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Summary

An important phenomenon in high-throughput biological data is the presence of unobserved
covariates that can have a significant impact on the measured response. When these covariates
are also correlated with the covariate of interest, ignoring or improperly estimating them can lead
to inaccurate estimates of and spurious inference on the corresponding coefficients of interest in
a multivariate linear model. We first prove that existing methods to account for these unobserved
covariates often inflateType I error for the null hypothesis that a given coefficient of interest is zero.
We then provide alternative estimators for the coefficients of interest that correct the inflation, and
prove that our estimators are asymptotically equivalent to the ordinary least squares estimators
obtained when every covariate is observed. Lastly, we use previously published DNA methylation
data to show that our method can more accurately estimate the direct effect of asthma on DNA
methylation levels compared to existing methods, the latter of which likely fail to recover and
account for latent cell type heterogeneity.

Some key words: Batch effect; Cell type heterogeneity; Confounding; High-dimensional factor analysis; Unobserved
covariates; Unwanted variation.

1. Introduction

High-throughput genetic, DNA methylation, metabolomic and proteomic data are often influ-
enced by unobserved covariates that are difficult or impossible to record (Johnson et al., 2007;
Leek et al., 2010; Houseman et al., 2012). Suppose we observe data Y ∈ R

p×n, where the number
of genomic units, p, is on the order of or larger than the sample size, n. For example, in most
DNA methylation data, the number of studied methylation sites, p, is between 104 and 106 and
n = O

(
102

)
. Assume the true model for Y is

Yp×n = Bp×dX T
n×d + Lp×K CT

n×K + Ep×n,

Ep×n ∼ MNp×n
(
0, �p×p, In

)
, � = diag

(
σ 2

1 , . . . , σ 2
p

)
, (1)

where B = (
β1 · · · βp

)T ∈ R
p×d , X ∈ R

n×d contains the covariates of interest and C ∈ R
n×K

contains the K unobserved covariates. Our goal is to estimate and perform inference on the
coefficients of interest, β1, . . . , βp ∈ R

d .
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Under model (1), the naive ordinary least squares estimate of B,

Y1 = YX
(
X TX

)−1 = B + L
{ (

X TX
)−1 X TC

}T + E X
(
X TX

)−1 = B + L�T + E1,

is biased by L�T, where � = (
X TX

)−1 X TC is the ordinary least squares coefficient estimate
for the regression of C on to X . The bias induced by L and � is often consequential in biological
data. For example, in DNA methylation studies where disease status is the covariate of interest,
DNA methylation Y depends on the latent cellular heterogeneity of the n samples (Jaffe &
Irizarry, 2014), and cellular heterogeneity often depends on disease status X (Fahy, 2002; Stein
et al., 2016). Ignoring unobserved covariates C when analysing these types of data can therefore
drastically affect the interpretation of results.

There have been a number of methods proposed to estimate and correct for the latent factors C
in model (1) (Leek & Storey, 2008; Gagnon-Bartsch & Speed, 2012; Sun et al., 2012; Gagnon-
Bartsch et al., 2013; Houseman et al., 2014; Lee et al., 2017). While these methods perform well
on selected datasets, they either do not have the requisite theory to justify downstream inference
on β1, . . . , βp (Leek & Storey, 2008; Sun et al., 2012; Houseman et al., 2014; Lee et al., 2017)
or they require the practitioner to have prior knowledge regarding which coefficients β1, . . . , βp
are zero (Gagnon-Bartsch & Speed, 2012; Gagnon-Bartsch et al., 2013).

Recently, Fan & Han (2017) and Wang et al. (2017) proposed methods that first compute L̂,
an estimate of L, from YP⊥

X = L
(
P⊥

X C
)T + E P⊥

X , where P⊥
X ∈ R

n×n is the orthogonal projection
matrix on to the orthogonal complement of X . They then estimate � by regressing Y1 on to L̂,
and finally estimate β1, . . . , βp by subtracting the estimated bias L̂�̂T from Y1. The advantage
of this estimation paradigm is obvious: it decouples the estimation of L and β1, . . . , βp without
requiring the practitioner to have prior knowledge regarding which coefficients β1, . . . , βp are
zero. These articles are quite remarkable because, when their assumptions hold, the authors prove
that they can perform inference on β1, . . . , βp that is as accurate as when C is known. However,
it has been observed that these methods tend to inflate test statistics and cause anticonservative
inference in both simulated and real data (van Iterson et al., 2017).

One source of the discrepancy between theory and practice is that the aforementioned
articles assume that all K of the nonzero eigenvalues of I = P⊥

X C
(
p−1LTL

)
CTP⊥

X are on
the order of the number of samples, n, and are overtly larger than the average residual vari-

ance p−1
(
σ 2

1 + · · · + σ 2
p

)
. If these assumptions were valid, there would be an unambiguous

gap between the K th and [K + 1]th eigenvalues of p−1P⊥
X Y TYP⊥

X . However, this rarely occurs
in practice (Cangelosi & Goriely, 2007; Owen & Wang, 2016; Wang et al., 2017). When these
eigenvalue assumptions are violated, we show that previous methods’ techniques to estimate �

from the regression of Y1 onto L̂ are sensitive to the error in the estimated design matrix L̂, which
causes inaccurate estimates of β1, . . . , βp. In practice, some of the nonzero eigenvalues of I will
not be large if the sample size is not sufficiently large, if some of the K latent covariates do not
influence the response of every genomic unit, or if some of the latent covariates are correlated
with the covariate of interest X , since this will dampen P⊥

X C. The latter is common in DNA
methylation data because unobserved cellular heterogeneity is often correlated with X (Jaffe &
Irizarry, 2014).

The purpose of this article is to fill the described gap in the literature by studying the unobserved
covariate problem when some or all of the K nonzero eigenvalues of I are not exceedingly large.
We prove that when the eigenvalues fall below a certain threshold, then for fixed g ∈ {1, . . . , p},
previous methods have a propensity to inflate Type I error when testing the null hypothesis
H0, g : βg = 0, and even tend to falsely reject H0, g when using the conservative Bonferroni
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correction. We then provide alternative estimators for β1, . . . , βp and prove that when B is suitably
sparse, our estimators are asymptotically equivalent to the ordinary least squares estimators
obtained using the design matrix (X C), regardless of the size of the eigenvalues of I. We lastly
use simulated data and real DNA methylation data from Nicodemus-Johnson et al. (2016) to
show that latent covariates with ostensibly small effects can be detrimental to inference if not
properly accounted for, and that our method can better account for latent covariates than the
leading competitors.

2. The model, our estimation procedure and intuition

2.1. Notation

For any integer n � 1, we define [n] = {1, . . . , n}. For any matrix G ∈ R
n×m, we define

PG ∈ R
n×n and P⊥

G ∈ R
n×n to be the orthogonal projection matrices that project vectors on to

the image of G and the orthogonal complement of G, respectively, and Gr∗ ∈ R
m, G∗s ∈ R

n and
Grs ∈ R to be the rth row, sth column and (r, s) element of G. Lastly, we define 1n, 0n ∈ R

n to

be the vectors of all ones and all zeros and use the notation W
D= Z if the random variables, or

matrices, W and Z have the same distribution.

2.2. A model for the data

Let Y ∈ R
p×n be the observed data, where Ygi is an observation at genomic unit g ∈ [p] in

sample i ∈ [n]. Let X ∈ R
n×d be an observed, full rank matrix containing the covariates of

interest and define B = (
β1 · · · βp

)T ∈ R
p×d to be their corresponding coefficients across all p

genomic units. We also define an additional covariate matrix C ∈ R
n×K and let L ∈ R

p×K be
its corresponding coefficient. We assume that C is unobserved, but K is known. Evidently, K is
rarely known in true data applications. While we acknowledge that estimating K is a challenging
problem, there is a large body of work devoted to estimating it (Leek & Storey, 2008; Onatski,
2010; Gagnon-Bartsch & Speed, 2012; Owen & Wang, 2016; McKennan & Nicolae, 2018). We
discuss how different values of K affect our downstream estimates in § 4. We assume (1) is the
true model for Y , and we define

ρ = p−1
(
σ 2

1 + · · · + σ 2
p

)
. (2)

We also define

� = (
X TX

)−1 X TC ∈ R
d×K , C2 = P⊥

X C ∈ R
n×K (3)

to be the ordinary least squares coefficient estimates and residuals from the regression of C on
to X , respectively. We have not assumed an explicit relationship between C and X , because one
can always decompose C as

C = PX C + P⊥
X C = X � + C2.

A more general model for Y would be Y = BX T + MZT + LCT + E , where Z ∈ R
n×r con-

tains observed nuisance covariates, like the intercept or technical covariates, whose coefficients
M1∗, . . . , Mp∗ are not of interest. We can get back to model (1) by multiplying Y on the right by
a matrix whose columns form an orthonormal basis for the null space of ZT. Therefore, we work
exclusively with model (1) and assume any observed nuisance factors have already been rotated
out, as they would be in ordinary least squares.
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2.3. Estimating B when C is unobserved

We break Y into two independent pieces using a technique proposed in Sun et al. (2012):

Y1 = YX
(
X TX

)−1 = B + L�T + E1, (4)

Y2 = YP⊥
X = LCT

2 + E2, (5)

where E1 = E X
(
X TX

)−1 and E2 = E P⊥
X are independent because E ∼ MNp×n (0, �, In) and

X TP⊥
X = 0. The matrix Y1 is the ordinary least squares estimate of B that ignores C, and the

rows of E2 lie on an (n − d)-dimensional linear subspace of R
n. We now describe how to use Y1

and Y2 to derive the ordinary least squares estimates of β1, . . . , βp when C is observed. This will
provide a template for estimating β1, . . . , βp when C is unobserved.

Algorithm 1 (Ordinary least squares when C is observed). Let Y1 ∈ R
p×d , Y2 ∈ R

p×n,
X ∈ R

n×d and C ∈ R
n×K be given. Our goal is to use ordinary least squares to estimate and

perform inference on β1, . . . , βp, the rows of B ∈ R
p×d .

(a) Set C2 = P⊥
X C. Use Y2 to estimate � = diag

(
σ 2

1 , . . . , σ 2
p

)
and L as

(
σ̂OLS

g

)2 = (n − d − K)−1Y T
2g∗P⊥

C2
Y2g∗ (g = 1, . . . , p),

L̂OLS = Y2C2
(
CT

2C2
)−1 ,

where Y2g∗ ∈ R
n is the gth row of Y2.

(b) Set � = (
X TX

)−1 X TC.
(c) Define the ordinary least squares estimate of βg to be

β̂OLS
g = Y1g∗ − �L̂OLS

g∗ (g = 1, . . . , p), (6)

where Y1g∗ ∈ R
d and L̂OLS

g∗ ∈ R
K are the gth rows of Y1 and L̂OLS, respectively.

It is straightforward to derive the asymptotic properties of the estimators defined in Algo-
rithm 1. In Step (a), σ̂OLS

g = σg + op(1) as n → ∞ and L̂OLS ∼ MNp×K
{
L, �,

(
CT

2C2
)−1 }

.
Since E2 is independent of E1, both of these estimates are independent of Y1. This implies that
the asymptotic distribution of β̂OLS

g is

(
σ̂OLS

g

)−1 {(
X TX

)−1 + �
(
CT

2C2
)−1

�T
}−1/2 (

β̂OLS
g − βg

) D= Z + op(1) (g = 1, . . . , p)

as n → ∞, where Z ∼ Nd (0, Id).
A property of the ordinary least squares estimate β̂OLS

g is

β̂OLS
g = Y1g∗ − �L̂OLS

g∗ =
(

X TP⊥
C X

)−1
X TP⊥

C Yg∗ (g = 1, . . . , p).

That is, β̂OLS
g depends only on the column space C, meaning we may replace C with C� as

input in Algorithm 1 for any invertible matrix � ∈ R
K×K . In particular, we may choose � so
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that n−1CT
2C2 = n−1CTP⊥

X C = IK . This parametrization of C, and therefore C2, is convenient
because it suggests that a reasonable estimate of C2 when C is unobserved is a scalar multiple of
the first K right singular vectors of Y2. Using this intuition, we now present our method to estimate
and perform inference on β1, . . . , βp when C is unobserved. This is described in Algorithm 2,
which mimics the three steps of Algorithm 1.

Algorithm 2 (Estimation and inference when C is unobserved). Let Y1 ∈ R
p×d , Y2 ∈ R

p×n,
X ∈ R

n×d and K � 1 be given. Our goal is to estimate and perform inference on β1, . . . , βp, the
rows of B ∈ R

p×d .

(a) Let Y2 = U diag (τ1, . . . , τn) V T be the singular value decomposition of Y2 where τ1 � · · · �
τn � 0 and U TU = V TV = In. Define Ĉ2 = n1/2 (V∗1 · · · V∗K ), where V∗k is the kth column

of V ∈ R
n×n. Estimate � = diag

(
σ 2

1 , . . . , σ 2
p

)
and L as

σ̂ 2
g = (n − d − K)−1 Y T

2g∗P⊥
Ĉ2

Y2g∗ (g = 1, . . . , p), (7)

L̂ = Y2Ĉ2

(
ĈT

2Ĉ2

)−1
. (8)

(b) Define ρ̂ = p−1
(
σ̂ 2

1 + · · · + σ̂ 2
p

)
and

λ̂k = np−1L̂T∗k L̂∗k (k = 1, . . . , K), (9)

where L̂∗k is the kth column of L̂ ∈ R
p×K . Estimate � as

�̂ = Y T
1 L̂

(
L̂TL̂

)−1
diag

{
λ̂1/

(
λ̂1 − ρ̂

)
, . . . , λ̂K/

(
λ̂K − ρ̂

)}
. (10)

(c) Estimate βg as

β̂g = Y1g∗ − �̂L̂g∗ (g = 1, . . . , p). (11)

Just like the estimates
(
σ̂OLS

g

)2
and L̂OLS, σ̂ 2

g and L̂ defined in (7) and (8) are independent of

Y1. To perform inference on βg , we assume

σ̂−1
g

{(
X TX

)−1 + �̂
(

ĈT
2Ĉ2

)−1
�̂T

}−1/2 (
β̂g − βg

)
∼ Nd (0, Id) (g = 1, . . . , p).

2.4. Intuition regarding Step (b) of Algorithm 2

The estimates of σ 2
g (g = 1, . . . , p) and L in Step (a) of Algorithm 2 are similar to those

used in Sun et al. (2012), Gagnon-Bartsch et al. (2013), Lee et al. (2017) and Wang et al.
(2017). However, the estimate of � in Step (b) is different from those used in previous methods.
Recall from (4) that Y1 = B + L�T + E1. If B is sufficiently sparse, Sun et al. (2012),
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Gagnon-Bartsch et al. (2013), Lee et al. (2017) and Wang et al. (2017) propose using variations
of the following estimator to recover �:

�̂shrunk = Y T
1 L̂

(
L̂TL̂

)−1. (12)

That is, they ignore the uncertainty in L̂ when regressing Y1 on to L̂. To see why this is imprudent,
let R̂ = L̂−L be the residual and suppose for the sake of argument that L ≈ 0. Then the regression
coefficients from the regression Y1 ∼ L̂ should be very close to 0, since L̂ ≈ R̂ is independent of Y1.
In other words, existing estimates of � are shrunk towards 0. We quantify the shrinkage exactly in
§ 3.3 and use that result to derive an inflation term, 
̂ = diag

{
λ̂1/(λ̂1−ρ̂), . . . , λ̂K/(λ̂K −ρ̂)

}
. We

then use 
̂ to inflate the shrunken estimate �̂shrunk, which allows us to better estimate β1, . . . , βp
in Step (c) of Algorithm 2.

The importance of the inflation term 
̂ in (10) is related to how informative the data
are for C. The estimate λ̂k (k = 1, . . . , K) defined in (9) is the kth largest eigenvalue of
p−1Y T

2 Y2, and can therefore be viewed as an estimate of λk , the kth largest eigenvalue of
I = p−1E (Y2)

T E (Y2) = P⊥
X C

(
p−1LTL

)
CTP⊥

X . The eigenvalue λk is also the kth largest eigen-
value of

(
np−1LTL

) (
n−1CTP⊥

X C
)
. When λk is sufficiently large for all k = 1, . . . , K , we say

that the data are strongly informative for the latent factors C. Under this regime, λ̂1, . . . , λ̂K will
tend to dominate ρ̂, an estimate of the constant ρ defined in (2), meaning 
̂ will be negligible.
In this case it suffices to use �̂shrunk or other previously proposed estimates of � in place of �̂

in (11). On the other hand, we say the data are only moderately informative for C if one or more
of λ1, . . . , λK is not large. This can occur if the sample size n is not large enough, if some of
the columns of C do not affect the expression or methylation of all p genomic units, or if X is
correlated with the columns of C, since this will dampen P⊥

X C. In these cases, 
̂11, . . . , 
̂KK will
be moderate to large. In fact, we prove in § 3.3 and show with simulation and a real data example
in § 4 that existing methods that ignore the shrinkage in their estimates of � are not amenable to
inference. We define the informativeness of the data for C precisely in Definition 1 in § 3.3.

3. Theoretical results

3.1. Assumptions

In all of our assumptions and theoretical results, we assume model (1) holds, Y1 and Y2 are as
defined in (4) and (5), and B = (

β1 · · · βp
)T ∈ R

p×d .

Assumption 1. (a) Let X be an observed, nonrandom matrix such that limn→∞ n−1X TX =
�X 	 0.

(b) Let LCT ∈ R
p×n be an unobserved, nonrandom matrix with K nonzero singular values,

where K � 1 is a known constant.
(c) For some constant c1 > 1, σ 2

g ∈ [
c−1

1 , c1
]

for all g = 1, . . . , p.

Under (a) and (b), E (Y2) = L
(
P⊥

X C
)T = LCT

2 , E (Y1) = B + L�T and var
(
Yg1

) = σ 2
g

(g = 1, . . . , p) are identifiable. The choice to treat LCT as nonrandom is to illustrate that ignoring
this term tends to bias estimates of B. However, all of our results in § § 3.2–3.4 can be extended to
the case when LCT is a random variable using results from the Supplementary Material. Item (c)
is a standard assumption in the high-dimensional factor analysis literature (Bai & Li, 2012; Wang
et al., 2017). We next place assumptions on LCT

2 .

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asz037#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asz037#supplementary-data
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Assumption 2. Let I = C2
(
p−1LTL

)
CT

2 ∈ R
n×n and c2 > 1 be a constant and let:

(a) LT
g∗

(
n−1CT

2C2
)

Lg∗ � c2
2 for all g = 1, . . . , p;

(b) I has K nonzero eigenvalues λ1 > · · · > λK > 0 such that λk ∈
[
c−1

2 , c2n
]

and

(λk − λk+1) /λk � c−1
2 for all k = 1, . . . , K , where λK+1 = 0;

(c) p be a nondecreasing function of n such that n/p � c2 and n3/2/ (pλK ) → 0 as n → ∞.

The quantity LT
g∗

(
n−1CT

2C2
)

Lg∗ is identifiable because LCT
2 is identifiable, and (a) is equivalent

to ‖Lg∗‖2 � c2 for all g = 1, . . . , p if n−1CT
2C2 = IK . We comment on this further after we state

Proposition 1 below. The assumptions on λ1, . . . , λK in (b) are weaker than those considered in
previous work that provide inferential guarantees, which focused on the case when λ1 � λK � n
(Bai & Li, 2012; Fan & Han, 2017; Wang et al., 2017). Lee et al. (2017) do allow λK = o(n),
provided λ1 � λK and λK → ∞ as n → ∞. However, they only prove the consistency of their
estimates of β1, . . . , βp. In fact, we show in § 3.3 that inference with their method, as well as other
existing methods, is fallacious if λK ∈ [

c−1, cn1/2
]

for some c > 1. The assumptions on n, p in
(c) are the same as those used by Wang et al. (2017), who only consider the case λ1 � λK � n.
We next place assumptions on the parameters of E (Y1) = B + L�T.

Assumption 3. Let c3 > 0 be a constant.

(a) Let p−1
{
I (B1r =| 0) + · · · + I

(
Bpr =| 0

)} = o
(
n−3/2λK

)
for all r = 1, . . . , d as n, p → ∞.

(b) Let |Bgr| � c3 for all g = 1, . . . , p and r = 1, . . . , d.
(c) Let C ∈ R

n×K be any matrix such that E (Y ) = BX T + LCT for some L ∈ R
p×K . Then for

� = (
X TX

)−1 X TC and C2 = P⊥
X C, ‖� (

n−1CT
2C2

)−1
�T‖2 � c3.

Item (a) is the same sparsity as assumed in Wang et al. (2017). Item (c) is justifiable because
we prove that B and �

(
n−1CT

2C2
)−1

�T are identifiable under Assumptions 1, 2 and 3(a) in
Proposition 1 below, and Proposition S1 in § S2.1 of the Supplementary Material.

In DNA methylation data with p ≈ 3×105–8×105, n ≈ 102 and in the previously unexplored
regime λK ∈ [

c−1, cn1/2
]
, Assumption 3(a) restricts the number of genomic units with nonzero

coefficient of interest to be on the order of hundreds to thousands, which is common in many
studies (Liu et al., 2018; Morales et al., 2016;Yang et al., 2017; Zhang et al., 2018). We also show
through simulations that we can egregiously violate Assumption 3(a) and still perform accurate
inference on β1, . . . , βp. We now state a proposition regarding the identifiability of L and C.

Proposition 1. Let G = {diag (a1, . . . , aK ) : a1, . . . , aK ∈ {−1, 1}}, suppose Assumptions 1
and 2 hold and define the parameter space

�(0) ={
(L, C) ∈ R

p×K × R
n×K : E (Y2) = LCT

2 , n−1CT
2C2 = IK ,

np−1LTL = diag (λ1, . . . , λK ) for C2 = P⊥
X C

}
.

(13)

Then �(0) is nonempty and if
{
L(a), C(a)

}
,
{
L(b), C(b)

} ∈ �(0), then L(b) = L(a)� and C(b)
2 =

C(a)
2 � for some � ∈ G. If Assumptions 1, 2 and 3(a) hold, then there exists a constant c4 > 0

such that B is identifiable and

�(1) = �(0) ∩
{
(L, C) ∈ R

p×K × R
n×K : E (Y1) = B + L�T for � = (

X TX
)−1 X TC

}
(14)

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asz037#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asz037#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asz037#supplementary-data
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is nonempty for all n � c4. Further, if
{
L(a), C(a)

}
,
{
L(b), C(b)

} ∈ �(1), then L(b) = L(a)� and
C(b) = C(a)� for some � ∈ G for all n � c4.

The condition that (L, C) ∈ �(0) is a classic constraint to identify the components of factor
models (Bai & Li, 2012). If (L, C) ∈ �(0), Assumption 2(a) becomes ‖Lg∗‖2 � c2 for all

g = 1, . . . , p, and if (L, C) ∈ �(1), �
(
n−1CT

2C2
)−1

�T = ��T. While we prove it is unnecessary
to assume a particular parametrization of L and C to estimate and perform inference on β1, . . . , βp
using Algorithm 2, we use the parameter spaces �(0) and �(1) in the statements of theoretical
results regarding the accuracy of estimates of L and �, respectively, in § § 3.2–3.4.

3.2. Asymptotic properties of the estimates from Step (a) of Algorithm 2

We start by illustrating the asymptotic properties of σ̂ 2
g (g = 1, . . . , p) and L̂ defined in (7)

and (8).

Lemma 1. Suppose Assumptions 1 and 2 hold and n → ∞. Then, for ρ defined in (2),

σ̂ 2
g = σ 2

g + op(1) (g = 1, . . . , p), (15)

ρ̂ = p−1
(
σ̂ 2

1 + · · · + σ̂ 2
p

)
= ρ + op

(
n−1/2). (16)

Lemma 2. Suppose Assumptions 1 and 2 hold and n → ∞. Then, for λ̂1, . . . , λ̂K defined
in (9),

λ̂k/λk = 1 + ρ/λk + op
(
n−1/2) (k = 1, . . . , K). (17)

Let �(0) and Ĉ2 be as defined in (13) and Step (a) of Algorithm 2, respectively. If we also
assume that (L, C) ∈ �(0) and the K diagonal elements of ĈT

2C2 are nonnegative, then, for
W ∼ NK (0, IK ),

n1/2σ̂−1
g

(
L̂g∗ − Lg∗

) D= W + op(1) (g = 1, . . . , p). (18)

Remark 1. The identifiability constraints, that (L, C) ∈ �(0) and ĈT
2C2 has nonnegative diag-

onal elements, are equivalent to the IC3 constraint used in Bai & Li (2012) to identify the
components of factor models.

Remark 2. When C is observed and (L, C) ∈ �(0), (17) and (18) hold for the ordinary least
squares estimator L̂OLS defined in Step (a) of Algorithm 1.

Lemmas 1 and 2 show that L̂g∗ and σ̂ 2
g have the same asymptotic properties as L̂OLS

g∗ and(
σ̂OLS

g

)2
, the ordinary least squares estimates of Lg∗ and σ 2

g defined in Algorithm 1. However,

(17) states that the estimates of λk are biased by ρ, which we show below is the primary reason
why previously proposed methods often return inflated test statistics.

3.3. Previous estimates of � in Step (b) of Algorithm 2 inflate test statistics

Existing methods that use the estimation paradigm outlined in Algorithm 2 ignore the uncer-
tainty in L̂, and use variations of �̂shrunk to estimate �. We show in Proposition 2 and Corollary 1
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below that these methods tend to underestimate �, which can lead to spurious inference on
β1, . . . , βp.

Proposition 2. Suppose Assumptions 1, 2 and 3 hold with β1 = · · · = βp = 0, n → ∞ and
(L, C) ∈ �(1), where �(1) was defined in (14). In addition, suppose the diagonal elements of
ĈT

2C2 are nonnegative and λ1/λK � c5 for some constant c5 > 1. If we estimate � as �̂shrunk

defined in (12), then

n1/2‖�̂shrunk − � diag {λ1/(ρ + λ1), . . . , λK/(ρ + λK )}‖2 = op (1). (19)

Corollary 1. Fix some g ∈ [p] and let c6 > 0 be a small constant. In addition to the
assumptions of Proposition 2, suppose d = 1 and the following hold:

(i) We replace �̂ with �̂shrunk in (11) and estimate βg = 0 ∈ R as β̂shrunk
g = Y1g∗ − �̂shrunkL̂g∗.

(ii) There exists some constant ε > 0 such that, |∑K
k=1 �kLgk {(λK + ρ) / (λk + ρ)}| � ε,

where �k is the kth element of � ∈ R
1×K .

Define zg = σ̂−1
g

(‖X ‖−2
2 + n−1‖�̂shrunk‖2

2

)−1/2
β̂shrunk

g to be the gth z-score and let α ∈ (0, 1) be
any significance level. Then for q1−α/2, the 1 −α/2 quantile of the standard normal distribution,
there exists a constant δ > 0 such that, as n → ∞,⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

pr
(|zg| > q1−α/2

) = α + o(1) if λ−1
K n1/2 → 0,

pr
(|zg| > q1−α/2

)
� α + δ + o(1) if λ−1

K n1/2 � c6,

pr
(|zg| > q1−α/2

) = 1 + o(1) if λ−1
K n1/2 → ∞,

pr
{|zg| > q1−(p−1α)/2

} = 1 + o(1) if λ−1
K n1/2−c6 → ∞ and

n−rp → 0 for some constant r > 0,

where p−1α is the Bonferroni threshold at a level α.

Remark 3. Gagnon-Bartsch et al. (2013) used �̂shrunk to estimate �, but Lee et al. (2017) and
Wang et al. (2017) used slightly different estimators.We prove analogous versions of Proposition 2
and Corollary 1 for the estimators used by Lee et al. (2017) and Wang et al. (2017) in the
Supplementary Material.

Remark 4. The assumption that λ1/λK � c5 made in Proposition 2 and Corollary 1 requires
the eigenvalues be on the same order of magnitude. It is a standard assumption made by previous
authors who use versions of Algorithm 2 to estimate β1, . . . , βp (Lee et al., 2017; Wang et al.,
2017). In Remark 6, after the statement of Theorem 2, we discuss how to extend it to allow λ1/λK
to diverge.

When Condition (ii) in the statement of Corollary 1 does not hold, it implies that the bias �Lg∗
in Y1g∗ is minor, or the largest components of � load on to the columns of L corresponding to the
largest eigenvalues λk , which are the components least affected by the shrinkage in Proposition 2.
The shrinkage in �̂shrunk will have less of an impact on inference in these cases. If K = 1,
Condition (ii) can be replaced with |�Lg∗| � ε for some constant ε > 0.

The results of Proposition 2 and Corollary 1 show that ignoring the uncertainty in L̂ when
estimating � can lead to inflated test statistics and Type I errors if λ−1

K n1/2 is not small enough,
even if one uses the conservative Bonferroni threshold. We therefore define the informativeness
of the data for C in terms of the magnitude of λK in relation to n1/2.

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asz037#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asz037#supplementary-data
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Definition 1 (Informativeness of the data for C). The data Y are strongly informative for C
if λ−1

K n1/2 → 0 as n → ∞, and moderately informative for C if there exists a constant c7 > 1
such that λK ∈ [

c−1
7 , n1/2c7

]
for all n.

Corollary 1 shows that existing methods risk performing anticonservative inference when
the data are only moderately informative for C. We next show that our shrinkage-corrected
estimate of � in (10) begets estimates of β1, . . . , βp that are asymptotically equivalent to the
corresponding ordinary least squares estimates obtained when C is known, even when the data
are only moderately informative for C.

3.4. Estimates of β1, . . . , βp from Algorithms 1 and 2 are asymptotically equivalent

We first prove that our shrinkage-corrected estimate of �, �̂, corrects the aforementioned
shrinkage present in existing methods’ estimates of �.

Lemma 3. Suppose Assumptions 1, 2 and 3 hold and (L, C) ∈ �(1). Further, assume the
diagonal entries of ĈT

2C2 are nonnegative and λ1/λK � c5, where c5 > 1 was defined in the
statement of Proposition 2. If �̂ is defined as in (10) and n → ∞, then

n1/2‖�̂ − �‖2 = op (1). (20)

We use this result to prove that inference with β̂g (g = 1, . . . , p) is asymptotically equivalent
to the ordinary least squares estimator obtained when C is known.

Theorem 1. Let g ∈ [p] and suppose Assumptions 1, 2 and 3 hold with λ1/λK � c5 and
n → ∞. Then inference with β̂g is asymptotically equivalent to inference with β̂OLS

g in the
following sense:

n1/2‖β̂g − β̂OLS
g ‖2 = op(1), (21)

σ̂−1
g

{ (
X TX

)−1 + n−1�̂�̂T
}−1/2(

β̂g − βg
) D= Z + op(1). (22)

The estimates β̂OLS
g , �̂ and β̂g are defined in (6), (10) and (11), and Z ∼ Nd (0, Id).

In some real experimental data, the largest eigenvalue λ1 may be substantially larger than the
smallest eigenvalue λK . We therefore extend Theorem 1 to relax the assumption that the λk are
the same order of magnitude in the following theorem.

Theorem 2. Let g ∈ [p], suppose Assumptions 1, 2 and 3 hold and assume n → ∞. Define
mk ∈ R

p to be the kth left singular vector of LCT
2 (k = 1, . . . , K). If (λrλs)

1/2 |mT
r�ms| �

c8λmax(r, s) for some constant c8 > 0 for all r, s ∈ [K], then (21) and (22) hold.

Remark 5. Under Assumptions 1 and 2, (λrλs)
1/2 |mT

r�ms| is identifiable for all r, s ∈ [K].
If Assumptions 1 and 2 hold and (L, C) ∈ �(0), (λrλs)

1/2 |mT
r�ms| = |np−1LT∗r�L∗s| for all

r, s ∈ [K].
Remark 6. Proposition 2 and Corollary 1 can be extended to accommodate data where λ1/λK

diverges by replacing the condition that λ1/λK � c5 with (λrλs)
1/2 |mT

r�ms| � c8λmax(r, s) for
all r, s ∈ [K].
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The condition on mT
r�ms (r, s = 1, . . . , K) is quite general, as it can be shown to hold in

probability when Lg∗ ∼ F� and σ 2
g ∼ Fσ 2 (g = 1, . . . , p) for any distributions F� and Fσ 2 with

compact support, such that np−1LTL has eigenvalues bounded away from 0 with high probability.
We refer the reader to the Supplementary Material for more detail.

3.5. Inference on the relationship between C and X

One may be interested in understanding the origin of C. For example, if components of �̂

were large, it would be informative to know if this were due to random experimental variation,
or if some of the columns of C truly depended on X . To incorporate this type of inference, we
state the following theorem that allows C, and therefore �, to be treated as a random variable.

Theorem 3. Let c9 > 1 be a constant. In addition to Assumptions 11, 11 and 3(b), suppose
the following hold:

(i) ‖X ‖∞ � c9 and L ∈ R
p×K is a nonrandom matrix such that np−1LTL = diag (λ1, . . . , λK ),

where K � 1 is known;
(ii) let λK+1 = 0. Then λk ∈

[
c−1

9 , c9n
]

and (λk − λk+1) /λk � c−1
9 for all k ∈ [K], ‖Lg∗‖2 �

c9 for all g ∈ [p] and |np−1LT∗r�LT∗s| � c9λmax(r, s) for all r, s ∈ [K];
(iii) p is a nondecreasing function of n such that n/p � c9, n3/2/ (λK p) → 0 as n → ∞ and

p−1
{
I (B1r =| 0) + · · · + I

(
Bpr =| 0

)} = o
(
n−3/2λK

)
for all r ∈ [d];

(iv) C = XA + � ∈ R
n×K , where A ∈ R

d×K is nonrandom and � ∈ R
n×K has independent

and identically distributed rows �1∗, . . . , �n∗ ∈ R
K that are independent of E such that

E (�i∗) = 0, E
(
�i∗�T

i∗
) = IK and E

(
�4

ik

)
< ∞ for all i ∈ [n] and k ∈ [K].

Let Wd (Id , K) be the standard Wishart distribution in d dimensions with K degrees of freedom.
If the null hypothesis A = 0 is true and n → ∞, then

(
X TX

)1/2
�̂�̂T

(
X TX

)1/2 D= V + op(1),

where �̂ is defined in (10) and V ∼ Wd (Id , K). If d = 1, V ∼ χ2
K .

Remark 7. Under the definition of C in (iv), � = A + (
X TX

)−1 X T� and E (�) = A.

4. Simulations and data analysis

4.1. Simulation study

In this section we use simulations to compare the performance of our shrinkage-corrected
method defined by Algorithm 2 with that of methods proposed in Leek & Storey (2008), Gagnon-
Bartsch & Speed (2012), Gagnon-Bartsch et al. (2013), Lee et al. (2017) and Wang et al. (2017),
as well as the ordinary least squares estimator when C is known and when it is ignored. We do
not include results from Fan & Han (2017) or Houseman et al. (2014), because these methods
perform similarly to those proposed in Lee et al. (2017) and Wang et al. (2017). In all of our
simulations, we set n = 100, p = 105 and K = 10 to mimic DNA methylation data where p
ranges from 3 × 105 to 8 × 105, although our results are nearly identical for p on the order of
gene expression data (p ≈ 104). We set d = 1 and assigned 50 samples to the treatment group

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asz037#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asz037#supplementary-data
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Table 1. The τk and πk values (k = 1, . . . , 10) used to simulate L
Factor no. (k) 1 2 3 4 5 6 7 8 9 10

τk 1 0.78 0.60 0.5 0.5 0.5 0.5 0.5 0.5 0.5
πk 0 0 0 0.13 0.48 0.85 0.89 0.92 0.94 0.96
λk 98.0 58.9 35.4 21.3 12.8 3.8 2.7 1.9 1.4 1.0

and the rest to the control group so that X = (1T
n/2, 0T

n/2)
T ∈ R

n. We then set the eigenvalues
λ1, . . . , λK so that λ1 = n − 2, λK = 1 and, for the others,

λk =
{

(n − 2)(K−k)/(K−1) k � K/2,
{(n − 2)/5}(K−k)/(K−1) k > K/2.

For a predefined value of A ∈ R
1×K we simulated B = (

β1 · · · βp
)T ∈ R

p×1, L ∈ R
p×K ,

C ∈ R
n×K , � = diag

(
σ 2

1 , . . . , σ 2
p

)
and E ∈ R

p×n according to

βg ∼ 0.95δ0 + 0.05N (0, 0.42) (g = 1, . . . , p),

τ 2
k = max{λk/(n − 2), 0.52} (k = 1, . . . , K),

Lgk ∼ πkδ0 + (1 − πk) N (0, τ 2
k ) (g = 1, . . . , p; k = 1, . . . , K),

C ∼ MNn×K (XA, In, IK ),

σ 2
g ∼ Ga(1/0.52, 1/0.52) (g = 1, . . . , p),

Egi ∼ 2−1/2σgT4 (g = 1, . . . , p; i = 1, . . . , n),

(23)

where πk was chosen so that E
(
LT∗kL∗k

) = λk and T4 is the t-distribution with four degrees of
freedom. We then set the observed data to be Y = BX T + LCT + E ∈ R

p×n. Although our theory
from § 3 assumes the residualsE are normally distributed, we simulated t-distributed data to mimic
real data with heavy tails. The values used for τk and πk (k = 1, . . . , 10) are given in Table 1. We
show additional simulation results where we simulate B according βg ∼ 0.80δ0 +0.20N (0, 0.42)

in the Supplementary Material.
We set the parameter A used to simulate C, where A = E (�) in (23), to be one of two values:

A1 = α
(
1T

5, 0T
5

)
A2 = α

(
0T

5, 1T
5

)
,

with the scalar α chosen so that C explained 30% of the variability in group status X , on average.
The choice of 30% was not arbitrary, as we estimated that over 30% of the variance in group
status was explained by C in our data application in § 4.2.

As simulated, the eigenvaluesλ1, . . . , λ5 are large enough that the shrinkage termsλk/ (λk + ρ)

(k = 1, . . . , 5) from (19) in Proposition 2 are negligible. This implies that when A = A1, �̂shrunk

will likely be a suitable estimate of � ∈ R
1×10, since �̂shrunk will correctly estimate the largest and

most important components of �, �∗1, . . . , �∗5. The anticonservative nature of �̂shrunk implied
by Corollary 1 does not apply when A = A1 because Condition (ii) Corollary 1 will generally
not hold. We would therefore expect our shrinkage-corrected method defined by Algorithm 2
to perform similarly to previous methods that ignore the shrinkage in their estimates of � in
this simulation scenario. However, when A = A2, �̂shrunk will not recover the largest and most

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asz037#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asz037#supplementary-data
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Fig. 1. The false discovery proportion, FDP, for each method at a q-value threshold of 0.2 in simulations when
(a) A = A1 and (b) A = A2. BC is our shrinkage-corrected method defined in Algorithm 2 and K̂ is the number
of factors used to estimate C. CATE-RR, dSVA, IRW-SVA, RUV-2 and RUV-4 are the methods proposed in Leek &
Storey (2008), Gagnon-Bartsch & Speed (2012), Gagnon-Bartsch et al. (2013), Lee et al. (2017) and Wang et al. (2017),
respectively. These five methods were all applied with K̂ = K = 10. Inference with None was performed using the

design matrix (1n X ).

consequential components of �, �∗6, . . . , �∗10, because of the substantial shrinkage caused by
the relatively small eigenvalues λ6, . . . , λ10. In this case, Corollary 1 and Remark 6 suggest that
ignoring the shrinkage will lead to anticonservative inference on β1, . . . , βp, whereas Theorems 1
and 2 imply that our shrinkage-corrected method will be asymptotically equivalent to ordinary
least squares when C is observed.

We simulated 100 datasets with A = A1 and another 100 with A = A2. We found that we could
perform the best inference on β1, . . . , βp with each method by performing ordinary least squares
with the design matrix (1n X Ĉ), where Ĉ was C if C was known, or was estimated with any one
of the six methods described above. Our shrinkage-corrected estimate of C was Ĉ2 + X �̂, where
Ĉ2 was defined in Step (a) of Algorithm 2. We describe how the other five methods estimate C
below. We compared the ordinary least squares t-statistics from all the methods to a t-distribution
with n − 2 − K degrees of freedom to compute p-values for the null hypotheses H0, g : βg = 0
(g = 1, . . . , p). We then judged the performance of each method by comparing their true false
discovery proportion at a nominal 20% false discovery rate, estimated using q-values (Storey,
2001), because this is the inference method popular among biologists.

Figure 1 provides the simulation results. We see that our shrinkage-corrected method is able
to control the false discovery rate both when K is known to be 10 and when we drastically
overestimate it to be 20. Further, our method’s power to detect units with nonzero βg at this
nominal 20% false discovery rate threshold was 13.6% when K̂ = 10 and 12.8% when K̂ = 20,
which is compared to 13.6% when C was known. The power of all three methods was the same
for both values of A. This is exactly what one would expect from Theorems 1 and 2, which
prove that inference with our shrinkage-corrected estimator is asymptotically equivalent to that
with ordinary least squares when C is known. This equivalence was also manifested when we
overtly violated Assumption 3(a) and simulated β1, . . . , βp ∼ 0.80δ0 + 0.20N (0, 0.42); see the
Supplementary material for more detail.

It is also informative to study the performance of the other five methods, as this can be important
to practitioners deciding which method to apply to their data.

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asz037#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asz037#supplementary-data
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The methods of Wang et al. (2017), CATE-RR, and Lee et al. (2017), dSVA, estimate C as
Ĉcate

2 +X �̂cate and ĈdSVA
2 +X �̂dSVA, respectively, where their estimates of C2, Ĉcate

2 and ĈdSVA
2 ,

are nearly identical to Ĉ2 as defined in Step (a) of Algorithm 2. However, their estimates of �,
�̂cate and �̂dSVA, ignore the shrinkage described in Proposition 2. We would therefore expect
them to introduce more Type I errors when A = A2. Both CATE-RR and dSVA’s false discovery
proportion estimates were closer to nominal values when β1, . . . , βp ∼ 0.80δ0 + 0.20N (0, 0.42),
since any rejection region was likely to have more genomic units with nonzero coefficients of
interest.

The method of Leek & Storey (2008), IRW-SVA, estimates C by performing a factor analysis
on diag

(
π̂1, . . . , π̂p

)
Y , where π̂g is an estimate of pr

(
�g =| 0, βg = 0 | Y

)
(g = 1, . . . , p), by

iteratively estimating C and pr
(
�g =| 0, βg = 0 | Y

)
. Since the first iteration assumes Ĉ = P⊥

X Ĉ,
π̂g tends to be small if the marginal correlation between Yg∗ and X is large, which occurs if
|�Lg∗| is large. Therefore, the latent factors that influence diag

(
π̂1, . . . , π̂p

)
Y will be different

than those of Y if the latent factors with the largest effects are also correlated with X . This explains
why IRW-SVA performs poorly when A = A1. Unfortunately, there is no theory that states when
IRW-SVA is expected to accurately recover C.

Both RUV-2 (Gagnon-Bartsch & Speed, 2012) and RUV-4 (Gagnon-Bartsch et al., 2013)
assume the practitioner has prior knowledge of a subset S ⊆ [p] of control genomic units where
βg = 0 for all g ∈ S. We selected |S| = 600 = 20 × 30 control units uniformly at random from
the set of all genomic units with βg = 0 across all simulations, because simulations in Wang et al.
(2017) use 30 control units when p = 5000 = 105/20. RUV-2 estimates C via factor analysis
using only data from genomic units in S, whereas RUV-4 first estimates C2 and L as Ĉ2 and L̂
defined in Step (a) of Algorithm 2, and then estimates � as �̂RUV-4 = Y T

1S∗ L̂S∗(L̂T
S∗L̂S∗)−1. Here,

Y1S∗ and L̂S∗ are the submatrices of Y1 and L̂ restricted to the rows in S. The RUV-4 estimate of
C is then Ĉ2 + X �̂RUV-4. The obvious caveat for RUV-2 and RUV-4 is that the practitioner must
have a list of units whose coefficients of interest are zero and whose expression or methylation
carries the latent factor signature, i.e., the first K eigenvalues of C

(|S|−1LT
S∗LS∗

)
CT must be

suitably large. For example, the large variability in RUV-2’s false discovery proportion when
A = A2 is because the |S| = 600 control units were not sufficient to capture the latent factor
signature in many simulations.

4.2. Data application

In order to demonstrate the importance of using our shrinkage-corrected estimator, we applied
our method to reanalyse data from Nicodemus-Johnson et al. (2016), which studied the correla-
tion between adult asthma and DNA methylation in lung epithelial cells. The authors collected
endobronchial brushings from 74 adult patients with a current doctor’s diagnosis of asthma and
41 healthy adults, and quantified their DNA methylation at p = 327 271 methylation sites, also
referred to as CpGs, using the Infinium Human Methylation 450K Bead Chip (Dedeurwaerder
et al., 2011). Nicodemus-Johnson et al. (2016) then used ordinary least squares to regress the
methylation at each of the p sites on to the mean model subspace that included asthma status, age,
ethnicity, sex and smoking status to estimate the effect due to asthma,

(
β1 · · · βp

)T ∈ R
p×1. They

found 40 892 CpGs that were differentially methylated between asthmatics and healthy patients
at a nominal false discovery rate of 5%.

We investigated whether or not the strong association between DNA methylation and asthma
status was in part due to unobserved covariates. In particular, lung cell composition may
differ between asthmatics and nonasthmatics, with asthmatic patients generally having a greater
proportion of airway goblet cells that excrete mucus (Rogers, 2002; Bai & Knight, 2005). We
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Fig. 2. Results from our analysis of lung DNA methylation data from Nicodemus-Johnson et al. (2016). (a) The number
of asthma-related CpGs at a given q-value cut-off using our shrinkage-corrected estimator (solid line), as well as the
estimators proposed in Lee et al. (2017) (dot-dashed line), Wang et al. (2017) (dotted line) and Leek & Storey (2008)
(dashed line). (b) The K = 4 components of �̂shrunk (×) and �̂ (•) as a function of λ̂1, . . . , λ̂4. The dashed line is
the 0.95 quantile of the ñ−1/2χ1 distribution, where ñ is defined such that ñ�̂�̂T converges to a chi-squared random

variable with K = 4 degrees of freedom under the null hypothesis from Theorem 3.

therefore reanalysed these data to account for latent covariates with our shrinkage-corrected
method defined by Algorithm 2, and compared the results to those obtained using the methods
proposed in Leek & Storey (2008), Lee et al. (2017) and Wang et al. (2017). We could not apply
the methods proposed in Gagnon-Bartsch & Speed (2012) and Gagnon-Bartsch et al. (2013)
because we did not have access to control CpGs. We first used bi-crossvalidation (Owen &
Wang, 2016) to estimate that there were K = 4 latent factors in these data, and subsequently
estimated C ∈ R

115×4 using the four different methods. We then computed p-values for the null
hypotheses H0, g : βg = 0 (g = 1, . . . , p) using ordinary least squares with the design matrix
(X Z Ĉ), where X ∈ {0, 1}n was asthma status and Z contained the observed nuisance covariates
age, ethnicity, sex and smoking status. The total number of asthma-related CpGs returned by
each method as a function of q-value cut-offs (Storey et al., 2015), as well as the uncorrected
and shrinkage-corrected estimates of � ∈ R

1×4, are given in Fig. 2. At a q-value threshold of
20%, our method identifies 10 324 asthma-related CpGs, while the methods proposed in Leek &
Storey (2008), Lee et al. (2017) and Wang et al. (2017) ostensibly identify 32 952, 29 415 and
22 545 asthma-related CpGs, respectively. These numbers changed only slightly when we let K
be as high as 7.

We estimated that approximately 36% of the variance in asthma status was explained by C,
which, using Theorem 3, corresponds to a p-value for the null hypothesis E (C | X ) = 0 of
3.2×10−12. Moreover, assuming (L, C) ∈ �(1), the largest component of � appeared to load on
to the third column of L ∈ R

p×4, where λ3/ρ ≈ 2.5. Since this was much smaller than n1/2 = 10.7
and we estimated Lg3 =| 0 at over 40% of the studied CpGs g ∈ [p], Proposition 2, Corollary 1
and simulations connote that the methods proposed in Lee et al. (2017) and Wang et al. (2017)
are likely underestimating the fraction of CpGs with βg = 0 at any nominal q-value threshold.
It is likely the case that λ3, the third largest eigenvalue of I = P⊥

X C
(
p−1LTL

)
CTP⊥

X , was small
even though the third factor explained a significant portion of the variability in methylation levels
because its strong correlation with asthma status dampened P⊥

X C.
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We next sought to determine if differences in lung cell composition between asthmatic and
healthy patients were responsible for some of the correlation between asthma status and the
latent factors, since understanding the origin of the latent covariates could help practitioners
determine which method is most appropriate for their data. To do so, we fit a topic model with
r = 7 topics on the same individual’s gene expression data, which has been shown to cluster bulk
RNA-seq samples by tissue and cell type (Taddy, 2012; Dey et al., 2017). We then used the n-
dimensional factor whose corresponding loading was the largest on the MUC5AC gene as a proxy
for the proportion of goblet cells in each sample, as MUC5AC is a unique identifier for goblet
cells (Zuhdi Alimam et al., 2000). Just as one would expect, asthmatics tended to have a higher
proportion of estimated goblet cells than healthy controls, and we rejected the null hypothesis
that asthmatics and healthy controls had the same mean estimated goblet cell proportion at the
significance level of α = 0.01. This indicates that cell composition is presumably driving much
of the observed correlation between methylation levels and asthma status in Nicodemus-Johnson
et al. (2016), as well as the results from the reanalysis with the methods proposed in Lee et al.
(2017) and Wang et al. (2017).

These conclusions also help to explain why the method proposed in Leek & Storey
(2008) is likely underestimating the number of false discoveries. We estimated that
p−1

{
I (L1∗ =| 0) + · · · + I

(
Lp∗ =| 0

)} ≈ 0.90 in these data, which is precisely what one would
expect if cellular heterogeneity were among the unobserved factors, since changes in methylation
help drive cellular differentiation. And since we have already shown that X is correlated with
C, the method proposed in Leek & Storey (2008) would not be expected to control the false
discovery rate, as the simulations in § 4.1 showed exactly this when |�Lg∗| was large for many
genomic units g ∈ [p].

5. Discussion

The prevalence of unobserved covariates in high-throughput omic data has precipitated the
development of methods that account for unobserved factors C in downstream inference. While
these methods perform well when the data are strongly informative for C, they are not amenable to
inference when the data are only moderately informative for C. On the other hand, we prove that
inference using estimates from our shrinkage-corrected method in Algorithm 2 is asymptotically
equivalent to ordinary least squares when C is observed.

Our method is not a cure-all for inference with unobserved covariates. For example, Assump-
tion 3(a) restricts the number of units with nonzero main effect in DNA methylation data to
be on the order of hundreds to thousands when the data are only moderately informative C.
Even though simulations show we can potentially relax this number substantially to tens or even
hundreds of thousands in practice, it begs the question as to whether or not practitioners should
spend time and money to measure nuisance variables like cellular heterogeneity, or estimate them
directly from the data. If the practitioner is concerned that C is correlated with X , but has reason
to believe B is sparse, our theory suggests the effort should be spent collecting more samples.
However, if C is correlated with X and B is dense, it may be worthwhile to attempt to measure
some of the latent factors with other technologies. We are currently working with the authors
of Nicodemus-Johnson et al. (2016) to use external sources of information to potentially better
account for cellular heterogeneity in their data.

Acknowledgement

We thank Carole Ober and Michelle Stein for comments that have substantially improved this
manuscript. The research was supported in part by the National Institutes of Health.



Accounting for unobserved covariates 839

Supplementary material

Supplementary material available at Biometrika online includes additional simulation results
and proofs of all the propositions, lemmas and theorems presented in this paper. An R package
implementing our method, together with instructions and code to reproduce the simulations from
§ 4.1, are available from https://github.com/chrismckennan/BCconf.
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