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ABSTRACT
Cervical cancer (CC) is a leading cause of cancer-related death in women. Limited studies have
investigated whether immune-related genes (IRGs) or tumor immune microenvironment (TIME) could
be indicators for CC prognoses. The aim of this study was to develop an improved prognostic signature
for CC based on IRGs or TIME to predict survival and response to immune checkpoint inhibitors (ICIs).
A prognostic signature was constructed using bioinformatics method and its predictive capability was
validated. The mechanisms underlying the signature’s predictive capability were explored with
CIBERSORT algorithm and mutation analysis. Immunophenoscore (IPS) is validated for ICIs response,
and was therefore explored in relation to the signature. A prognostic signature based on 11 IRGs was
developed. A multivariate analysis revealed that the 11-IRG signature was an independent prognostic
factor for overall survival (OS) and progression-free interval in CC patients. In the 11-IRG signature high-
risk group, CD8 T cells and resting mast cells, which are found to associate with better OS in our study,
were lower; activated mast cells, associated with poorer OS, were higher, compared with the low-risk
group. An IPS analysis suggested that the 11-IRG signature low-risk group, which possessed a higher IPS,
represented a more immunogenic phenotype that was more inclined to respond to ICIs. In short, an 11-
IRG prognostic signature for predicting CC patients’ survival and response to ICIs was firmly established.
The predictive capability of this model in CC requires further testing with the goal of better prognostic
stratification and treatment management.
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Introduction

Cervical cancer (CC) is the fourth most frequently diagnosed
cancer and the fourth leading cause of cancer death in
women, making CC a major public health concern.1 In
2018, there were an estimated 570,000 new cases, and
311,000 deaths from CC worldwide.1 There are two primary
histological types of CC: cervical squamous cell carcinoma
(CSCC), which accounts for approximately 80% to 85% of
cervical cancers cases; and cervical adenocarcinoma (CAC),
which accounts for 15% to 20% of cases.2 Standard treatments
including chemotherapy, radiotherapy, and surgical resection
have improved the prognosis of early-stage CC. However; it is
difficult to prevent metastasis and recurrence of CC, which is
responsible for most CC deaths.3,4 Considering the molecular
mechanisms of human papilloma virus (HPV) related CC;
immunotherapy provides an additional, rational treatment
option for CC. Human papilloma virus related CC presents
a unique viral antigen enabling T cells to distinguish between
tumor cells and normal cells, and this serves as an ideal
candidate for immunotherapy.5 In addition, increased muta-
tional burden aids in the identification of neoantigens, which

are targetable and present in most CCs.6 Checkpoint inhibi-
tor-based immunotherapy targeting cytotoxic T lymphocyte
antigen 4 (CTLA4), programmed cell death-ligand 1 (PD-L1),
or programmed cell death 1 (PD1) have achieved impressive
success in the treatment of various cancer types.7,8 While
initial studies have shown activity of immune checkpoint
inhibitor (ICI) in CC, response rates are disappointing.9

This suggests only a subset of CC patients can obtain clinical
benefit. Despite these low response rates, pembrolizumab was
approved by the United States Food and Drug Administration
(FDA) for patients with recurrent or metastatic CC with
disease progression during or after chemotherapy.10 To take
a precision medicine approach in cancer immunotherapy, it is
critical to identify and develop predictive biomarkers of
checkpoint inhibitor-based immunotherapy responsiveness.
Tumor immune microenvironment (TIME) is an important
variable relating to the progression of CC.11,12 Additionally,
several immune prognostic signatures have been reported to
predict the prognosis of patients with cancer, such as lung
cancer,13 ovarian cancer,14 colorectal cancer,15 and hepatocel-
lular carcinoma.16 These studies indicate that IRGs or TIME
can serve as promising biomarkers for estimating survival in
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corresponding cancer. However, limited studies have explored
whether immune-related genes (IRGs) or TIME could be
indicators for the prognosis of CC. An improved prognostic
signature of CC based on IRGs or TIME is urgently needed to
predict outcomes and response to ICI.

Our study aimed to develop a new immune signature with
predictive power based on IRGs or TIME. Following the
development of the immune signature, its relationship to
clinicopathological characteristics, and prognosis (overall sur-
vival (OS) and progression-free interval (PFI)) in CC was
investigated. Moreover, immune cell infiltration, mutation
data, and immunophenoscore (IPS) associated with this sig-
nature in CC was thoroughly explored. This may help to
provide a more complete understanding of, and more precise
immunotherapy for, CC.

Materials and methods

Patient data

Cervical cancer patients with gene expression profiles and
clinical information were obtained from the Cancer Genome
Atlas (TCGA) data portal (https://portal.gdc.cancer.gov/). The
comprehensive list of IRGs was downloaded from the
Immunology Database and Analysis Portal (ImmPort) data-
base (https://immport.niaid.nih.gov), which shares immunol-
ogy data and provides a list of IRGs for cancer researchers.17

The IRGs that actively participated in the immune process
were identified.17

Differential gene analysis

To select the IRGs that contributed to the development and
progression of CC, differentially expressed genes (DEGs)
between tumor samples and normal samples were screened
using the edgeR package.18 A differential expression analysis
was conducted, with an adjusted P-value < 0.05 and |log2
(fold change)| > 1 as the thresholds. Differentially expressed
immune-related genes (DE IRGs) were identified at points of
intersection between the IRG list (mentioned above) and the
DEG list.

Functional enrichment analyses

Functional enrichment analyses were performed to investigate
the possible molecular mechanisms of DE IRGs. We per-
formed gene ontology (GO), and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analyses using
DAVID.19 Terms in GO and KEGG with a false discovery
rate (FDR) < 0.05 were considered significantly enriched and
were visualized using R package “ggplot2”.20

Development and validation of the immune related
signature for CC

The Cancer Genome Atlas CC patients were divided into
a training set and a testing set. The training set was used for
identifying the prognostic immune related signature and establish-
ing a prognostic immune related risk model, and the testing set

was used for validating its prognostic capability.21 To explore the
putativeDE IRGs related to prognosis for CCpatients, a univariate
Cox proportional hazard regression analysis was used to identify
the relationship between DE IRGs and OS in the training set. If
P < 0.05, the corresponding DE IRGs were considered prognostic
variables. Prognosis-related DE IRGs (P < 0.05) were evaluated
using a least absolute shrinkage and selection operator (LASSO)
penalized Cox proportional hazards regression to minimize over-
fitting, and to find the best gene model using the R package
“glmnet”.22,23 This model was used to construct the immune
related risk signature predicting the prognosis in CC patients.
The risk score was established with the following formula: Risk
score = expression of Gene 1 * coefficient + expression of Gene 2 *
coefficient +… expression of Gene n * coefficient.24 The risk score
was calculated based on this model for each patient in the training
set, testing set and total set. Patients were then divided into high-
and low-risk groups according to the median cutoff of the risk
score. To validate the prognostic capability of the immune related
risk signature, we calculated the area under the curve (AUC) with
R package “survivalROC” and evaluated the significance of the
survival difference between high-and low-risk groups.25 The
Kaplan–Meier survival curves demonstrated the OS of the high-
risk group and low-risk group, which were stratified according to
immune signature. A survival analysis was performed using the
“survival” R package.26 The concordance (c)-index27 was applied
to validate the predictive ability of this signature in the training,
testing, and total sets using the “survcomp” R package.28 The high
c-index value suggested accurate predictive capability of the
signature.27

Estimate of tumor-infiltrating immune cells

The Cancer Genome Atlas gene expression RNA-sequencing
data were used to estimate the proportions of 22 types of
infiltrating immune cells using the CIBERSORT algorithm
following the procedure as previously reported.29

Mutation analysis

Subject to availability, the mutation data for TCGA CC
patients were downloaded from the TCGA data portal
(https://portal.gdc.cancer.gov/). The data containing somatic
variants were stored in the form of Mutation Annotation
Format (MAF). Mutation data were analyzed and summarized
using maftools.30 For each CC patient, we calculated the
tumor mutation burden (TMB) score as follows: (total muta-
tion/total covered bases) × 10^6.31

IPS analysis

As previously described, a patient’s IPS can be derived with-
out bias using machine learning through consideration of the
four major categories of genes that determine immunogeni-
city: effector cells, immunosuppressive cells, MHC molecules,
and immunomodulators. This is accomplished by analyzing
gene expression in the cell types comprising the four
categories.32 The IPS is calculated using a scale with a range
of 0–10 based on representative cell type gene expression
z-scores, where higher scores are associated with increased
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immunogenicity.32 The IPSs of patients with CC were
retrieved from The Cancer Immunome Atlas (TCIA)
(https://tcia.at/home).

Statistical analysis

Continuous variables were summarized as mean ± SE or median;
categorized variables were described by frequency (n) and propor-
tion (%). Differences among variables were tested using t-tests,
nonparametric tests, chi-square tests, or ANOVA tests. Univariate
cox regression analysis and multivariate cox regression analysis
were performed to evaluate the prognostic effect of the immune
signature and various clinicopathological features including age,
clinical stage, grade, and T/N/M stage. Statistical analyses were
performed using Graphpad prism 7 and R software, version 3.5.1.
The volcano plot was generated using R package “ggplot2”. The
heatmap was generated using R package “pheatmap”. A two-sided
P value < 0.05 was considered statistically significant.

Results

Patient characteristics

According to the defined criteria, RNA-sequencing expression
profiles and clinical information for 304 CC patients were
downloaded from the TCGA data portal. Patients were ran-
domly divided into the training set (n = 152) and the testing
set (n = 152). There were no significant differences (P > 0.05)
in clinical variables between the patients in the training and
testing sets (Table 1).

Identification of DE IRGs

Based on the adjusted P-value < 0.05 and |log2 (fold change)|
> 1, a total of 3,739 differentially expressed genes were identi-
fied: 2,062 were up-regulated and 1,677 were down-regulated.
From this set of genes, 213 DE IRGs were extracted (Figure 1).
Enrichment analyses for these DE IRGs were performed using
DAVID. The six most highly enriched terms for biological
process, cellular component, and molecular function are
shown in Figure 2(a). The most enriched terms for biological
process, cellular component, and molecular function were
“regulation of cell proliferation”, “extracellular space”, and
“growth factor activity”, respectively. The six pathways in
terms of enrichment by these genes were: “cytokine-cytokine
receptor interaction”, “neuroactive ligand-receptor interac-
tion”, “JAK-STAT signaling pathway”, “axon guidance”, “mel-
anoma”, and “B cell receptor signaling pathway” (Figure 2(b)).

Construction of immune related risk signature

To explore the prognostic value of the above 213 DE IRGs,
a univariate Cox regression analysis was performed. Seventeen
DE IRGs were significantly linked to the OS of CC patients in
the training set (P < 0.05). To minimize overfitting, these 17 DE
IRGs underwent LASSO analysis, and 11 of the 17 DE IRGs were
identified (Figure 3).We utilized these 11DE IRGs to establish the
immune signature (Table 2). As previously described, 24 the pre-
dictive model was defined as the linear combination of the expres-
sion levels of the 11 IRGs weighted by their relative coefficient in
multivariate Cox regression as follows: risk score = (0.32196 *
LEPR) + (−0.64921* PRLHR) + (−0.32677 *NR2F2) +
(0.23573*PRL) + (0.39005*NRP1) + (0.02975*TNFRSF10B) +
(0.39830*TNFRSF10A) + (0.14607*PLAU) + (−0.68625 *IFI30)

Table 1. Clinical variables in the training and testing sets.

Variables Group Total set(n = 304)
Training set
(n = 152) Testing set (n = 152) P value Method

Survival time (days) 1027 ± 65.76* 1033 ± 93.17 1021 ± 93.13 0.9265 t-test
Vital status Alive 233(76.64%) 118(77.63%) 115(75.66%) 0.6842 χ2 test

Dead 71(23.36%) 34(22.37%) 37(24.34%)
Clinical stage I 162(53.29%) 87(57.24%) 75(49.34%) 0.5823 χ2 test

II 69(22.70%) 29(19.08%) 40(26.32%)
III 45(14.80%) 22(14.47%) 23(15.13%)
IV 21(6.91%) 11(7.24%) 10(6.58%)
NA 7(2.30%) 3(1.97%) 4(2.63%)

T stage T1 173(56.91%) 94(61.84%) 79(51.97%) 0.2356 χ2 test
T2 80(26.32%) 39(25.66%) 41(26.97%)
T3 20(6.58%) 8(5.26%) 12(7.89%)
T4 10(3.29%) 3(1.97%) 7(4.61%)
TX 21(6.91%) 8(5.26%) 13(8.55%)

N stage N0 168(55.26%) 82(53.95%) 86(56.58%) 0.7153 χ2 test
N1 70(23.03%) 38(25%) 32(21.05)
NX 66(21.71%) 32(21.05%) 34(22.37%)

M stage M0 128(42.11%) 64(42.11%) 64(42.11%) >0.9999 χ2 test
M1 10(3.29%) 5(3.29%) 5(3.29%)
MX 166(54.61%) 83(54.61%) 83(54.61%)

Age(years) ≤65 269(88.49%) 140(92.11%) 129(84.87%) 0.0712 Fisher’s exact test
>65 35(11.51%) 12(7.89%) 23(15.13%)

Histological grade G1 18(5.92%) 6(3.95%) 12(7.89%) 0.4765 Fisher’s exact test
G2 135(44.41%) 69(45.39%) 66(43.42%)
G3 118(38.82%) 62(40.79%) 56(36.84%)
G4 1(0.33%) 0 1(0.66%)
GX 32(10.53%) 15(9.87%) 17(11.18%)

Histological type Squamous Cell Carcinoma 252(82.89%) 125(82.24%) 127(83.55%) 0.8882 χ2 test
Adenosquamous 5(1.64%) 3(1.97%) 2(1.32%)
Adenocarcinoma 47(15.46%) 24(15.79%) 23(15.13%)

NA: Not Available; TX: unknown T stage; MX: unknown M stage, GX: unknown histological grade; NX: unknown N stage. * The data are presented as mean ± SE
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+ (0.38166 *ANGPTL5) + (−0.03522*IGF1). Seven of these 11
IRGs were associated with high risk (LEPR, PRL, NRP1,
TNFRSF10B, TNFRSF10A, PLAU, ANGPTL5, Coef > 0) and
four were protective (PRLHR, NR2F2, IFI30, IGF1, Coef < 0)
(Table 2).

Risk scores for each patient in the training set were calcu-
lated (based on the 11 IRGs expression). All of the patients in
the training set were classified into either a high-risk group
(n = 76) or a low-risk group (n = 76) according to their
median risk score. Overall survival was significantly different
between the two predicted groups (P = 4.83e−06, log-rank
test) (Figure 4(a)). High-risk patients had poorer OS than
low-risk patients. The AUC for the 11-IRG risk signature
was 0.835 at five years for OS. The AUC was 0.834 at three
years (Figure 4(b)). We ranked the risk scores of patients in
the training set and analyzed their distribution in Figure 4(c).
The survival status of CC patients in the training set was
marked on the dot plot (Figure 4(d)). The heatmap revealed
expression patterns of 11 IRGs between two different prog-
nostic patient groups (Figure 4(e)).

Evaluating the predictive capability of the 11-IRG risk
signature

To determine the robustness of the 11-IRG signature, its
predictive capability was further verified using the testing set
and total set. The risk score was calculated for patients in the
testing set and total set based on the expression level of 11
IRGs. Each patient in the testing set was marked as high-risk
or low-risk, as previously described. There were 76 high-risk
patients and 76 low-risk patients among the testing set.
Kaplan-Meier survival curves were significantly different in
the two predicted risk groups (Figure 5(a), P = 1.96e-02).
Similarly, the OS for low-risk patients was higher than that
of the high-risk patients. In the testing set, the three year AUC
was 0.656 and the five year AUC was 0.634 (Figure 5(b)). The
distribution of risk score, survival status, and expression of 11
IRGs in the testing set are displayed in Figure 5(c-e).
Prognostic predictions using 11-IRG signature for patients
in the total set were similar to the training set (Figure 6).

Patients in the total set were divided into high-risk (n = 152)
and low-risk (n = 152) groups. The high-risk patients had
shorter median survival than the low-risk patients (1.6 vs.
2.036 years, P = 1.29e−06) (Figure 6(a)). In the total set, the
three year AUC was 0.733 and the five year AUC was 0.747
(Figure 6(b)). The distribution of risk score, survival status,
and expression of 11 IRGs for CC patients in the total set are
displayed in Figure 6(c-e). The c-index for the training, test-
ing, and total set was 0.793, 0.725, and 0.751, respectively.

Relationship between the immune related risk signature
and the patients’ prognosis

A univariate Cox regression model was used to analyze the
relationship between OS, PFI, clinicopathological variables,
and 11-IRG risk signature in the total set (Table 3). This
signature could act as an independent prognostic factor for
OS in the total set in the multivariate analysis (HR (95%
CI) = 3.042(1.631–5.671), P < 0.001, Table 4). The signature
could also independently predict PFI in the total set (HR (95%
CI) = 2.774(1.448–5.310), P = 0.002, Table 4). The sample size
was small after we excluded cases with unknown M stage
(MX, n = 169, >50%), therefore M stage was not included in
the multivariable model.

Association between the immune related risk signature
and clinicopathological factors

The relationships between the immune signature and clinico-
pathological factors were analyzed. The 11-IRG risk score was
significantly higher in advanced N stage cases and in
increased tumor burden cases (Figure 7). The 11-IRG risk
score is meaningful in the correlation of subtype classification.
However, no difference was observed between age, M stage,
histological grade, clinical stage, and T stage (Figure 7).

Figure 1. Identification of differentially expressed immune-related genes. (a) Volcano plot of differentially expressed genes in cervical cancer based on data from
TCGA. (b)Venn diagram for the intersections between cervical cancer differentially expressed genes and immune-related genes.
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TIME changing associated with the immune related risk
signature

Immune cells were the main part of TIME and we strived to
determine which classes of immune cells were associated with
the immune related risk signature. CIBERSORT was applied to
RNA-sequencing data to assess the relative proportion of the 22
immune cells in each CC sample (Figure S1). A heatmap of the
22 immune cell proportions is presented in Figure S2. Immune
cell type abundance between the 11-IRG signature low-risk
group and the high-risk group in the total set are displayed in
Table 5. Among the 22 immune cell types, memory B cells,
activated mast cells, resting NK cells, and M0 macrophages were
positively correlated with the 11-IRG risk score(Figure 8).
Resting mast cells, monocytes, CD8 T cells, and regulatory
T cells were negatively correlated with the 11-IRG risk score
(Figure 8). Among the 22 types of immune cells, the relative
proportion of mast cells, activated (Figure 9(a)); mast cells,
resting (Figure 9(b)); NK cells, resting (Figure 9(c)); memory

CD4 T cells, activated (Figure 9(d)); memory CD4 T cells,
resting (Figure 9(e)); and CD8 T cells (Figure 9(f)) were sig-
nificantly associated with OS in the survival analyses. In the 11-
IRG signature high-risk group, CD8 T cells and resting mast
cells which were lower levels were found to associate with better
OS, and activated mast cells which were higher levels were
found to associate with poorer OS. These results may partially
explain the poorer prognosis for the high-risk group.

The immune related risk signature and mutation profile

The relationship between mutation profile and the signature was
evaluated in TCGA CC patients with available somatic mutation
data. The summary of the overall mutation profile of TCGA CC
dataset was illustrated in Figure S3. The top ten mutated genes in
CC patients were: TTN, MUC4, PIK3CA, MUC16, KMT2C,
KMT2D, SYNE1, FLG, EP300, and DMD. The most frequently
mutated genes in the low-risk and high-risk groups are presented

Figure 2. Functional enrichment analyses of differentially expressed immune-related genes. (a) Gene ontology analysis. (b) The top six most significant Kyoto
Encyclopedia of Genes and Genomes pathways.
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in Figure 10(a). Surprisingly, TMBwas higher in low-risk patients;
however, the result was not statistically significant (P = 0.7864;
Figure 10(b)). Furthermore, we found that TMB was not asso-
ciated with OS (P = 0.544) and PFI (P = 0.633) (Figure 10(c))

The immune related risk signature and response to ICI

Recent studies have revealed the role of IPS in predicting response
to ICI in melanoma patient based on high pre-existing immuno-
genic potential .32 In this study, we thoroughly explored the
association between IPS andour immune signature inCCpatients.
The IPS, IPS-PD1/PD-L1/PD-L2, IPS-CTLA4, and IPS-PD1/PD-
L1/PD-L2 +CTLA4 scores were designed to estimate the potential
to be placed on ICI for patients. The resulting scores were sig-
nificantly increased in the 11-IRG signature low-risk group
(Figure 11(a)): IPS, P = 0.0363; IPS-PD1/PD-L1/PD-L2,
P = 0.0017; IPS-CTLA4, P = 0.0028; and IPS-PD1/PD-L1/PD-L2
+CTLA4, P = 0.0002. This indicated that the 11-IRG signature
low-risk group, displaying a higher IPS, appeared to have a more
immunogenic phenotype. In our study, low-risk patients pre-
sented higher gene expression of PD1 (P ＜ 0.0001) and CTLA4

(P = 0.0004, Figure 11(b)). The expression of PD-L1 and PD-L2
was high in low-risk patients, although not statistically significant
(Figure 11(b)).These results suggested that 11-IRG signature low-
risk patients were promising candidates for ICI.

Discussion

Evidence has accumulated demonstrating the potential of ICI
in CC treatment.33 However, only a small portion of CC
patients obtain therapeutic effect from ICI. It is critical to
identify and develop predictive biomarkers for ICI response.
The complexity of the immune response and tumor biology
makes it unlikely that a single biomarker will be sufficiently
predictive of clinical outcomes and response to immunother-
apy. Rather, the integration of multiple tumor and immune
response parameters, including genomics and transcrip-
tomics, may be necessary for accurate predictions.34

Moreover, given the critical role of TIME in tumor progres-
sion, it is of great importance to find out immune related
model for the prognosis of CC patients, which may also play
a significant role in identifying which patients would obtain
clinical benefit from immunotherapy.

The prognostic value of this signature

We constructed and validated an immune related risk signa-
ture for CC using TCGA dataset. The signature was composed
of 11 DE IRGs with prognostic capability. Among the 11 DE
IRGs, seven DE IRGs (LEPR, PRL, NRP1, TNFRSF10B,
TNFRSF10A, PLAU and ANGPTL5) were associated with
high risk and four (PRLHR, NR2F2, IFI30, and IGF1) were
protective factors. Seven genes (LEPR, PRLHR, NR2F2, PRL,
NRP1, ANGPTL5, and IGF1) were downregulated in the
cervical cancer tissues compared to the normal tissues based

Figure 3. Forest plot illustrating the multivariable Cox model results of each gene in 11-IRG risk signature.

Table 2. Coefficients and multivariable Cox model results of each gene in 11-IRG
risk signature.

Gene Log FC Regulation Coefficient HR Z score P value

LEPR −3.67 Down 0.32196 1.37982 1.911 0.05602
PRLHR −6.70 Down −0.64921 0.52246 −1.689 0.09113
NR2F2 −2.70 Down −0.32677 0.72125 −1.901 0.0573
PRL −4.03 Down 0.23573 1.26584 1.309 0.19058
NRP1 −1.58 Down 0.39005 1.47706 1.901 0.05735
ANGPTL5 −2.37 Down 0.38166 1.46472 2.666 0.00768
IGF1 −2.30 Down −0.03522 0.96539 −0.32 0.74867
TNFRSF10B 1.74 Up 0.02975 1.03019 0.084 0.9334
TNFRSF10A 1.78 Up 0.39830 1.48929 1.183 0.23695
PLAU 3.18 Up 0.14607 1.15728 1.127 0.25966
IFI30 2.10 Up −0.68625 0.50346 −3.009 0.00262

HR: hazard ratio; FC: fold change.
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on the TCGA CC dataset. Four genes (TNFRSF10B,
TNFRSF10A, PLAU, and IFI30) were upregulated. PRL,
NRP1, and PLAU have been reported to be involved in CC
pathogenesis or significant in predicting prognosis.
A previous study has reported that PRL has antiapoptotic

effect on cervical cancer cells.35 In our study, NRP1 was
downregulated in the cervical cancer tissues compared to the
normal tissues. However, a recent study has demonstrated
that the expression of NRP1 was upregulated in the tumor
tissues compared with the cervical intraepithelial neoplasia

Figure 4. Identification of an 11-IRG signature in the training set. (a) Kaplan-Meier curve analysis of overall survival of cervical cancer patients in high- and low-risk
groups. (b)Time-dependent ROC curves analysis. Risk score distribution (c), survival status (d), and 11 IRGs expression patterns (e) for patients in normal, high- and
low-risk groups by the 11-IRG signature.

Figure 5. Validation of the 11-IRG signature in the testing set. (a) Kaplan-Meier curve analysis of overall survival of cervical cancer patients in high- and low-risk
groups. (b)Time-dependent ROC curves analysis. Risk score distribution (c), survival status (d), and 11 IRGs expression patterns (e) for patients in normal, high- and
low-risk groups by the 11-IRG signature.
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Figure 6. The prognostic role of the 11-IRG signature in the total set. (a) Kaplan-Meier curve analysis of overall survival of cervical cancer patients in high- and low-
risk groups. (b)Time-dependent ROC curves analysis. Risk score distribution (c), survival status (d), and 11 IRGs expression patterns (e) for patients in normal, high-
and low-risk groups by the 11-IRG signature.

Table 3. Univariate analysis with Cox proportional hazard model.

Overall survival Progression-free interval

Covariates HR (95% CI) P value HR (95% CI) P value

Age(≤65 vs. >65) 2.739(1.321–5.679) 0.007 2.267(1.005–5.114) 0.049
Histological grade
G1 1 1
G2 2.779(0.375–20.58) 0.317 1.064(0.245–4.611) 0.934
G3 3.198(0.426–23.92) 0.258 2.281(0.536–9.701) 0.264

Clinical stage
Stage I 1 1
Stage II 0.521(0.183−1.478) 0.220 0.479(0.169–1.359) 0.166
Stage III 1.399(0.642–3.049) 0.398 0.873(0.338–2.253) 0.779
Stage IV 2.998(1.048–8.568) 0.041 2.651(0.805–8.731) 0.109

N stage(N0 vs.N1) 2.185(1.227–3.889) 0.008 1.688(0.905–3.149) 0.100
T stage
T1 1 1
T2 0.764(0.354−1.649) 0.493 0.548(0.229–1.311) 0.177
T3 1.582(0.378–6.616) 0.530 2.104(0.503–8.799) 0.308
T4 38.822(7.647–197.092) <0.001 18.233(3.935–84.496) <0.001

11-IRG risk score(low vs. high) 2.893(1.579–5.299) <0.001 2.567(1.364–4.831) 0.003

HR: hazard ratio; CI: confidence interval.

Table 4. Multivariate analysis with Cox proportional hazard model.

Overall survival Progression-free interval

Covariates HR (95% CI) P value HR (95% CI) P value

Age(≤65 vs. >65) 3.203(1.386–7.400) 0.006 2.188(0.897–5.339) 0.085
Histological grade
G1 1 1
G2 2.690(0.353–20.478) 0.339 1.143(0.253–5.158) 0.862
G3 2.616(0.339–20.195) 0.356 2.474(0.562–10.891) 0.231

Clinical stage
Stage I 1 1
Stage II 0.955(0.287–3.177) 0.940 0.780(0.201–3.032) 0.720
Stage III 1.433(0.634–3.239) 0.387 0.677(0.244–1.880) 0.454
Stage IV 1.667(0.342–8.126) 0.527 0.866(0.107–6.907) 0.892

N stage(N0 vs. N1) 2.226(1.135–4.368) 0.020 1.883(0.927–3.827) 0.080
T stage
T1 1 1
T2 0.364(0.120–1.100) 0.073 0.553(0.165–1.851) 0.337
T3 1.076(0.239–4.848) 0.924 1.309(0.269–6.374) 0.739
T4 15.37(1.526–154.874) 0.020 13.90(1.085–178.190) 0.043

11-IRG risk score(low vs. high) 3.042(1.631–5.671) <0.001 2.774(1.448–5.310) 0.002

HR: hazard ratio; CI: confidence interval
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and normal tissues and high NRP1 expression was correlated
with a poorer survival in Chinese patients with CC.36NRP1
has been shown to involve in regulation of vascular endothe-
lial cell migration and angiogenesis and promoting tumor
growth, invasion and metastasis.37 It is reported that PLAU
(uPA) overexpresses in cervical cancer and plays a significant
role in invasion and metastasis during advanced stages of
cervical carcinoma.38 Moreover, PLAU is a predictor of early
relapse and poor prognosis in patients with cervical cancer.39

Despite the remaining 8 genes have not been previously
reported for their prognostic value in CC patients, these
genes could serve as potential biomarkers. We found that
these DE IRGs were cytokines or cytokine receptors (Table
S1). In addition, some articles suggest that these cytokines and

cytokine receptors can modulate the tumor microenviron-
ment promoting the pathogenesis of cancer.40–44 Therefore,
for CC patients in the high-risk group these genes may reflect
a changing TIME, which may contribute to CC progression
and a poorer prognosis. There were significant differences in
survival curves between patients with high-risk and low-risk
scores. The signature exhibited firm predicting capability in
the training, testing, and total sets. Additionally, our signature
was significantly related to CC patients’ prognosis, including
OS and PFI. When clinicopathological factors were combined
a multivariate Cox regression analysis demonstrated that the
11-IRG signature remained an independent prognostic factor
for OS and PFI in CC patients. These results indicate that the
signature is a firm prognostic tool. Our study revealed there

Figure 7. The relationships between the immune related risk signature and (a) tumor burden; (b) T stage; (c) M stage; (d) N stage; (e) age; (f) histological type; (g)
grade; and (h) clinical stage.

Table 5. Immune cell type abundance between the 11-IRG signature low-risk group and high-risk group in the total set.

Abundance

Immune cell type# Low-risk (n = 121)
High-risk
(n = 118) Method P value

B cells naive 0.006118* 0.004982* Mann Whitney test 0.582
B cells memory 0 0 Mann Whitney test 0.018
Plasma cells 0.04045 0.03793 Mann Whitney test 0.662
T cells CD8 0.1766 0.1224 Mann Whitney test 0.002
T cells CD4 memory resting 0.05931 0.08927 Mann Whitney test 0.315
T cells CD4 memory activated 0.02884 0.03178 Mann Whitney test 0.944
T cells follicular helper 0.05201 0.04484 Mann Whitney test 0.123
T cells regulatory 0.05578 0.03317 Mann Whitney test 0.0001
T cells gamma delta 0 0 Mann Whitney test 0.527
NK cells resting 0 0 Mann Whitney test 0.002
NK cells activated 0.04077 0.03975 Mann Whitney test 0.775
Monocytes 0.000449 0 Mann Whitney test 0.015
Macrophages M0 0.08207 0.1324 Mann Whitney test 3.43e-05
Macrophages M1 0.1044 0.09134 Mann Whitney test 0.144
Macrophages M2 0.08075 0.07147 Mann Whitney test 0.635
Dendritic cells resting 0.02452 0.01757 Mann Whitney test 0.065
Dendritic cells activated 0.008952 0.01998 Mann Whitney test 0.073
Mast cells resting 0.03694 0.02397 Mann Whitney test 0.0001
Mast cells activated 0 0 Mann Whitney test 1.04e-05
Eosinophils 0 0 Mann Whitney test 0.123
Neutrophils 0 0 Mann Whitney test 0.055

*The data are presented as median. # The naive CD4 T cells were absent in all CC samples.
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were relationships between the signature and some clinico-
pathological factors including N stage and tumor burden.
Furthermore, our signature was on the grounds of IRGs or
TIME and presented links to tumor-infiltrating immune cells.
CIBERSORT was used to assess the relative proportions of 22
immune cells in each CC sample. The abundance of CD8 T
cells and resting mast cells were low in the 11-IRG signature
high-risk group and associated with better OS. The abundance
of activated mast cells was high in the 11-IRG signature high-

risk group and associated with poorer OS. The association
between CD8 T cells infiltration and CC prognosis is estab-
lished .45 In our study, CD8 T cells infiltration was related to
longer survival in CC patients, which is consistent with pre-
vious studies. Nonetheless, the function of mast cells in CC
prognosis remains unknown. These results may partially
explain the predictive value of this signature. Mutation ana-
lysis was also performed to explore the possible mechanisms
of the signature’s prognostic value. Mutation profiles of the

Figure 8. The association of immune cells infiltration and the immune related risk signature in cervical cancer. A green violin represents the 11-IRG signature low-risk
group. A red violin represents the 11-IRG signature high-risk group. The white points inside the violin represent median values.

Figure 9. The association of immune cells infiltration and OS in TCGA cervical cancer dataset. (a) activated mast cells; (b) resting mast cells; (c) resting NK cells; (d)
memory CD4 T cells, activated; (e) memory CD4 T cells, resting; (f) CD8 T cells.
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11-IRG signature high-risk group and low-risk group were
different. We reasoned that the 11-IRG signature low-risk
group might have higher TMB, and that higher TMB was
associated with a better prognosis in this study. These
assumptions may partially explain the predictive value of

this signature. Contrary to expectations, this study did not
find a significant difference in TMB between 11-IRG signa-
ture high-risk group and low-risk group. Furthermore, we
found that TMB was not associated with OS and PFI, which
was not consistent with previous studies.46,47

Figure 10. The mutation profile and TMB among low-risk and high-risk groups. (a) Mutation profile of low-risk and high-risk groups. (b) The relationship between the
immune related risk signature and TMB.(c) The association of TMB and OS and PFI in TCGA cervical cancer dataset.

Figure 11. IPS and immunotherapy gene expression analysis. (a) The association between IPS and the immune related risk signature in CC patients. (b) The gene
expression of PD1, CTLA4, PD-L1, and PD-L2 in low-risk and high- risk groups.
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Prediction of ICI response

The association between IPS and our immune signature inCCwas
explored. The IPS, IPS-PD1/PD-L1/PD-L2, IPS-CTLA4, and IPS-
PD1/PD-L1/PD-L2 +CTLA4 scores were markedly increased in
the 11-IRG signature low-risk group.Meanwhile, low-risk patients
had high gene expression of PD1 andCTLA4.Our study suggested
that the 11-IRG signature low-risk groupmay stand for an immu-
nogenic tumor microenvironment. These results provide further
support for the hypothesis that the immune signature was
a potential model to determine which CC patients with immuno-
genic tumors are more inclined to respond to ICI. In addition,
TMB and PD-L1 expression may predict the response to ICI and
clinical benefit in some studies, 48–52 but the positive results are not
observed in several other studies.53–56 In our study, we did not find
significant differences in TMB and PD-L1 expression between the
11-IRG signature high-risk group and the low-risk group. The
relevance of the signature to ICI response is not yet fully under-
stood and further research is needed.

We constructed a valid immune related risk signature that
can comprehensively assess the TIME and predict CC
patients’ survival and response to immunotherapy. To the
best of our knowledge, this is the first immune related pre-
dictive model for CC patients using RNA-sequencing technol-
ogy. This is the first study that presents overall mutation
profile and assesses the relative proportion of 22 immune
cells of TCGA CC dataset. Additionally, this is the first sys-
tematic exploration of the correlation between TMB, abun-
dance of immune cells, and CC prognosis. Our signature can
predict patient survival and disease progression. Despite these
promising results, questions remain. First, the signature was
constructed from public data and retrospective
studies. Second, in this TCGA CC cohort, the proportion of
Asian patients was small. It is unclear whether this signature
will function effectively for Asian patients. Future studies
should incorporate a larger number of Asian CC samples.

Conclusions

We constructed a valid, reliable 11-IRG prognostic model
predicting CC patient outcomes and response to ICI based
on TIME or IRGs. This may provide a deeper understanding,
and increased precision in the application of immunotherapy
for CC. The predictive capability of this model in CC requires
further testing aimed at better prognostic stratification and
treatment management.
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