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ABSTRACT
Translation initiation is a critical step in the regulation of protein synthesis, and it is subjected to
different control mechanisms, such as 5ʹ UTR secondary structure and initiation codon context, that
can influence the rates at which initiation and consequentially translation occur. For some genes,
translation elongation also affects the rate of protein synthesis. With a GFP library containing nearly
all possible combinations of nucleotides from the 3rd to the 5th codon positions in the protein coding
region of the mRNA, it was previously demonstrated that some nucleotide combinations increased GFP
expression up to four orders of magnitude. While it is clear that the codon region from positions 3 to 5
can influence protein expression levels of artificial constructs, its impact on endogenous proteins is still
unknown. Through bioinformatics analysis, we identified the nucleotide combinations of the GFP library
in Escherichia coli genes and examined the correlation between the expected levels of translation
according to the GFP data with the experimental measures of protein expression. We observed that
E. coli genes were enriched with the nucleotide compositions that enhanced protein expression in the
GFP library, but surprisingly, it seemed to affect the translation efficiency only marginally. Nevertheless,
our data indicate that different enterobacteria present similar nucleotide composition enrichment as
E. coli, suggesting an evolutionary pressure towards the conservation of short translational enhancer
sequences.

ARTICLE HISTORY
Received 1 August 2019
Accepted 23 August 2019

KEYWORDS
Translational ramp;
translational efficiency;
bacteria; ribosome profiling;
translation elongation

Introduction

Protein synthesis is the most energetically costly process for
a bacteria cell [1]. Therefore, to ensure that the benefit due to
the expression of a given gene exceeds or equals the costs of
its production, several regulatory mechanisms operate not
only at the level of transcription but also at the translation
step to optimize the final protein output. It has long been
known that the yield of proteins produced per mRNA mole-
cule, or translation efficiency (TE), can be greatly affected by
structural elements and sequence motifs at the mRNA 5ʹ UTR
[2]. For example, both the nucleotide composition and struc-
tural context of the Shine-Dalgarno sequence determine pro-
tein translation initiation and translation efficiency in bacteria
[3]. More recently, it has been demonstrated that the expres-
sion levels of some proteins are also regulated by translation
elongation rates [4,5]. Different studies agree that in addition
to initiation, early elongation events (first 10–30 amino acid-
coding nucleotides) are relevant for TE [6]. The recognized
regulatory factors are tRNA abundance for a given codon,
nucleotide composition, mRNA structure, and the nascent
polypeptide sequence. However, because these variants are
not completely independent, it is difficult to pinpoint the

major determinant for the observed effect, generating con-
flicting models for translational efficiency regulation [7–11].

Heterologous reporter libraries designed to test the influ-
ence of a specific region of a transcript on TE became
a powerful approach to identify regulatory elements of trans-
lation. The constructs have invariable promoters and 5ʹ UTRs,
which homogenize transcriptional levels and initiation rates.
Moreover, by fixing first two amino acids of a protein, post-
translational protein degradation by the N-end rule pathway
is also controlled. Hence, TE can be estimated directly from
protein expression levels. Very recently, Djuranovic’s group
reported the effect of the five first codons on translation
efficiency in E. coli [12]. The authors generated the most
comprehensive GFP library available so far, with virtually all-
possible nucleotide compositions for codons 3 to 5 (262,144).
Recombinant cells were FACS-sorted into 5 different groups
according to their fluorescence levels, and the plasmids were
sequenced to quantify the occurrence of specific sequences in
each group. In this manner, each GFP construct was scored
according to the resulting fluorescence intensity (GFP score).
The authors also derived a nucleotide and an amino acid
motif that was more common among highly expressed
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constructs. Interestingly, some nucleotide compositions
enhanced the magnitude of protein abundance up to 4 orders
in relation to the original construct, without interfering with
the mRNA levels. In other words, the nucleotide composition
of the beginning of the protein coding sequence drastically
affected the final protein output. The authors showed that this
phenomenon could be observed with other protein reporters,
independent of the expression vector used, or in vitro and
in vivo expression conditions. While this kind of study has an
unquestionable value for optimizing the production of hetero-
logous constructs, it is still debated whether this experimental
setting is too artificial, so that, in a genomic context, the effect
of these putative regulatory motifs would be overruled by
stronger determinant factors of protein expression.

In this work, our aim was to verify the biological signifi-
cance of the GFP score obtained with this GFP library. In
other words, we wanted to evaluate whether the elongation
regulatory motifs that were identified by high-throughput
studies can be used to predict the expression of endogenous
E. coli genes. Through bioinformatics, we searched the E. coli
genome for each nucleotide composition of the GFP library,
attributing the respective GFP score to each gene (GFP-
predicted score). We observed that the nucleotide composi-
tions that yielded higher GFP scores were overrepresented in
E. coli genes when compared to a scrambled version of the
genome. This result suggested a preference for sequences that
increased translatability at the elongation step. However, the
correlation matrix between the GFP-predicted score vs. pre-
viously published experimental parameters related to gene
expression, such as translation efficiency, protein abundance,
mRNA abundance, and mRNA stability, showed no signifi-
cance (Spearman correlation ranging from −0.08 to 0.13).
Nevertheless, when evaluated as a group, we observed that
genes with high GFP-predicted scores had higher TE values
when compared with the genes with low scores. Moreover, the
ribosome occupancy at codon positions 3 to 5 was lower when
compared to the average of the genome, suggesting that this
short region modulates the speed of translation. Finally, we
observed that the bias towards sequences with high GFP-
predicted scores was conserved in other enterobacterial spe-
cies, such as Klebsiella oxytoca, and Enterobacter asburiae.
Additionally, the top scored genes from each of the three
enterobacteria had a higher orthology frequency than what
would be expected by random chance.

Results and discussion

Natural occurrence of short elongation-regulatory
sequences related to high mRNA translatability identified
by high-throughput studies

Previous works indicated that the regulatory effect of early
elongation steps on translation efficiency could arise from
interactions of the nascent peptide with the ribosomal exit
tunnel or from the decoding efficiency of the mRNA nucleo-
tide sequence [13–16]. To further investigate how these fac-
tors influence the efficiency of protein synthesis, Verma et al.
constructed the most comprehensive eGFP library published
so far. They focused on the region surrounding the +10

nucleotide position by introducing 9 random nucleotides
after the second codon [12]. The global expression of the
eGFP library was FACS-sorted into five bins, normalized by
DNA amount and sequenced. A GFP score was calculated to
represent the weighted distribution value for each indepen-
dent sequence over five FACS-sorted bins. By this metric,
sequences exclusively associated with bin 1 (lowest expres-
sion) would have a score of 1, and sequences exclusively
associated with bin 5 (highest expression) would have
a score of 5. A GFP score for each of the 259,134 unique
sequences was calculated, which covered 98.8% of all
possible nucleotide combinations at codon positions 3–5
(49 = 262,144). A cut-off of 10 reads was used, and
a Pearson correlation of 0.79 between the replicates was
found. For our analyses, the sequences with stop codons
were eliminated, and only sequences found in both replicates
were used (182,289 sequences, Pearson correlation = 0.70,
Fig. 1A). A linear fit equation with Q = 1% was used to
eliminate the constructs with low reproducibility (29,945
sequences), and the geometrical mean of the replicates was
used to score 152,344 unique nucleotide sequences (Fig. 1A).
The frequency of distribution of these refined GFP datasets
showed a non-Gaussian distribution with a main peak and
median score of 3.10 (Fig. 1B, green line). We used this
refined dataset to screen the sequence variants among the
E. coli genes and attribute the corresponding GFP score
(GFP-predicted score) (Fig. 1A). First, we analysed the score
at codons 3–5, the same positions used in the GFP library.
Using this approach, we could attribute a score for 2,644
genes with 2,500 different sequence combinations, which cov-
ered 64% of the E. coli genome (Fig. 1B, red line). Similar
results were obtained by Djuranovic’s group (personal com-
munication). The density histogram obtained with the E. coli
genome differed from the GFP library, showing a higher
median GFP-predicted score of 3.23 and an increased fre-
quency of sequences with scores higher than 4 (Fig. 1B). We
created a scrambled version of each mRNA sequence main-
taining the proportions of all 61 amino acid codons (genomic
codon bias) but randomizing the codon choice for each tran-
script. The distribution obtained with this control data set was
similar to the GFP library. (Fig. 1B, black line). To investigate
whether the genomic distribution was position-specific, we
scored the E. coli genes using codon positions 9–11. In this
case, the distribution was similar to that obtained with the
scrambled control and the GFP library (Fig. 1B, orange line).

To address the effect of the reading frame on the distribu-
tion bias observed for the E. coli genome, we shifted the
analysed nucleotide window (+1, 8–16; +2, 9–17). With this
modification, fewer genes were ranked with scores > 4, but we
still observed a bias towards higher scores, which suggested
that both the amino acid and nucleotide sequences were
important to the observed distribution. Then, we tested
whether the tri-peptide sequence would be enough to generate
the same bias observed with the nucleotide sequence. We
maintained the proportions of all 61 amino acid codons as
well as the final protein sequence but randomized the codon
choice for each transcript of E. coli (Fig. 1C, blue line). We
observed only a slight reduction in the bias towards high
GFP-predicted scores, confirming that the nascent peptide is
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important for the translatability of the mRNA. These results
were in line with experimental data observed with the GFP
constructs and indicated that both the amino acid and nucleo-
tide sequences that confer higher translation efficiency in GFP
reporters are more frequent in E. coli genes than what would
be expected by random chance.

Influence of short elongation-regulatory sequences
identified by high-throughput studies on endogenous
gene expression

The GFP score calculated by Verma et al. can be used to
estimate the relative expression levels of each eGFP variant
in the library. Hence, we asked whether the GFP-predicted
scores of endogenous genes (SCORE GENOME) would cor-
relate with the following experimental measurements

associated with gene expression levels: TE, determined by
ribosome profiling and calculated from the ratio between
ribosome-protected footprint read counts and total mRNA
read counts for each gene [17–19]; protein abundance, mea-
sured by mass spectrometry [18,20]; mRNA abundance, deter-
mined by RNAseq and microarray [19,21–23] and mRNA
secondary structure, determined by the extent of chemical
accessibility of RNA to dimethyl sulphate and quantified by
the Gini index, where the higher the structural content, the
higher the Gini value is [19]. As a control, we used
a scrambled E. coli genome that maintained the proportions
of all 61 amino acid codons but randomized the codon choice
for each transcript (SCORE SCRAMBLE).

Three main clusters were found. Cluster 1 was on the
isolated branch formed by the negative correlation values
obtained with the RNA structure Gini Index and other
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Figure 1. The E. coli genome has a bias towards nucleotide composition at codons 3–5. (A) Djuranovic’s group performed a high-throughput screen varying the
nucleotide composition at codons 3–5 in GFP. In experiments #1 and #2, 215,414 and 261,530 different compositions were analysed, respectively, regarding the GFP
fluorescence levels. The sequences with a stop codon (31,240 and 31,470 for experiments #1 and #2, respectively) were removed, and only sequences present in both
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inliers (152,344) from experiments #1 and #2. This list was used in all subsequent bioinformatics experiments. (B) Density histogram of GFP scores for genes identified
in E. coli. The nucleotide composition at codon positions 3–5 or 9–11 was analysed. As a control, we used a scrambled genome where the codon proportion was
maintained, but their position was randomly changed. Note that only codon positions 3–5 in the real genome possessed a bias towards high GFP scores. (C) The
effect of amino acid composition and mRNA sequence on GFP score bias was analysed. As a control, we used a scrambled genome where the codons were randomly
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analysed parameters (Fig. 2A). This was expected, as ahigh
degree of mRNA secondary structure can slowdown transla-
tion elongation [19]. Thesecond cluster was formed by TE,
protein abundance, and mRNA levels that had ahigh positive
correlation between them (Fig. 2A). SCORE GENOME and
SCORE SCRAMBLE formed cluster 3, which had no correla-
tion to each other or with the other parameters analysed
(Spearman correlation ranging from −0.08 to 0.13) (Fig. 2A).

This lack of correlation, however, might be due to diverse
control mechanisms that operate in a genomic context. It is
well known that translation initiation is an important para-
meter that controls the translation efficiency [24–26]. In bac-
teria, ribosome binding sites and other regulatory RNA
sequences are active control elements for translation initiation
[27]. The optimal position and length of the Shine-Dalgarno
sequence appeared to be essential for efficient initiation of

translation. For example, sequestration of ribosome binding
site by mRNA secondary structure negatively affects the
initiation of translation [24,27]. To test the influence of this
possible regulatory mechanism, we selected genes with short
5ʹ UTRs (<25 nucleotides) that would be less susceptible to
important differences in initiation rates [28] and repeated the
analyses described in panel A of Fig. 2. While the results with
the SCORE SCRAMBLE data set were barely affected by the
selection of genes with short 5ʹ UTRs, the SCORE GENOME
data set exhibited consistently improved Spearman correlation
values. Notably, we observed a gain in the correlation coeffi-
cients with the RNA structure Gini index (−0.16), TE (0.20)
and protein abundance (0.30) (Fig. 2B).

This analysis indicated that the interplay between other
determinants of gene expression could significantly skew the
expression prediction based on the GFP score. Moreover, one
should note that correlation analysis is probably too stringent

Figure 2. E. coli individual gene score calculation and its relationship with different parameters involved with gene expression. (A) Spearman’s correlation between
the E. coli score derived from the GFP library dataset (SCORE GENOME) with different cellular parameters: Gini index, TE, protein abundance, protein synthesis rates,
and mRNA abundance. The heat map shows Spearman’s correlation coefficient (ρ) values ranging from −0.88 (negative correlation, yellow panels) to 1.0 (positive
correlation, blue panels). Spearman’s correlation coefficient (ρ) values of the GFP score with other parameters ranging from −0.08 to 0.13. As a control, we used an
E. coli scrambled genome to calculate the GFP score (SCORE SCRAMBLE). (B) The same analysis described in panel A was performed with a group of genes with short
5ʹ UTRs (< 25 nucleotides).
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to detect covariations that are likely not linear. In fact, the
GFP score itself does not provide a linear correlation with
eGFP fluorescence levels [12]. Therefore, we divided the
E. coli genes into two groups: one containing genes with
high GFP-predicted scores ≥ 4.2 (Fig. 3A, green area) and
the other with all other genes (< 4.2). The translation effi-
ciency of these two groups of genes was compared using three
different datasets [17–19]. Regardless of the TE dataset uti-
lized, the group of genes with higher scores had higher TE
when compared to genes with lower scores (Fig. 3B-D). The
same was true when the protein abundance was compared
between low score vs. high score genes (Fig. 3E). With this
result, we concluded that the sequences related to high GFP
expression can enhance the translation efficiency of endogen-
ous genes.

Using in vitro translation experiments, Verma et al.
demonstrated that some of the sequences conferring high
GFP translatability showed reduced events of ribosome drop-
off during early elongation and were more rapidly translated
than less efficient sequences [12]. This result apparently con-
flicts with previous reports arguing that a slow early elonga-
tion rate (low-efficiency ramp, or translational ramp) is
necessary for high translation efficiency [8]. Such a ramp
would prevent ribosome stalling during elongation and sub-
sequent translation abortion events. To check the effect of the
sequences associated with high GFP scores on the ribosome
early translational rate of endogenous genes, we compared the
average ribosome footprint count per nucleotide of the two
groups of genes (GFP-predicted scores > 4.2 x GFP-predicted
scores < 4.2). Some ribosome profiling protocols, especially
those that include antibiotics, can distort the ribosome profil-
ing data [29–32], and the best practice for generating ribo-
some profiling libraries in bacteria is still debated [33]. So, we
decided to use ribosome profiling data obtained by two dis-
tinct protocols with flash frozen or filtered cells; both proto-
cols avoid the use of translation-interfering antibiotics [33].
We normalized the footprint coverage within the same tran-
script by dividing each nucleotide read by the sum of the total
number of reads for each gene. Independent of the protocol
used, the group of genes with higher scores (>4.2) showed less
ribosome accumulation at codons 3–5 (nucleotides 7–15)
when compared to the genes with lower scores (<4.2)
(Fig. 4A,B). These data suggest that the translation of the
stretch of codons with a high GFP score occurs with higher
efficiency and therefore agrees with the experimental data
from Verma et al. Gene ontology analysis revealed that
genes with higher scores were enriched in cellular component
classes related to the cytoplasmic part of the cell (data not
shown).

The GFP library from Djuranovic’s group contained
259,134 different nucleotide compositions, which is approxi-
mately sixty-five times the number of E. coli proteins. This
means that each E. coli gene can have a different nucleotide
composition at codons 3–5, and repeated compositions would
only exist if some kind of pressure was acting on its selection.
Based on this, we asked if the bias towards high GFP-
predicted scores was caused by the enrichment of a few con-
served high scoring nucleotide sequences or by a multitude of
unique sequences. We observed that the vast majority (91%)

of the analysed genes have a unique nucleotide composition at
codon positions 3–5 (Fig. 5A). Only the remaining 9% of
genes possess a repeated nucleotide sequence, where the
same sequence is present in at least two different genes
(occurrence > 1) (Fig. 5B). This is the same proportion
observed with the E. coli genes where the GFP-predicted
score was measured (data not shown). The average GFP-
predicted score of repeated nucleotide sequences was higher
when compared to unique sequences (Fig. 5C). To determine
whether the higher scores of genes with repeated sequences
could reflect a higher efficiency on protein synthesis, we took
advantage of ribosome profiling experiment datasets [34].
When the TE of genes with repeated nucleotide sequences
was compared to the genome, no statistical difference was
observed (Fig. 5D). We concluded that the group of genes
presenting a GFP-predicted score > 4 was formed by a variety
of sequences and not by a few combinations of repeated
sequences.

Using a motif-scanning approach, Djuranovic’s group
found two motifs in GFP variants with scores over 4 [12].
The motifs AAVATT (V = A, G or C) or AADTAT (D = G,
A or T) are present in several reports at codon positions 3 and
4, yielding higher protein levels than the original construct.
We screened the E. coli genome searching for these two motifs
and found 41 genes (Fig. 6A). As a control, we performed the
same screening with codon positions 4 and 5, and 34 genes
were found (Fig. 6A). The 41 genes with one of these two
motifs had higher scores when compared to the E. coli gen-
ome (Fig. 6B). Interestingly, genes with these motifs at codon
positions 3 and 4 had higher TE when compared to the
genome, but there was no significant difference when the
motifs were positioned at codons 4 and 5 (Fig. 6C). These
data agree with the data that were obtained by Verma et al.
through the use of reporters and western blot measure-
ments [12].

Evolutionary conservation of sequences related to high
translation efficiency in other bacterial species

To check whether the findings with E. coli were valid for other
bacterial species, we analysed three enterobacteria, namely,
Escherichia coli, Klebsiella oxytoca, and Enterobacter asburiae.
Fig. 7A shows that the three analysed bacteria have a similar
bias towards high GFP score values, while the distribution
obtained with H. sapiens was identical to the GFP library.
Each of these bacteria share 1,595 orthologous genes, com-
prising approximately 40% of each genome. Next, we used
this common data set of genes to examine whether the
sequences corresponding to codons 3–5 tended to have simi-
lar GFP-predicted scores. To exemplify the calculation used
herein, we showed the comparison results with three groups
of orthologous genes, α, β and γ, corresponding to
L-threonine 3-dehydrogenase, sensory histidine kinase QseC
and RNA-binding protein YhbY genes, respectively.
Differently coloured squares represent different nucleotide
residues (Fig. 7B). A GFP-predicted score was attributed to
both windows (3–5 and 9–11), and the results for all 1,595
orthologues were used to build a correlation matrix (Fig. 7C).
The correlation values obtained with the GFP-predicted
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Figure 3. E. coli genes with GFP scores higher than 4.2 have higher translation efficiency and protein abundance than other genes. (A) Density histogram of GFP
scores for genes identified in E. coli for nucleotide composition at codon positions 3–5. As a control, we used a scrambled genome. Based on the GFP score, the E. coli
genes were divided into two groups: genes with a score higher than 4.2 and scores lower than 4.2. Translation efficiency was measured in three independent studies,
Morgan et al., 2018 [17](B), Li et al., 2014 [18](C) and Burkahardt et al., 2017 [19](D). (E) Protein abundance of genes with a score higher than 4.2 and score lower
than 4.2. Kolmogorov-Smirnov nonparametric t-test, ****<0.0001, ***0.0004, *0.028. (F) Web Logo of nucleotide composition at codon positions 3–5 of E. coli genes
or GFP library with a score higher than 4.2.
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scores at codon positions 3–5 were better than those obtained
with windows 9–11 (Fig. 7C). Additionally, we measured the
standard deviation value of the GFP-predicted scores from
each group of three orthologous genes and found less varia-
tion when the score was calculated at codon positions 3–5
(Fig. 7D). For example, 231 groups of orthologous genes had

precisely the same score (standard deviation = 0) at codon
positions 3–5, while for codon positions 9–10, the number of
genes dropped to 151 (Fig. 7D, dotted square). We concluded
that the translation enhancement effect conferred by certain
sequences at codons 3–5 may exert a selection pressure at this
particular region of the mRNA.

Figure 4. Ribosome occupancy at the first 20 nucleotides of genes with GFP scores higher than 4.2 at codon positions 3–5 (nucleotides 7–15) are lower when
compared to other genes. The average ribosome footprint counts of each group were obtained from ribosome profiling (RP) libraries of differently treated samples:
frozen/MgCl2 (A) or filtered/MgCl2 (B) [33]. For each gene, the number of reads per base was normalized to the total number of reads.
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To investigate whether orthologous genes are enriched
with high GFP scoring sequences, we ranked the total genes
of E. coli, K. oxytoca, and E. asburiae in three distinct lists
according to the GFP-predicted score obtained for codon
positions 3–5. As a control, we created two other lists, one
with GFP-predicted scores calculated using position 9–11 and
another with scrambled sequences. The top 500 genes with
higher scores from each list of the three bacteria (1500 genes
in total per analysis) were evaluated in the OrthoVenn2 ser-
ver, which computes the orthologous gene clusters among
multiple species [35]. The number of orthologous genes com-
mon to the three species was 351 (23%) for the list obtained
with positions 3–5. This was 1.6 times higher than the number
of orthologues obtained with the 9–11 list and 5.3-fold higher
than the scramble list (Fig. 7E, compare the first hatched bar
with the first red bar). No important bias was observed for
genes restricted to two species.

One possible interpretation for these data is that genes
containing sequences associated with high GFP scores
demand above average translational efficiency and play

essential roles in bacterial physiology; therefore, they tend
to be more conserved.

Conclusions

Our data suggest an evolutionary pressure selecting some nucleo-
tide compositions at codon positions 3 to 5 since this position
affects the TE and protein abundance in a group of enterobacterial
genes. On the other hand, our data do not point to a clear correla-
tion between these nucleotide compositions and different cellular
parameters, meaning that, at least in physiological conditions,
other features of mRNA, such as cis-regulatory elements at the 5ʹ
and 3ʹ UTRs, codon usage, and mRNA secondary structure, play
a more relevant role in translation efficiency. We do not under-
score the potential applications driven by Djuranovic’s discovery
[12]. The strong effect of some motifs at codon positions 3–5
might have an enormous impact in biotechnology and could be
used to improve protein synthesis in recombinant systems.
Moreover, the mechanism behind the effect of mRNA composi-
tion and protein nascent chain at the beginning of translation
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impacting ribosome processivity is an open question raised by
Djuranovic’s study. It will also be interesting to test in the future
the impact of codon composition at positions 3–5 on protein
synthesis of some endogenous bacterial genes.

Materials and methods
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Figure 7. Evolutionary conservation of the short ribosomal ramp. (A) Density histogram of GFP scores of genes identified in E. coli (Escherichia), E. asburiae
(Enterobacter), K. oxytoca (Klebsiella) and Homo sapiens for nucleotide compositions at codon positions 3–5. As a control, the GFP library score was plotted. (B) A list
of 1,595 orthologous genes of E. coli, E. asburiae, and K. oxytoca was analysed regarding the score of each gene at codon positions 3–5 or 9–11. As an example, three
genes (α, β, and γ) are shown. (C) Correlation matrix of the score of orthologous genes of E. coli, E. asburiae, and K. oxytoca. (D) The standard deviation score of each
set of three orthologous genes was calculated and plotted as a frequency of distribution. (E) The top 500 genes with the best GFP score of E. coli, E. asburiae, and
K. oxytoca were analysed regarding their orthology. The codon positions 3–5 or 9–11 were used to calculate the GFP score. As a control, a scramble list with 500
genes of each bacterium was used.
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GFP score Verma et al., 2019
Translation
efficiency

Morgan et al., 2018

Translation
efficiency

Li et al., 2014

Translation
efficiency

Burkahardt et al., 2017

Gini index Burkahardt et al., 2017
Protein average PaxDb: Protein

Abundance Database
Protein abundance
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Arike et al., 2012

Protein abundance
(iBAQ)

Arike et al., 2012
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(em PAI)

Arike et al., 2012

(Continued )

(Continued).

Data Source Identifier

Protein abundance
(APEX)

Lu et al., 2007

Protein synthesis
rate

Li et al., 2014

mRNA abundance Burkahardt et al., 2017

(Continued )
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Data sources

Coding sequences and annotation of Escherichia coli, Homo
sapiens, Klebsiella oxytoca, and Enterobacter asburiae were
obtained from the Ensembl Genome browser (http://ensemblgen
omes.org/). The list of E. coli genes with short 5ʹ UTRs was
obtained from RegulonDB (http://regulondb.ccg.unam.mx/) [28].

Statistical analyses, correlations, and raw data

The raw data used to create Fig. 1–4 and for the statistical
analyses, including sample size, p-value, D’Agostino &
Pearson normality test calculations, Kolmogorov-Smirnov
test, when used, are presented in the Supplementary Tables
(1–5). For Fig. 1A, the best fit equation found was the line
equation; the outliers were identified with Q = 1% with
a confidence level of 95%. All statistical analyses were per-
formed with GraphPad Prism 7 software.

Gene ontology

The gene ontology analyses were performed in the Gene
Ontology Consortium (http://geneontology.org/).

Motifs finder

In codon positions 3 and 4 or 4 and 5 of an open reading
frame genomic sequence, the algorithm searched for
sequences of AADTAT or AAVATT, where D is any nucleo-
tide except cytosine, and V is any nucleotide except thymine.
When the target sequence was found, the respective gene
name and the six nucleotide sequence were written in the
output file.

GFP score assigner

In a defined codon window of an open reading frame from
a genomic sequence, the algorithm found the respective GFP
score [12] for the sequence of nine nucleotides and generated
an output file containing the gene name, the sequence found,
and its respective GFP score.

Shuffled genome

Data from the original genome were compared to those from
a scrambled genome. For that purpose, we designed and
implemented two new algorithms that exchanged codons
with synonymous codons.

Genome mixer: An algorithm that handles the input files
by keeping the first codon (ATG) and mixing the positions of
the following codons within a genomic sequence, keeping the
ratio of nucleotide bases. The random genome generated by
this algorithm preserves the number of copies of each codon.

Codon shuffler: An algorithm that changes codons in
a genomic sequence, maintaining the corresponding amino
acid and ratio of nucleotide bases. The random genome gen-
erated by this algorithm preserves the number of copies of
each codon as well as the amino acid sequence of the original
genome.

Ribosome profiling data

E. coli ribosome profiling data were treated as described pre-
viously [10,30,34]. The data were analysed as described by
Ingolia and collaborators [34] except that the program used
here was Geneious R11 (Biomatter Ltd., New Zealand) instead
of the CASAVA 1.8 pipeline. The data were downloaded from
GEO, and the adaptor sequence (CTGTAGGCACCATCAAT)
was trimmed. The trimmed FASTA sequences were aligned to
E. coli ribosomal and noncoding RNA sequences to remove
rRNA reads. The unaligned reads were aligned to the E. coli
genome. First, we removed any reads that mapped to multiple
locations. Then, the reads were aligned to the E. coli coding
sequence database allowing two mismatches per read. We
normalized the coverage within the same transcript by divid-
ing each nucleotide read by the sum of the number of reads
for each gene.

Clustering analysis

All clustering analyses were performed by the Euclidean dis-
tance using Orange 3 software [36].

Orthologous analysis

The list of 1595 orthologous genes of Escherichia coli,
Klebsiella oxytoca, and Enterobacter asburiae was obtained
from OrthoVenn2 [35]. The GFP-predicted scores at codon
positions 3–5 or 9–11 were calculated for each gene. Then, the
GFP-predicted score correlation of orthologues was measured
by a correlation matrix [36]. Additionally, the GFP-predicted
scores of each group of three orthologues were averaged and
the standard deviation was calculated, and the values were
plotted as a density histogram (Fig. 7D). The scramble list
used in Fig. 7E was the alphabetical list of genes of each
bacterium analysed. We also used a suit of Orange 3 [36]
software to create a scramble list and the same results were
obtained (data not shown).

(Continued).

Data Source Identifier

mRNA abundance Blattner et al., 2003
mRNA abundance Covert et al., 2004
mRNA abundance Corbin et al., 2003
Ribosome profiling

frozen/MgCl2
Mohammad et al., 2019 SRR7759812

Ribosome profiling
filter/MgCl2

Mohammad et al., 2019 SRR7759808

Software and
algorithms

Motifs finder This paper https://github.com/
mhoyerm/Codons_finder

GFP score assigner This paper https://github.com/
mhoyerm/Score

Genome mixer This paper https://github.com/
mhoyerm/Mixer

Codon shuffler This paper https://github.com/
mhoyerm/Shuffler
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