Over the years Victoza® has continued its growth and 

market dominance with global sales reaching $3376 million in 2017, capturing over 50% of 

the overall GLP-1 market share. Based on positive clinical trial results, Novo Nordisk 

recently received approval from the FDA to add a new indication to Victoza®: lowering 

cardiovascular risks in type 2 diabetes patients with established cardiovascular disease [178]. 

This addition makes Victoza® the only GLP-1 RA product approved for a cardiovascular 

indication. Similarly, an alternative dosage form of liraglutide, Saxenda®, was recently 

approved to treat obesity [179], and is currently the only GLP-1 RA approved in for this 

indication. Another strategy to maintain market dominance is to seek approval for 

combination therapies in a single injection. Thus, Xultophy®, a combination of liraglutide 

Yu et al. Page 16

Adv Drug Deliv Rev. Author manuscript; available in PMC 2019 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and insulin-degludec, was developed by Novo Nordisk. However, the sales of Xultophy® 

were relatively small in 2017 (just $106 million or 1.6% of GLP-1 RA market share) [180].

Amylin, a company initially developing exenatide, focused on the design of a PLGA 

polymer extended release formulation of exenatide in partnership with Alkermes. While for 

peptides like leuprolide, PLGA delivery offers once-monthly to once every six months 

products, the exenatide PLGA implant formulation, Bydureon®, was launched as a once- 

weekly product due to discontinuous release of peptide from the polymer and a narrow 

therapeutic index. Despite robust efficacy and being the first once-weekly formulation to 

reach the market, sales of Bydureon® fell short of expectation. In 2013, Bydureon® world-

wide sales were a mere $151 million, significantly lower than that of twice daily injections 

of Byetta® ($206 million) and once-daily Victoza® ($2,035 million) [181, 182]. Inadequate 

sales of Bydureon® could be attributed to Bydureon®’s failure to show non-inferiority 

compared to Victoza® in the DURATION-6 trial [123]. Another possibility is the difficulty 

for some patients to create a suspension and self-administer the polymer microspheres [21]. 

Knowing that the multistep process for injection may hinder patient compliance, 

AstraZeneca designed a new, easy-to-use Bydureon® pre-filled pen, called Bydureon® 

BCise™ [39]. In addition, injection site side effects were reported for Bydureon® including 

local inflammation, abscess formation and cosmetic concerns due to retention of “bumps” 

under the skin that remain for extended periods of time due to the long time required for 

polymer degradation [159]. Despite these concerns the sales of Bydureon® remained steady 

at ~$570 million in 2016 and 2017 and could further improve with the launch Bydureon® 

BCise™ in 2018.

Great expectations were associated with the launch of easy-to-administer solutions of once-

weekly GLP-1 RA products: albumin fusion (Tanzeum®) and Fc-fusion (Trulicity®). 

Interestingly, upon launch, Tanzeum® did not capture a significant market share. Its sales 

were only $63 million in 2015 as compared to $2.673 billion in sales for Victoza® that same 

year [183, 184]. Weak sales could be attributed to the increased immunogenicity and 

reduced therapeutic benefit offered by Tanzeum®, with efficacy parameters trailing behind 

Victoza® [122]. In addition, the relative inexperience of GSK in marketing diabetes drugs 

may have contributed to the poor sales. To improve sluggish sales, GSK tried to lower prices 

of Tanzeum®. Yet, Tanzeum® still failed to be listed as a preferred formulary by PBM 

Express Scripts [185]. Due to the continuous decline in sales, GSK chose to cease 

manufacturing and sale of Tanzeum® by July 2017 [186].

In contrast, once weekly Trulicity® launched by Eli Lilly in the same time frame did gain 

rapid acceptance. When compared with Victoza®, Trulicity® offered a similar therapeutic 

benefit and showed even better control over HbA1c levels in the AWARD-6 clinical trial 

[121]. Eli Lilly also had a large existing sales force in diabetes due to its insulin franchise, 

which likely facilitated successful product launch. Trulicity® sales in 2015 reached $248.7 

million and continued to climb to $925.5 million in 2016 and to $2030 million in 2017, 

taking significant market share away from Victoza® (Figure 7, Table 5) [187-189]. Based on 

2016 sales, Victoza® dominated the GLP-1 RAs with 60.0% market share followed by 

Trulicity® with 18.6%. In 2017, Trulicity® gained a spot on Express Scripts’ preferred 

formulary for the second year in a row, while Victoza® did not [185]. This designation was 
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expected to further boost Trulicity® sales. In 2017, the growth of Trulicity® continued as 

Victoza®’s market share dropped to 52.2% and Trulicity®’s rose to 31.6%. While the main 

competition will likely remain between Victoza® and Trulicity®, several developments 

could impact the market, such as introduction of generic versions of Byetta® and approval 

of Ozempic®. Ozempic® is expected to be the next blockbuster on the GLP-1 market due to 

its excellent anti-diabetes efficacy [71], substantial reduction of cardiovascular risks [190] 

and once-weekly dosing frequency. Thus, it would be interesting to see how the landscape of 

the growing GLP-1 RA market will change over the next several years.

6. Emerging trends in GLP-1 RA development

Despite the large number of GLP-1 RAs already approved, there are numerous ongoing 

efforts to develop new GLP-1 RA molecules as well as explore novel routes of 

administration. Oral products have better patient compliance relative to subcutaneous 

injectable products, as some patients have a fear or injection [198, 199]. Another challenge 

for subcutaneous injection products is the difficulty of administration for patients suffering 

with visual or motor skill impairment, common ailments for patients with type 2 diabetes 

[200]. To address these issues, two orally available GLP-1 RAs are currently in clinical 

trials. A once-daily oral semaglutide is being developed by Novo Nordisk. The oral delivery 

of semaglutide is achieved by using the Eligen® technique developed by Emisphere 

Technologies. Semaglutide is co-formulated with sodium N-[8-(2-hydroxybenzoyl) amino] 

caprylate (SNAC), a delivery carrier to enhance gastrointestinal absorption [201]. SNAC can 

non-covalently interact with peptide, forming a peptide/SNAC complex with increased 

lipophilicity able to permeate through the gastrointestinal epithelium via transcellular 

pathways [202]. The efficacy of different doses of oral semaglutide (2.5 mg, 5 mg, 10 mg, 

20 mg and 40 mg once daily) were assessed and compared to subcutaneously delivered 

semaglutide (1 mg/dose once weekly) in Phase 2 clinical trials. Although percent 

semaglutide bioavailability is in single digit [203], the efficacies of either the 20 mg or 40 

mg once daily oral doses of semaglutide were comparable to the 1 mg once weekly dose of 

drug administered subcutaneously [204]. Additionally, a dose-dependent HbA1c reduction 

ranging from −0.7% to −1.9% and body weight loss ranging from −2.1 kg to −6.9 kg was 

found [204, 205]. Oral semaglutide is currently being tested in the Phase 3 trial (PIONEER) 

in type 2 diabetes patients [206]. Another oral GLP-1 RA product, ORMD-0901, developed 

by Oramed, was tested in Phase 2 clinical trials [207]. Here, oral delivery is achieved by 

using POD™ technology where exenatide is encapsulated into coated capsules with protease 

inhibitors and absorption enhancers [208]. However, there have been no recent updates nor 

published efficacy data regarding this investigational drug.

Other delivery routes for GLP-1 RAs have also been investigated. Mannkind Corporation 

recently developed a GLP-1 inhalation powder, MKC253, for pulmonary delivery based on 

the Technosphere™ technique [209]. In this method, GLP-1 is absorbed onto 

Technosphere™ microparticles composed of fumaryl diketopiperazine (FDKP) with a size 

range of 2-5 μm. Once the GLP-1 loaded microspheres arrive at the lung, FDKP dissolves 

and GLP-1 is absorbed into systemic circulation [209]. In a phase 1 clinical study, peak 

concentrations of GLP-1 were achieved within 5 min, and GLP-1 was eliminated after 30 

minutes with an estimated bioavailability between 0.5% to 1.6% [210]. TransPharma 
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Medical Ltd developed a transdermal delivery system for their GLP-1 agonist ViaDor-GLP1, 

achieved using a hand-held microporation-based device, and have completed a Phase 1 

clinical trial [211]. Based on the available data, the long-term success of these oral, inhalable 

or transdermal GLP-1 RAs remains unclear. Several non-invasive approaches have been 

developed in the past for insulin delivery [212, 213], but many of these products, particularly 

oral insulin products, faced challenges in clinical trials due to variable therapeutic responses 

owing to patient-to-patient differences in bioavailability [214-216]. Others, such as 

Exubera® (inhaled insulin) failed due to poor market penetration as well as safety concerns 

associated with drug accumulation in the lungs [217, 218].

Recently, co-agonists simultaneously activating GLP-1 and other incretin receptors have 

generated significant interest in the pharmaceutical industry. These dual agonists could 

simultaneously exert the functions of GLP-1 and other incretins such as glucagon [219, 

220], gastric inhibitory polypeptide (GIP) [221] and gastrin [222], enabling better anti-

diabetes efficacy. Although using glucagon as a therapy for diabetes seems counterintuitive, 

GLP-1/glucagon co-agonists have been reported to produce favorable effects with respect to 

body weight loss and glucose control in animal models [223]. For example, MEDI0382, one 

GLP-1/glucagon co-agonist developed by MedImmune, was reported to have glucose-

lowering efficacy comparable to liraglutide and led to greater weight loss in mice [224]. 

Major pharmaceutical companies, including Novo Nordisk, Sanofi, Eli Lily, Janssen and 

Merck are currently developing their own GLP-1/glucagon co-agonist candidates, most of 

which are in Phase 1 or Phase 2 clinical trials [225]. Other combinations, such as GLP-1/

gastrin co-agonists and GLP-1/GIP co-agonists, are also under development. One example, a 

GLP-1/gastrin dual agonist developed by Zealand Pharma, is reported to improve glucose 

control in diabetic mice by improving pancreatic β-cell function [226]. As many of these 

products are peptides, similar half-life extension strategies as were used for GLP-1 products 

will likely be employed in their design.

7. Summary

Here, we presented a case study of the various drug delivery strategies that have been 

applied to extend circulation the half-life of labile GLP-1 peptides. Simple amino acid 

substitutions or sequence modifications of the endogenous GLP-1 to avoid proteolysis lead 

to a modest increase in GLP-1 RA half-life from 2 min to 2-3 hours, resulting in the twice- 

and once-daily products Byetta® and Adlyxin®, respectively. However, side effects and 

reduced efficacy associated with high peak to trough ratios in their pharmacokinetic profiles 

resulted in only limited commercial success of these products, with 2.7 and 0.4% market 

share for Byetta® and Adlyxin®, respectively. When sequence modification was combined 

with the conjugation of fatty acid to allow for slow absorption of peptide and endogenous 

albumin binding, the plasma residence time increased and half-life was extended to 13 

hours. Victoza® offers both convenience of dosing, robust activity, proven efficacy in 

cardiovascular event protection and reduced side effects relative to Byetta®. In addition, 

Victoza® was the first product on the market to achieve once-daily dosing and was launched 

by Novo Nordisk, a company experienced in diabetes product sales due to its large insulin 

franchise. These factors contributed strongly to development of the most commercially 
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successful GLP-1 RA product, Victoza®, earning last year ~$3.4 billion and controlling over 

50% of the overall GLP-1 RA market.

To mount competition to Victoza®, four once-weekly GLP-1 RA products were designed. 

Fusion of peptide to either antibody Fc fragment or albumin resulted in the development of 

Trulicity® and Tanzeum®, both with a plasma half-life of 5 days. To improve on Victoza® 

performance, Novo Nordisk developed Ozempic® by modifying the peptide with a longer 

steric fatty di-acid, resulting in a plasma half-life of 7 days. Finally, a polymer-controlled 

release formulation of exenatide, Bydureon®, was developed for once-weekly 

administration. Interestingly, while the clinical efficacy parameters for all weekly products 

are similar, variations in side effect profiles and ease of use between the products have 

contributed to vastly different market penetration. While Bydureon® sales hold steady at ~ 

10% of the market, Trulicity® sales took off rapidly following product introduction, 

exceeding 30% of the market share in 2017. In contrast, Tanzeum® was unable to capture 

any market and was discontinued in 2017. The 2018 market introduction of both potent and 

easy to use once-weekly Ozempic® will likely again alter the GLP-1 RA prescribing 

landscape. Overall, competition between various peptide delivery technologies for capture of 

GLP-1 RA market represents an interesting case study broadly applicable to the 

development of delivery systems for other peptides and proteins. As scientists in the drug 

delivery field we often focus on engineering products for maximizing plasma half-life and 

investigating mechanisms to achieve it. In that regard, actual market dominance appears to 

be significantly driven by simplicity of use, dosing schedule, injection site discomfort, 

robust efficacy, indication and contraindication in certain subpopulations, and low side-effect 

profile along with non-scientific factors, such as first-to-market, size and experience of the 

company’s diabetes sales force, negotiated pricing and reimbursement agreement, 

geographic areas of regulatory approvals and patent exclusivity. Understanding the entire 

product landscape is thus important in order to maximize product success.
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Figure 1. 
Peptide sequences and molecular structures of FDA approved GLP-1 RAs.
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Figure 2. 
(A) Half-life extension mechanisms of acylated GLP-1 analogs. (B) Mean concentration-

time profile of liraglutide following single dose of 0.6 mg, 1.2 mg, or 1.8 mg at steady state 

in healthy male Chinese subjects. Adapted with permission of © John Wiley & Sons, Inc. 

from Jiang et al. J Clin Pharmacol. 2011;51:1620–7. [72] (C) Mean concentration-time 

profile of semaglutide following single dose of 1.0 mg at steady-state. Adapted with 

permission of © John Wiley & Sons, Inc. from Kapitza et al. J Clin Pharmacol. 2015; 55(5):

497-504. [73]
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Figure 3. 
(A) Half-life extension mechanisms of albiglutide. (B) Mean concentration-time profile of 

albiglutide following a single subcutaneous 30 mg injection. Adapted with permission of © 

2015 Taylor & Francis Ltd. from Young et al. Postgraduate Medicine. 126:7, 84-97. 

www.tandfonline.com [78].
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Figure 4. 
(A) Half-life extension mechanisms of dulaglutide. (B) FcRn recycling pathway of 

dulaglutide. (C) Mean concentration-time profile of dulaglutide following single dose of 1.5 

mg subcutaneously injected in abdomen, thigh, or arm. Data obtained from an EMA 

assessment report of Trulicity® [87].
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Figure 5. 
(A) Release process of exenatide from microspheres. (B) Mean concentration-time profile of 

exenatide following single dose of Bydureon®. (C) Mean concentration-time profile of 

exenatide following repeated weekly administrations of Bydureon® (exenatide ER same as 

exenatide QW) compared with a single administration of Byetta® (exenatide IR). Adapted 

with permission of © 2011 Adis Data Information BV from Fineman et al. Clin 
Pharmacokinet 2011; 50 (1).[97]
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Figure 6. 
Schematic of ITCA 650 (A) and mean concentration-time profile of exenatide following 

implantation of ITCA 650 (B). With permission of Henry et al. Clinical therapeutics 35.5 

(2013): 634-645. [100]
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Figure 7. 
Market share of GLP-1 RAs in 2016 and 2017.
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Table 3.

GLP-1 RAs pharmacokinetics parameters

Product
name Dose Tmax Vd T1/2 AUC CL Ref

Exenatide BID
Byetta® Single dose of 10 μg 2.1 h 28.3 L 2.4 h 1036 pg•h/ml 9.1 L/h [19]

Lixisenatide
Adlyxin® N.A. 1-3.5 h 100 L 3 h N.A. 35 L/h [25]

Liraglutide
Victoza® Single dose of 0.6 mg 8-12 h 13 L 13 h 960 ng•h/ml 1.2 L/h [20]

Semaglutide
Ozempic® Single dose of 0.5 mg 56 h 9.4 L 7 days 3123 nmol•h/L 0.039 L/h [34]

Albiglutide
Tanzeum® Single dose of 30 mg 3-5 d 11 L 5 days 465 μg•h/ml 0.067 L/h [23]

Dulaglutide
Trulicity® Multiple doses of 1.5 mg to steady state 24-72 h 17.4 L 5 days 14 μg•h/ml 1.07 L/h [24]

Exenatide QW
Bydureon® Multiple doses of 2 mg to steady state Css =300 pg/ml; Tss = 6~7 weeks [21]

ITCA 650 Continuous delivery of 20 μg/day Css = 75.8 pg/ml [42]

Abbreviations: Tmax: time to reach peak plasma concentration after administration; Vd: apparent volume of distribution; AUC: area under the 

curve for peptide concentration in plasma, CL: clearance; Css: average peptide concentration at the steady state; Tss: time to reach steady state after 
administration.
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Table 4.

Summary of GLP-1 RA initial therapy and monotherapy Phase 3 clinical trials.

GLP-1 RAs Dose FPG
(mg/dl)

PPG
(mg/dl)

HbA1c
(%)

Weight
loss (kg) References

Exenatide BID
(Byetta®) 10 μg BID −18.7 −24.7 −0.9 −3.1 [133]

Lixisenatide
(Lyxumia®/Adlyxin®)

10 μg for 2 wks then 20 μg −19.8 −98.5 −0.85 −2 [134]

10 μg for wk 1, 15 μg for wk 2, then 20 μg −16.2 −81.2 −0.73 −2 [134]

Liraglutide
(Victoza®)

1.2 mg −14.4 −30.6 −0.84 −2.1 [135]

1.8 mg −25.2 −37.8 −1.14 −2.5 [135]

Semaglutide
(Ozempic®)

0.5 mg −45 N. A. −1.45 −3.7
[71]

1.0 mg −41.4 N. A. −1.55 −4.53

Dulaglutide
(Trulicity®)

0.75 mg −26 −41.4 −0.71 −2.36 [136]

1.5 mg −29 −43.4 −0.78 −2.29 [136]

Albiglutide
(Tanzeum®/Eperzan®)

30 mg −34 N. A. −0.84 −0.4 [137]

50 mg −43 N. A. −1.04 −0.9 [137]

Exenatide QW
(Bydureon®) 2 mg −41.4 N. A. −1.53 −2.0 [138]

Abbreviations: FPG: fasting plasma glucose level; PPG: postprandial plasma glucose level; HbA1c: level of hemoglobin A1c; BID: twice a day; 
QW: once a week; N. A.: information is not available.
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