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Abstract

Data independent acquisition mass spectrometry (DIA-MS) strategies and applications provides 

unique advantages for qualitative and quantitative proteome probing of a biological sample 

allowing constant sensitivity and reproducibility across large sample sets. These advantages in LC-

MS/MS are being realized in fundamental research laboratories and are quickly transitioning into 

clinical research applications. However, the ability to translate raw LC-MS/MS proteomics data 

(high-throughput) into biological knowledge is a complex and difficult task requiring the use of 

many algorithms and tools for which there is no widely accepted standard or recognized best 

practice available. In fact many of the tools used for the biological interpretations of proteomic 

data were developed for use with RNA and genomic analyzes. Use of these tools inherently fail to 

capture the full interpretation that proteomics uniquely supplies including the dynamics of quickly 

reversible chemically modified states of proteins, irreversible amino acid modifications, signaling 

truncation events and finally, the determining the presence of protein from allele specific 

transcripts. This Chapter highlights key steps and publicly available algorithms required to 

translate DIA-MS data into knowledge.
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1. Introduction

The combination of liquid chromatography (LC) and tandem mass spectrometry (MS/MS) is 

a technology frequently applied to high-throughput peptide and protein identification, and 

quantification. The most common strategy for peptide identification utilizes a data-

dependent acquisition (DDA) approach (review see Bantscheff et al. 2012) [2] [3]. In this 

approach the instrument sequentially surveys “all” the peptide ions that elute from the LC 

column at a particular time (MS1 scans), followed by consecutive individual ion isolation 

and fragmentation events that ultimately assay only a subset of peptides based on their signal 

intensity and limited by time to generate their MS/MS (MS2) fragmentation spectra. The 

acquired mass spectra, both the parent ion mass and the corresponding fragmentation 

spectra, are matched against theoretical spectra (generated from a sequence database) by a 

search engine, which then assigns peptide sequences and infers the corresponding proteins 

(review see Nesvizhskii 2007) [4].

DDA allows the identification of an extensive number of proteins and has been a 

breakthrough for high-throughput proteomics. However, DDA performance declines as 

sample complexity increases because of inconsistent sampling of all the same ions across a 

sample set due to the semi-stochastic selection of precursor ions and time dependent selected 

of co-eluting precursor ions. Therefore, DDA discovery proteomics experiments tend to have 

low reproducibility [5], particularly for the lower abundant ions. Some improvement in the 

coverage of the ions selected for MS/MS is observed by conducting multiple technical 

replicates.

An alternative to DDA-MS workflow is data-independent acquisition (DIA) (Figure 1). In 

DIA, MS/MS scans are collected systematically and independent of precursor information. 

The DIA strategies are based on acquiring fragment ion information for “all” precursor ions 

by repeatedly cycling through predefined sequential m/z windows (DIA MS/MS spectra) 

over the whole chromatographic elution range generating multiplexed fragment ion 

spectrum of all analytes that exist in the m/z range covered (see Note 1). We will concentrate 

on Sequential Window Acquisition of all Theoretical Mass Spectra (SWATH), which is a 

two-step process that combines DIA with a preselected peptide library that is used for 

quantification [6, 7]. This DIA-MS approach is an extension to other MS approaches such as 

1) the collection of fragmentation data without precursor ion selection [8], 2) the use of ion 

mobility spectrometry-CID-time of flight mass spectrometry [9], 3) the use of wide isolation 

windows [10], and 4) the use of narrow isolation windows combined with many injections 

[11].

The key advantage of DIA is the ability to reproducibly measure large numbers of proteins 

across multiple samples. By design, a DIA experiment ensures selection of “all” ions present 

for MS/MS analysis and thereby ensures coverage of proteotypic peptides, i.e. the peptides 

Note 1:DIA methods have advantages and disadvantages related to the instrument and the composition and complexity of the 
biological sample. Similar to DDA experiments, the instrument method of DIA experiments entails trade-offs across mass resolution 
and mass accuracy, scanning rates and the number of data points taken across a peak, number and width of isolation windows, and 
cycle times. Ultimately, DIA encompasses the strengths of both DDA and MRM approaches [6], combining shot-gun (DDA) 
discovery proteomics with the quantitative capabilities and high-throughput nature of targeted approaches [7].
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experimentally proven to be the most consistently detected and quantifiably for a given 

protein. The characteristics of these selected peptides must match those used for high quality 

targeted MS-based approaches like those of multiple reaction monitoring (MRM) assays 

[12]. Having these preselected proteotypic peptides to represent the proteins within the 

library will be the corner stone for not only accurate protein quantification but for the ability 

to select a lower limit of detection and quantification. Furthermore, because SWATH 

provides fragmentation information for all ions within the selected mass range, the analysis 

will include peptides containing PTM amino acid residue(s), specific splice variants, as well 

as any peptides carrying a non-synonymous single nucleotide polymorphism (SNPs).

The majority of DIA techniques, such as SWATH, focus on quantifying a large number of 

proteins within a biological sample, and do not include the analysis of site-specific PTMs. 

However, PTMS are routinely tracked as disease markers while many others are used as 

molecular targets for developing target-specific therapies. Their importance to biological 

interpretation is irrefutable and a large scale in-depth understanding of protein PTMs is 

important for gaining a perception of a wide array of cellular functions. The computational 

analysis of modified peptides was pioneered 20 years ago by Yates et al [13] and Mann and 

Wilm [14] and is still an active area of research. Currently, MS methods can detect >300 

types of PTMs, and many more have yet to be discovered [15] and [16]. PTM-search 

algorithms can be categorized into three large groups: targeted, untargeted and de novo 

PTM-search methods [17].

DIA-MS techniques overcome the scalability that limits targeted MRM assays to a short list 

of preselected peptides. DIA experiments are capable of producing quantitative data on 

1000(s) of proteins with less effort, and shorter time frame than traditional DDA shot-gun 

experiments, which rely on multidimensional fractionation and multiple MS runs to obtain 

the same depth [6, 7]. The most popular DIA MS platforms currently are Q Exactive 

Orbitrap mass spectrometer from Thermo Scientific (Orbitrap), the SCIEX SWATH 2.0, 

together with their recent triple TOF system (TripleTOF 6600™), followed by high-

definition MSE (HDMSE) and ultra-definition MSE (UDMSE) by Waters.

One advantage of DIA-MS for PTM analysis is lower limit of detection and quantitation. 

PTMs are often sub-stoichiometric and therefore the less abundant species of molecules 

within any proteome sample. Albeit, the gain in sensitivity comes at the expense of the wider 

isolation windows that may interfere with the ability to accurately confirm PTM 

localization. This is not a problem if there are not multpiple residues within the peptide that 

could possess the PTM or if the exact residue is not of interest. Otherwise, a secondary 

experiment for proper confirmation maybe required. Additionally, DIA experiments provide 

an alternative approach to novel PTM identification that depends upon established peptide 

transition ions from a pre-generated ion library rather than matching an in silico digest of 

specified PTMs. All modified versions of a given peptide with share transition ions of the 

unmodified fragment ions allowing one to identify novel PTMs of a given peptide based on 

parent ion mass shifts and changes in retention time, if expected. This opens completely 

novel opportunities to discover (and quantify) unanticipated modified peptide species from 

DIA data sets by a strategy that does not suffer from the combinatorial explosion of the 

search space usually experienced with traditional PTM database search approaches [18].
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PTM analysis by DIA-MS has proven to be extremely useful in the analysis and quantitation 

of citrullinated proteins. Citrullination is an irreversible deimidation of arginine residues 

within a protein carried out by enzymatic reaction. This modification leads to the loss of a 

positive charge and reduction in hydrogen-bonding ability [18]. This modification plays a 

role in several physiological and pathological processes such as epigenetics, apoptosis and 

cancer. However, it is rarely studied because a citrullinated protein or peptide is difficult to 

discern from its native non-citrullinated form and because the PTM is low abundant, 

necessitating highly specific and sensitive detection techniques. A recent publication by 

Fert-Bober showed how building tissue specific PTM library increased the accurate 

detection and quantification of low abundant citrullinated peptides that would have not been 

possible otherwise [19].

DIA-MS techniques overcome the scalability that limits targeted MRM assays to a short list 

of preselected peptides. In practice, all peptides within the defined mass-to-charge (m/z) 

window are fragmented collectively in m/z blocks across the full m/z range being covered in 

DIA [7]. DIA experiments are capable of producing quantitative data on 1000(s) of proteins 

with less effort, and shorter time frame than traditional DDA shot-gun experiments, which 

rely on multidimensional fractionation and multiple MS runs to obtain the same depth [6, 7]. 

The most popular DIA MS platforms currently are Q Exactive Orbitrap mass spectrometer 

from Thermo Scientific (Orbitrap), the SCIEX SWATH 2.0, together with their recent triple 

TOF system (TripleTOF 6600™), followed by high-definition MSE (HDMSE) and ultra-

definition MSE (UDMSE) by Waters.

There are a number of features that MS data search algorithms share with respect to 

preprocessing and post-processing MS data, although the method, format, and information 

provided can vary significantly. Common features include the handling of protein and 

peptide sequences, the parsing of results from various proteomics search engines output 

files, the visualization of MS-related information, and the inference of biological 

interpretation. Robust tools for data analysis are required to analyze the MS/MS spectra, and 

to translate these large-scale proteome data into biological knowledge. In the area of DIA 

informatics, there are several computational software / algorithms available for analyzing 

DIA data (Table 1) that perform the extraction of peptide identifications and quantitation 

from the raw spectral data files using an empirically generated spectra library, which can be 

derived from DDA [20] or DIA data.

This Chapter provides an overview of commercially available bioinformatics tools, with the 

primary focus on the open source algorithms that researchers can employ when converting 

DIA-MS data into knowledge with step by step workflow to guide

2. Materials

1. Access to the internet.

2. Processed list of proteins and PTMs identified / quantitated in a DIA-MS 

experiment, see Table 1 for a list of commonly used DIA-MS algorithms.
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3. Walkthrough examples include an example output from open source software 

Cytoscape: http://www.cytoscape.org/ and App Store: http://apps.cytoscape.org/

3. Methods

1. Library Considerations:

Each LC-MS run generates data consisting of peak intensities for 1000s of peptides each 

with specific retention time (RT) and mass-to-charge ratio (m/z) values. These aspects have 

been recently reviewed in the following and are common to both DIA and DDA [21]. 

However there are several issues such as build of MS peptide libraries and LC alignment 

(e.g. use of exogenous and endogenous retention time standards) that are unique to DIA. 

Although new methods are being developed that do not need external retention time 

calibration peptides (e.g. DIA-Umpire [22]) as they rely on the retention times of known 

commonly identified landmark peptides to perform retention time alignment across all the 

runs.

There are publicly available libraries (e.g. pan-human library) [23], which can be used when 

appropriate. But, at the same time, premade libraries may not contain cell, organ, or disease 

specific proteins or modified forms that are present in the sample(s) being analyzed. For 

example, the pan-human library will miss specific stem cell or cardiac proteins that are 

expressed in specific tissues or cells. To date, in our experience the best approach will be to 

create libraries of carefully selected peptides and transitions, that perform in DIA with tight 

percent coefficient of variance in a manner similar to the development of MRM or SRM 

targeted protein assays (see Note 2).

PeakView (http://sciex.com/products/software/peakview-software) and OpenSWATH [7] 

(http://www.openswath.org/ ), two commonly used algorithms for DIA-MS analysis, both 

rely on RT alignment of specified ions or a set of standard ions across the elution profile 

from any DIA run to the peptide library used to make proper peptide identifications. Peptide 

assignments are initially based on their parent mass, retention time (RT), a set of their 

fragment ions and the ratios of fragment ion relative abundances. Once peptide identification 

has been performed, quantitation is determined using a set of peptide fragment ions.

PeakView is available through SCIEX (http://sciex.com/products/software/peakview-

software) and is a standalone software application that is compatible with all SCIEX mass 

spectrometer systems for the quantitative review of LC/MS and MS/MS data. For detailed 

methods from our group see Methods for SWATH: Data Independent Acquistion on 

TripleTOF Mass Spectrometers [24]. OpenSWATH [7] is available for download by the ETH 

Zurich group, http://www.openswath.org/openswath_instructions.html, and they provide a 

well documented tutorial for executing these processes. Both algorithms, PeakView and 

OpenSWATH, depend on a library for the DIA analysis.

Note 2:A spectral library of identified peptides can be manually programmed, downloaded (if available) or generated by previous 
DDA experiments. The effectiveness of sequence searching approach depends on (1) high-quality reference spectra, with good signal-
to-noise ratios and devoid of impurities, and (2) effective matching algorithms with the robustness and flexibility to accommodate 
imperfect matches while minimizing false matches.
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2. Protein Quantification:

In order to compare protein quantification between samples (technical or biological), LC-

MS runs are analyzed simultaneously. This is a challenging task as: 1) variation in 

exogenous supplied (iRT) [25] or endogenous (cIRT) [26] RT standards can exist across 

multiple runs due to the LC instrument conditions, 2) variability in sample load and the 

complexity of peptide mixtures, 3) variation in m/z values due to occasional drift in the 

calibration of the mass spectrometry instrument, and 4) variation in peak intensities due to 

spray conditions (in most cases this is proportional to concentration of peptides in the 

sample). Thus, alignment with respect to m/z and RT is necessary for quantitative 

comparison of proteins/peptides (see Note 3).

There are several methods for quantifying protein concentrations from DIA-MS data, 

including MSstats and OpenSWATH and have been recently reviewed [20]. MSstats (https://

www.bioconductor.org/packages/release/bioc/html/MSstats.html): an R package for 

statistical analysis of quantitative mass spectrometry-based proteomic experiments [27] is an 

R Bioconductor package. It provides protein abundance using linear mixed model and group 

comparisons. Differential analysis can be helpful when comparing a disease / perturbation to 

a control / background.

3. Overlay on interactome:

Large-scale proteomic data ultimately shifts the burden to the downstream analysis, which 

requires an extensive systems biology approach for data interpretation. A researcher is 

actually dealing with the quantifiable proteome, or interactome depending on the experiment 

and questions being assessed. This is the part of the DIA pipeline where we will concentrate 

the remaining part of this chapter.

A major advantage to using UniProt SwissPro KB Accessions (and sequences) for protein 

identification is the ability to link protein-centric functional annotations to the proteins 

identified within the original library. There are several mapping tools available to convert 

between various database identifiers, for example the UniProt mapping tool (http://

www.uniprot.org/uploadlists/) can map UniProt Accession numbers to other database 

identifiers such as RefSeq. These mapping steps are often required for downstream analysis 

and ultimately allow the connection of many underlying functional databases.

STRING (http://string-db.org/) is a database of known and predicted protein interactions, 

which include direct and indirect associations that are derived from four sources: genomic 

context, high-throughput experiments, co-expression, and previous knowledge (PubMed 

mips) [28]. It has a user-friendly interface and provides flexibility for setting various 

parameters like confidence. The output from STRING can also be saved in a text file format 

compatible with cytoscape, and therefore allows further customization for visualizing the 

results.

Note 3:It is our experience that the larger the number of samples being compared, complexity of data analysis increases due to limited 
scalability of current methods. It is also our experience that only selected peptides and transitions with coefficient of variances of 
under 20% in the DDA runs is necessary to ensure accurate quantification. This is the level of reproducibility and precision required in 
clinical chemistry hospital assays.
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Network Analyst (http://www.networkanalyst.ca/) is another open source tool available for 

analyzing a list of proteins using protein-protein interaction networks [29, 30]. It has an easy 

to use graphical interface and proteins of interest are mapped to manually curated protein-

protein interaction database to construct relevant networks. The tool provides a system for 

functional enrichment analysis and the results, including the network map, can be easily 

exported.

Cytoscape, an open-source bioinformatics software for visualizing molecular interaction 

networks, can be freely downloaded from http://www.cytoscape.org (Figure 2). Furthermore, 

cytoscape has several plugins (applications) (http://apps.cytoscape.org/apps/all) available for 

creating an interactome from a user input (i.e. lists of proteins). The apps can easily be 

installed by using the Application Manager within cytoscape (Figure 2). Reactome FI, which 

was originally developed for microarray data, allows a research to upload a list of genes of 

interest, and the algorithm will display the interactome for those candidates. There are many 

type of analysis that reactomeFI can execute, and the user can easily select the appropriate 

module (Figure 3).

ReactomeFI enables functional enrichment analysis and easily customizable network output 

maps. Using the DIA-MS (SWATH) data released in [19], an interactome was generated for 

citrullinated proteins that were differentially regulated in cardiocytes [19] (Figure 4). The 

results from reactomeFI can also be analyzed via other cytoscape plug-ins, including 

ClusterONE [31] (Figure 5).

4. Functional enrichment analysis:

Enrichment analyses are typically performed utilizing gene ontology (GO) annotations, 

which are Cellular Compartment, Molecular Function, and Biological Process, and/or 

pathway annotations like KEGG and Reactome. Common statistical tests include Fisher 

Exact, or a p-value probability or chance of seeing at least x number of genes out of the total 

n genes in the list annotated to a particular GO. The goal is to differentiate enrichment above 

random background. These types of analysis can help generate new hypothesis about protein 

dynamics under a given biological system or enhance our current understanding of 

biological processes associated with a given condition.

There are several publicly available tools for gene ontology enrichment analysis, including 

iProXpress (http://pir.georgetown.edu/iproxpress2/), BiNGO [32], and Panther (http://

geneontology.org/). BiNGO [32] is a cytoscape plugin (see Figure 2 for overview on 

downloading plugins) that enables functional enrichment analysis and visualization. Data 

can be uploaded directly from the user or from a network, and the user has the option to 

select various parameters and statistical tests for analyzing the data (Figure 6). Using the 

DIA-MS (SWATH) data released in a recent publication, an example of a functional 

enrichment output from BiNGO [32] was generated for citrullinated proteins that were 

differentially regulated in cardiocytes [19] (Figure 7).

5. Considerations for PTM analysis:

Diversity at the protein level comes from 1) mRNA splice variants and internal start sites, 2) 

variants affecting the primary sequence of amino acids (e.g. SNPs), and 3) different PTMs. 
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The large-scale study of variance due to genomic alterations typically requires next-

generation sequencing techniques for DNA/RNA molecules, as a priori knowledge is not 

required. Proteomics data is further complicated as different forms of PTMs may occur in 

tandem, greatly increasing the complexity of the proteome. PTMs broadly contribute to the 

recent explosion of proteomic data as they possess a significant aspect to protein function.

In PTM analysis, each peptide representing a modification site of interest needs to stand 

alone, this is in contrast to proteome analysis were several peptides are usually taken into 

consideration to reveal characteristics of a single protein. Global PTM analysis remains a 

major challenge in the field, and is very resource demanding. MS-based proteomics provides 

tens of thousands of sites, raising the question of their biological relevance. Researchers are 

faced with the challenge of how to select a very small number of sites from large-scale data 

and how to perform functional follow-up on these candidates (see Note 4).

Often times it can be challenging to determine the exact location of a PTM, such as 

phosphorylation, and as such there are several publicly available algorithms that can applied 

to further assess PTM data generated MS/MS data. For example, Ascore is an algorithm that 

measures the probability of a correct phosphorylation site localization based on the presence 

and intensity of site-determining ions in MS/MS spectra [33]. Recently PTMProphet was 

added to the SWATHProphet software and serves as a tool to identify/annotate modifications 

in peptide sequences by identifying precursor ions consistent with a modification, along with 

the mass and localization of the modification in the peptide sequence [34]. Another 

algorithm for scoring/annotating PTM localization, called LuciPHOr, uses a modified target-

decoy-based approach that uses mass accuracy and peak intensities for site localization 

scoring and false localization rate (FLR) [35].

Citrullination is another important PTM and recent advancements have enabled DIA-MS 

detection and bioinformatics methods have enabled the analysis for this biologically-relevant 

irreversible PTM, including algorithms for scoring the location of this PTM within a peptide 

sequence [19]. Interestingly, it has been supported that citrullination of sarcomere proteins 

causes a decrease in Ca(+2) sensitivity in skinned cardiomyocytes, indicating an important 

structural and functional alteration associated with this PTM [36].

6. Considerations for translating large proteome datasets into biological knowledge 
leveraging PTM data:

For DIA-MS data it is important at both the peptide level and protein level to translate the 

data into an integrated knowledge base. Translating large data into knowledge is a difficult 

task and there is no gold standard or process available. At the foundation, a system capable 

of linking many functional annotations together is essential. Without this type of 

connectivity functional enrichment analysis such as GO and pathway would be not be 

Note 4:The interpretation of proteome data obtained from high-throughput methods cannot be appropriately deciphered without a 
priori knowledge which may come by biochemical or physiological data where specific PTM data from in vitro or in vivo is available. 
For example, cardiac troponin (cTnl) plays a key role in the regulation of contraction and relaxation of heart muscle. There are 
numerous phosphorylation sites on cTnl with and without in vitro or in vivo PKA phosphorylation [58]. Mutational data supports that 
residues that have been substituted as a pseudo mimetic, such as the phosphorylation of sites 22 and 23 in cTnI being replaced with 
Asp to mimic the negative charge, have a profound effect on the function of cTnl [59].
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possible. Linking to disease databases like the Online Mendelian Inheritance in Man 

(OMIM), a catalog of human Mendelian disorders, which contains 20,267 entries describing 

13,606 genes from ~7,000 disorders [37] helps to provide a resource for annotating 

clinically relevant gene / protein candidates.

Text and data mining also become invaluable resources when analyzing large datasets as it is 

impossible to manually research all quantified proteins in their various states across many 

experiments. Data mining involves integration of many biological datasets and annotations, 

and when utilized effectively can produce more holistic insights [38]. See review [38] for a 

comparison of different methods for data integration and their advantages and disadvantages. 

Furthermore, there are other tools for data integration and text mining, including 

RapidMiner, KNIME, and R Statistics, that can be customized for the end-users goals.

Often times a researcher may need to leverage ortholog mapping across species to reveal 

significant findings. We propose that this under-utilized aspect holds considerable value and 

can infer importance of a modifiable amino acid residue. This is particularly important 

because functionally important modification sites are more likely to be evolutionarily 

conserved; yet cross-species comparison of PTMs is difficult since they often lie in 

structurally disordered protein domains. Current tools that address this are PhosphoAitePlus 

[39], Phospho.ELM [40], Phosphorylation Site Database [41], PHOSIDA [42], PhosPhAt 

[43], PhosphOrtholog [44], NetworKIN [45], and RegPhos [46].

O-GLYCBASE [47] and dbOGAP [48] are databases for glycoproteins, most of which 

include experimentally verified O-linked glycosylation sites. UbiProt [49] stores 

experimental ubiquitylated proteins and ubiquitylation sites, which are implicated in protein 

degradation through an intracellular ATP-dependent proteolytic system. Furthermore, 

PTMScout (http://ptmscout.mit.edu.) is another web resource, that is constructed around a 

custom database of PTM experiments and contains information from external protein and 

post-translational resources, including gene ontology annotations, Pfam domains, and 

Scansite predictions of kinase and phosphopeptide binding domain interactions [50].

Motif analysis strategies and domain–domain interactions related to PTMs are also 

important aspects in translating data. Proteins having related functions may not show overall 

high sequence similarity, yet they may contain sequences of amino acid residues that are 

highly conserved within the tertiary structure of the protein. Currently, the largest collection 

of sequence motifs in the world is PROSITE [51] and meta site such as MOTIF [52]. 

PROSITE can be accessed via ExPASy (http://www.expasy.org). A free software package 

named MacPattern [53] is available for searching PROSITE motifs. Other, useful resources 

for searching protein motifs are BLOCKS [54], MOTIF Search (http://www.genome.jp/

tools/motif/), MoST [55].

SysPTM [56] has designed a systematic platform for multi-type PTM research and data 

mining. Additionally, Human Protein Reference Database (HPRD) [57] contains a wealth of 

information relevant to the function of human proteins in health and disease, as well as the 

annotation of PTMs.

Crowgey et al. Page 9

Methods Mol Biol. Author manuscript; available in PMC 2019 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ptmscout.mit.edu/
http://www.expasy.org/
http://www.genome.jp/tools/motif/
http://www.genome.jp/tools/motif/


The rate of discovery for PTMs is gaining momentum and is significantly outpacing our 

biological understanding of the function and regulation of these modifications, and data 

mining techniques can enable the discovery of previously unknown patterns and 

relationships hidden in large datasets.
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Figure 1. Data Dependent Acquisition Mass Spectrometry vs. Data Independent Acquisition 
Mass Spectrometry
(A) Scan Cycles: DDA, only fragment ion (MS/MS) spectra for selected precursor ions 

detectable in a survey (MS1) scan are generated. DIA, fragment ion spectra (MS/MS) for all 

the analytes detectable within the m/z precursor range are recorded.

(B) Search: DDA, fragment ion spectra are assigned to their corresponding peptide 

sequences by seqeunce database seraching. DIA analysis are based on targeted data 

extraction, in which peptide ions from a spectral library are queried against experimental 

data to find the best matching fragment ion masses and respective intesnities.

(C) Quantification: DDA, peptides (and then proteins) are quantified using MS1 signal or 

spectral counts. DIA computes protein abundance based on selection of transition ion from 

MS/MS spectra.

(D)Translation of large scale peptide/proteins quantified into knowledge.
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Figure 2: Dowload Cytoscape and Install Plugins.
(1) Cytoscape is open-source application that can be downloaded from http://

www.cytoscape.org. The application is free and avialable for Mac or Windows. The 

application requires Java, which is also freely avialable: http://www.oracle.com/

technetwork/java/javase/downloads/jre8-downloads-2133155.html

(2) Install Plugins. Step 1: Open cytoscape and click on the Apps tab. This will cause the 

App Manager to appear. Step 2: Type in the search bar the name of the application of 

interest. Step 3: select the application of interest and click on install.
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Figure 3: Overview of ReactomeFI Plugin.
Step 1: Click on the apps tab and application installed (following Figure 2) will appear. Step 

2: Select the application of intersted (i.e. reactomeFI). Step 3: Select the type of analysis to 

execute.
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Figure 4: ReactomeFI Analysis of the Top Citrullinated Proteins in Heart Diseases.
The top citrullinated proteins for [ref] were up-loaded and analyzed in cytoscape via 

reactomeFI. Circles nodes represent proteins that were differentially citrullinated, whereas 

triangle nodes represent proteins that were not reported as having differenitally citrullinated 

residues, but are linked to proteins, through protein-protein interactions (grey lines) that do 

have differentially regulated citrullinated residues. The top 3 pathways enriched per module 

were extracted. Module 1: Striated muscle contraction, hypertrophic cardiomyopathy, and 

dilated cardiomyopathy. Module 2: glycolysis/gluconeogenesis. Biosynthesis of amino 

acids, and validated targets of c-myc transcriptional activation. Module 3: Parkinson’s 

disease, The citric acid cycle and respiratory electron transport, and Huntington disease. 

Module 4: Tyrosine metabolism, Fatty acid degradation, and retinol metabolism. Module 5: 

The citric acid (TCA) cycle and respiratory electron transport, carbon metabolism, and 

metabolic pathway.

Crowgey et al. Page 17

Methods Mol Biol. Author manuscript; available in PMC 2019 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: ClusterONE Analysis of an Interacome.
The network in Figure 2 was further analyzed in cytoscape using ClusterONE. Orange 

triangles are nodes that represent proteins that are highly connected within and across 

modules. Red squares are nodes that were clustered, whereas grey circles are outliers. The 

top cluster consisted of 8 proteins: COL6A3, ACTN2, ACTN3, ITGAV, VIM, TNNT2, 

MYBPC3, and TNNI3 (p-value 0.001, density 0.714, quality 0.625).
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Figure 6: Overview for Executing a BiNGO Analysis.
Step 1: Enter the name of the analysis and select either ‘Get Cluster from Network’ or ‘Paste 

Genes from Text’. Step 2: Select over or under-representation, select a staitsitcal test (i.e. 

hypergeometric), slect a multiple testing correction (i.e. Benjamini & Hochberg False 

Discovery Rate (FDR) correction, a signficance level, the categories to be visualized, 

reference set, and ontology type (Biological Process, Molecular Function, or Cellular 

Compartment). Step 3: Select the appropriate species and Start BiNGO analysis.
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Figure 7: Gene Ontology (Molecular Function) Enrichment Analysis Using Bingo.
The top citrullination proteins from [36] were up-loaded into Bingo and analyzed for 

enriched molecular function ontologies. Orange nodes represent the most significantly 

enriched gene ontology terms, whereas white and yellow represent the least significantly 

enriched gene ontology terms. The Bingo analysis highlights the hierarchic of the 

ontologies. For this dataset the most enriched Molecular Function terms were: hydro-lyase 

activity, carbon-oxygen lyase activity, oxidoreductase activity, NAD or NADH binding, 

lyase activity, troponin C binding, and enoyl-CoA hydratase activity.
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