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Impact of bacteria motility in the 
encounter rates with bacteriophage 
in mucus
Kevin L. Joiner1,2*, Arlette Baljon3,7, Jeremy Barr   4, Forest Rohwer5,7 & Antoni Luque   1,6,7*

Bacteriophages—or phages—are viruses that infect bacteria and are present in large concentrations 
in the mucosa that cover the internal organs of animals. Immunoglobulin (Ig) domains on the phage 
surface interact with mucin molecules, and this has been attributed to an increase in the encounter 
rates of phage with bacteria in mucus. However, the physical mechanism behind this phenomenon 
remains unclear. A continuous time random walk (CTRW) model simulating the diffusion due to 
mucin-T4 phage interactions was developed and calibrated to empirical data. A Langevin stochastic 
method for Escherichia coli (E. coli) run-and-tumble motility was combined with the phage CTRW model 
to describe phage-bacteria encounter rates in mucus for different mucus concentrations. Contrary to 
previous theoretical analyses, the emergent subdiffusion of T4 in mucus did not enhance the encounter 
rate of T4 against bacteria. Instead, for static E. coli, the diffusive T4 mutant lacking Ig domains 
outperformed the subdiffusive T4 wild type. E. coli’s motility dominated the encounter rates with both 
phage types in mucus. It is proposed, that the local fluid-flow generated by E. coli’s motility combined 
with T4 interacting with mucins may be the mechanism for increasing the encounter rates between the 
T4 phage and E. coli bacteria.

Phages—short for bacteriophages—are viruses that infect bacteria and are the most abundant replicative biolog-
ical entities on the planet1,2, helping to regulate ecosystems and participating in the shunt of nutrients and the 
control of bacteria populations3. These viruses are also abundant in multicellular animals ranging from cnidarians 
to humans4 and, along with their associated bacteria, affect metazoan health5–8. Humans host around 10 trillion 
phages9, and about three billion phages penetrate the human body daily10. Previous studies have shown how 
phage help regulate the human microbiota by fighting pathogenic bacteria4,11–14, which has important impli-
cations to the health industry. However, certain phages that are effective in vitro are not consistent in reducing 
bacteria host concentrations in vivo15,16, thereby limiting the understanding of how phage control bacteria in their 
natural environments.

In animals, bacteria and phage heavily colonize the mucus layers that cover internal organs17,18. Mucus is 
mostly composed by large glycoproteins (up to 106–109 Da) called mucins, which self-organize forming a mesh19. 
Mucins are constantly secreted by underlying epithelial cells20,21 and are subjected to shear forces that slough off 
the outermost layers22. Secretion maintains a protective mucus layer with a thickness ranging from 10 to 700 μm 
and depends on species and body location23–26. Phages in the human gut contain hypervariable 
immunoglobulin-like (Ig-like) domains27 that resemble antibodies and T-cell receptors28, which are displayed in 
the structural proteins of phages29,30. In-vitro experiments have shown that the Ig-like domain of the outer capsid 
protein (hoc) of T4 phage31 adhered to mucus, binding weakly to the abundant glycans in mucins4; this domain 
was shown to be prevalent across phages in different environments. The use of a micrfofluidic device (chip) that 
emulated a mucosal surface32 showed that both T4 wild type (T4 wt) and non-adherent (T4Δhoc) phage lacking 
the hoc domain accumulated to comparable abundance in the mucus chip. However, it was observed that T4 wt 
reduced bacteria concentration more than 4,000-fold as compared with the T4Δhoc. This motivated a bacterio-
phage adherence to mucus (BAM) framework, which considers phages as a non-host derived antimicrobial 
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defense33 on the mucosal surfaces of meatazoan and assigns subdiffusion as the sole mechanism that drives 
increased encounter rates of T4 wt with bacteria in mucus32. T4 wt phage interacts with mucins and moves sub-
diffusively; that is, its mean-squared displacement (MSD) increases sublinearly over time: = α

αt dD tMSD( ) 2 , 
where d is the number of dimensions, Dα is the generalized diffusion constant, α < 1 is the anomalous diffusion 
exponent32,34 and t is the time lag. The diffusion exponent of T4 wt depends on the mucin concentration [mucin], 
and, within the physiological range from 0% to 4% weight per volume (wt/vol), it reaches a minimum value of 
α = 0.82, at ∼1% [mucin]32. In contrast, T4Δhoc diffuses regularly (α = 1) because it does not adhere with 
mucins.

The mathematical encounter rate framework for the current BAM model32 was based on the work by Golding35 
and Halford36. These authors showed that the average time it takes for a hunter to find its prey is roughly inversely 
proportional to the hunters diffusion constant assuming the hunter does not move away from the area in which 
the prey is located. The 2015 BAM model extended this work to one phage and one bacterium. It was proposed 
that even though the subdiffusive T4 wt phage took an average time longer to encounter a bacterium than the 
T4Δhoc mutant, it would be more likely to encounter bacteria before moving out of the mucus layer.

In both experiment and literature32,35,37 there are several instances which relate subdiffusion to encounter 
rates that suggest improvement to the 2015 BAM model. First, during experiments, Barr et al. observed that due 
to the turnover dynamics of the mucus layer, both T4 wt and T4Δhoc had similar accumulation and prolonged 
existence in mucus despite their polarizing diffusive characteristics32. Secondly, several previous studies35,37 have 
found anomalous search strategies result in lower encounter rates even if the probability to find the target is 
increased. Thus, in the current BAM framework there appears to be a broad theoretical gap linking phage sub-
diffusion to an increased frequency of bacterial encounters in mucus. Finding an appropriate mechanism, either 
subdiffusion or otherwise, remains to be an interesting and open problem to explore.

In this work, as a follow up to Barr et al.32, a close examination into the active role that bacteria play in influ-
encing encounter rates with phage is conducted. It is shown that bacteria motility plays a vital role in influencing 
their encounters with phage. To accomplish this, a computational framework was used to simulate the motion 
of bacteria and phage, capturing the effects of mucus implicitly. It is demonstrated that a phage search strategy 
interrupted by sticking times is not more effective than Brownian motion in finding a motile or static bacte-
rium. Specifically, when the bacterium was motile, the encounter rates were independent of phage diffusion. It 
is hypothesized that bacterial motility and the fluid flow generated by bacteria swimming, combined with BAM 
attachment increases the infectivity of T4 wt versus T4Δhoc. In this way, the mucus may act as a coupling mecha-
nism between the microbes via their motive dynamics to increase encounter rates. During the development of the 
methodology, the study addresses and solves several interesting issues for a broad audience in physics and biol-
ogy, e.g., rheological probing with phage, how to calibrate a subdiffusive system with empirical data and general 
expressions for encounter rates were derived that include both diffusion and subdiffusion.

Methods
Langevin models were incorporated to simulate T4 and Escherichia coli (E. coli) microbes in a homogeneous 
mucus layer with a mucin concentration dependent viscosity, ηM, (Fig. 1A). The models were calibrated using 
empirical data, which minimized parameters and simplified computational complexity without sacrificing accu-
racy (Fig. 1A). Diffusion constants and exponents for both T4 wt and T4Δhoc (Table 1), previously obtained via 
high-speed multiple particle tracking and reported in Barr et al.32, were used for calibrating the phage models 
over different values of mucin concentration (see Results: Phage and Bacteria Model Calibration).

Phage diffusion and subdiffusion in mucus.  Phage diffusion in mucus was modeled in three dimensions 
by the Langevin equation:

γ γ= − + .
� ��� ��� � ��� ��� � ������ ������v v Wm t t kT t( ) ( ) 2 ( )

(1)
P P P P P

inertia friction thermal noise

The vector = 〈 〉v t v t v t v t( ) ( ), ( ), ( )P x y z  represented the phage velocity, the scalars ≈ .m 0 1 fgP
38 and γ π η= R6P P M  

represented the phage mass and coefficient of friction respectively. The parameter RP was the effective phage 
hydrodynamic radius. Both RP and ηM where extracted from empirical data (see “Viscosity at different mucus 
concentrations”). The thermal noise term with Gaussian white noise W(t) accounted for buffeting from neighbor-
ing fluid molecules, and kT  was the thermal energy of the fluid. Besides thermal buffeting and drag, no other 
hydrodynamics were included in the initial models (see Discussion).

Phage T4 wt subdiffuses due to its adherence with mucins, while T4Δhoc (no mucin adherence) displays 
regular diffusion (inset of Fig. 1B). Based on microscopy tracks, T4 wt was interpreted as arresting its motion 
(sticking) during an interaction with mucin molecules, detaching following a statistically longtailed distribution 
of sticking times (τS) and diffusing for a time (τD) until reaching another mucin molecule (Fig. 1C). A framework 
incorporating continuous time random walks (CTRW) was used to extract the minimum sticking time (τ0) and 
diffusion time (τD) between mucin interactions. Displacement times (τ) were generated using a Pareto probability 
distribution, ψ τ ν τ ν τ τ τ= ν+( ; , ) / ( / )0 0 0

1 , which is a fat-tailed distribution known to give rise to subdiffusion39. 
New mathematical expressions were derived to get appropriate displacement times and fit the minimum sticking 
time (τ0) and Pareto exponent (ν) to empirical data (see results). A concise description of the derivation is pro-
vided below. The reader is referred to the supplementary material for further details.

Phage minimum sticking times and diffusion times.  An asymptotic approximation  for the 
mean-squared displacement (MSD) of random walks was derived using established methods in the study of 
CTRW40. The displacement time was decomposed implicitly as a sticking time and a diffusion time, that is, 
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τ τ τ= +S D (Fig. 1C). The probability of being at position x at time t was built assuming time-space decoupling 
and independent and identically distributed processes. Fourier and Laplace transforms were combined with an 
indicator function approach to obtain the mean-square displacement, τ= 〈 〉t dD n tMSD( ) 2 ( )D , where d was the 
number of dimensions, D was the standard diffusion constant and n was the number of diffusion steps (Fig. 1C) 
produced in time τ= ∑ =t i

n
i1 . The expression for 〈 〉n t( ) , the average number of diffusion steps in time t, was 

obtained asymptotically by adapting a method based on incomplete gamma functions expressed as holomorphic 

Figure 1.  Bacteriophage Encounter Rates in Mucus Methodology and Modeling. (A) Calibrated models of 
phage and bacteria in mucus is used to evaluate the effect of subdiffusion on encounter rates. (B) The mucus 
layer was homogeneous, and its viscosity η depended on the mucin concentration [mucin]. E. coli propelled 
through mucus in a straight line in the run phase, and reoriented randomly in the tumble phase. The tumble rate 
ω( )T  was the frequency between the two phases. In the inset, phage T4 wildtype (wt) displayed subdiffusion due 

to its interaction with mucins, while T4Δhoc displayed regular diffusion (no adherence to mucin). (C) The 
subdiffusion was generated using a continuous time random walk (CTRW) model; the total displacement time 
(τ) was composed by the sticking time (τS) due to the interaction of T4 and mucins and the diffusion time (τD) 
due to the diffusion of T4 between mucins.

[mucin]

T4 wild type T4Δhoc

α Dα α D

0 1.02 ± 0.02 3.84 ± 0.17 0.99 ± 0.03 3.64 ± 0.24

0.2 0.93 ± 0.02 2.38 ± 0.17 0.99 ± 0.04 3.14 ± 0.27

0.6 0.82 ± 0.02 1.18 ± 0.12 1.01 ± 0.02 2.63 ± 0.11

1 0.82 ± 0.01 1.03 ± 0.07 1.02 ± 0.02 2.54 ± 0.14

2 0.91 ± 0.02 0.90 ± 0.07 0.99 ± 0.02 1.37 ± 0.07

4 0.86 ± 0.02 0.42 ± 0.04 0.89 ± 0.02 0.74 ± 0.04

Table 1.  Mucin concentration [mucin] in (% w/v), anomalous exponent, α, generalized diffusion constants Dα 
(μm2/sα) and standard diffusion constants D (μm2/s) obtained experimentally for T4 wild type and T4Δhoc 
phages respectively32. Values are averages ± SD (standard deviation).
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functions41. This led to the asymptotic expression ν τ〈 〉 ν~n t sinc t( ) ( )( / )0  where the constraint between the mini-
mum sticking time (τ0) and the diffusion time (τD) of one diffusion step was τ τ ν= νsinc( )D0

1/ . A consistency 
argument was then used to recover the standard diffusion constant in the limit ν → 1. A system of two equations 
involving the minimum sticking time and diffusion time in terms of the phage generalized diffusion constant 
(Dv), standard diffusion constant (D) and Pareto exponent (ν) were obtained, for which τ0 and τD can be extracted 
from empirical data to simulate T4 phage in mucus given in the results section and explicitly derived in the sup-
plementary material.

Viscosity at different mucus concentrations.  The momentum relaxation time, τ γ= m/relax , is the time 
scale on which a particle transitions from smooth ballistic behavior to diffusive behavior. It depends on the parti-
cles mass (m) and coefficient of friction (γ) which is related to the particle size and viscosity of the surrounding 
fluid. The viscosity of mucus (ηM) was extracted using the spherical Stokes-Einstein equation, πη=D kT R/6 M P, 
where D was the standard diffusion constant of phage T4Δhoc in 0%, 0.2%, 0.6%, 1%, 2%, and 4% mucin concen-
tration (weight/volume, w/v) as measured in Barr et al.32 at 37 °C. Given the emprical data, thermal energy was 
assumed at 37 °C ( = .kT 4 28 pN · nm) which approximates typical temperatures (37°–40 °C) in humans and ani-
mals42. The effective phage hydrodynamic radius, RP, was determined by assuming the 0% mucus viscosity resem-
bles that of water43 (η = .0 69W  mPa · s) at 37 °C. This led to πη= =R kT D/6 90 nmP W  which is similar to half the 
total length of typical T4 phage31,44: 103.5 nm (=120 nm (head) + 93 nm (tail) divided by two).

The mucus viscosity ηM (Table 2) was fitted to two power functions, η η= +a[mucin]M
b

W, where a and b are 
fitting parameters, in the regions 0–1% [mucin] and 1–4% [mucin]. In the region 0–1, the viscosity increased 
sublinearly (Fig. 2C) with an exponent = . ± .b 0 65 0 14 where the second digit of b is the standard error on its 
estimate from the linear regression (Table 3). For the region 1–4%, the viscosity increased superlinearly with an 
exponent = . ± .b 1 59 0 20 (Table 4). The crossover scaling of ηM at 1% [mucin] measured here was qualitatively 
similar to those found in previous rheological studies on the dependence of stomach mucus viscocity on concen-
tration ( [mucin] and [mucin]M M

0 53 3 92~ ~η η. . , with crossover at approximately 1%[mucin])45 and ( [mucin]M
0 50η .~

η .and [mucin]M
1 50~ , with crossover also at approximately 1%[mucin])46. In this study, the extrapolated mucus 

viscosities across mucus concentrations were less than an order of magnitude from water implying the relaxation 
time of the bacteria and phage should be near to that experienced in water: τ μ≈ .0 05 srelax .

Bacteria motion in mucus.  E. coli propels itself through mucus in a straight line during a run phase, and 
reorients randomly in a tumble phase at a tumble rate ω( )T  which is the frequency between the two phases47. The 
motion of E. coli (Fig. 1B) was modeled using a Langevin equation for which the velocity of the bacterium, vB, was 
given by:

γ γ= − + .

.
�� ��� ��� � ��� ��� � ������ ������v f v Wm t t t kT t( ) ( ) ( ) 2 ( )

(2)
B B B B B B

inertia flagellar prop friction thermal noise

Here, mB was the the mass of E. coli ≈1 pg48, fB the propelling force generated by the rotation of the flagella, and 
γ π η= R6B B M the coefficient of friction for the bacterium.

In three dimensions, = 〈 〉f t f t f t f t( ) ( ), ( ), ( )B x y z  and was given by: λ θ=f F t t t( )cos ( )cos ( )x , λ=f F t t( )cos ( )y
θ tsin ( ) and λ=f F t t( )sin ( )z , where λ and θ were uniform identically independent random numbers between 0 

and π2  chosen at run time intervals τR. In the run phase, with μ= −v 30 msecB
1, =F t v( ) B and =F t( ) 0 during 

tumbles47. The run times were exponentially distributed as τ ω ω τΦ = −( ) exp( )R T T R
47. The standard run rate was 

ω = −1secT
1, giving an average bacteria run time τ ω〈 〉 = =1/ 1sR T

47,49, although shorter run times were explored 
for ω = −100 secT

1. A static bacterium was also studied with a fixed position, =v t( ) 0B , over the course of the 
simulations.

Method for bacteria-phage encounter rates.  Simulations generated outputs of bacteria–phage encoun-
ter rate kernels (β) which were defined as the volume searched by a bacterium per unit time. This was later used 
to test the hypothesis that subdiffusion increases encounter rates (Fig. 1A). To accomplish this, a single bacterium 
was simulated in a box with volume V (bacteria concentration =B V1/ ) with a phage concentration (P). The 
simulation box had dimensions μ μ μ× ×100 m 100 m 100 m with periodic boundary conditions on all sides. 
Simulations were initialized with 108 uniformly and randomly distributed T4 wt or T4Δhoc phage particles 
(equivalent to 1 phage and 1 bacterium simulated 108 times) interacting with mucin. The microbes stick/run 
timers were initially set to zero and updated during the first simulation step. Once the timers reached zero, the 

Viscosity (η)

Mucus Concentration (%wt/vol)

0% 0.2% 0.6% 1% 2% 4%

Error (Upper) 0.77 0.90 1.04 1.09 2.01 3.73

Mean 0.69 0.80 0.96 0.99 1.83 3.39

Error (Lower) 0.62 0.70 0.87 0.89 1.66 3.06

Table 2.  Mucus viscosity across concentrations. Values are in mPas. Values and errors were extracted using the 
T4Δhoc diffusion coefficient errors.
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phage or bacterium were displaced/reoriented and the timers were reset to the current time plus the stick/run 
time. Only interactions between phage and the bacterium were modeled (no intraspecies interactions).

From the mass action principle, the encounter rate kernel is given by β = =BP dP dt V P dP dt(1/ ) / ( / ) /  [vol-
ume · bacteria−1 · time−1] and was estimated computationally. For this study, adsorption of the phage into the 
bacterium was instantaneous and no other interactions (i.e., bacteria–phage collisions) were modeled. The 
adsorption radius, μ= + = .R R R( 1 1 m)C B P , was defined using μ=R 1 mB

47 and μ= .R 0 1 mP  (see “Viscosity 

Figure 2.  Bacteriophage Model Validation and Calibration. (A) Mean square displacement. Plots (log–log) of 
the simulated data (black circles) is asymptotic to τα α−D t / 0

1 (solid lines). (B) For ν< <0 1, α ν=  
(subdiffusion) and ν > 1, gives α = 1 (diffusion). (C) Mucus viscosity, η( ), as a power function ~[mucin]a of 
mucin concentration. (D) Characteristic minimum sticking times (blue circles) and displacement times (black 
circles) for T4 wt across mucin concentrations. (E,F) Emergent diffusion characteristics (dashed lines) of 
simulations compared with empirical T4 wild type (black circles) and T4Δhoc (red triangles) data.

Viscosity Regression Analysis (0.2–1%)

Coefficients Estimate Std. Error

(Intercept) −1.12 0.13

b 0.65 0.14

Table 3.  Mucus viscosity regression analysis using the mean values of mucus viscosity. The fitting model was 
η η− = +b Alog( ) log([mucin])M W . Residual standard error is 0.16 on 1 degree of freedom and a multiple 

R-squared of 0.92 (on the fitting model).

Viscosity Regression Analysis (1–4%)

Coefficients Estimate Std. Error

(Intercept) −1.13 0.18

b 1.59 0.20

Table 4.  Mucus viscosity regression analysis using the mean values of mucus viscosity. The fitting model was 
η η− = +b Alog( ) log([mucin])M W . Residual standard error is 0.20 on 1 degree of freedom and a multiple 

R-squared of 0.98 (on the fitting model).
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at different mucus concentrations”) as the bacterium and phage radii respectively. When a phage was within the 
adsorption radius from the bacterium an encounter was tallied and the phage was set to an “inactive” state and 
would not count towards any simulated encounters temporarily. Once the phage was 50 μm away from the bacte-
rium, the phage would be “reactivated” in the simulation. Over the time step, the encounter kernel was calculated 
as β τ= N V N( )/( )Denc act , were Nenc was the number of encountered phage and Nact was the number of active 
phage. Simulations were visually inspected for clear trends in the emergent encounter kernels which would 
quickly manifest after ≈500 steps from execution. The simulations were repeated for the range of bacteria motility 
states shared in the bacteria motion in mucus section above.

Encounter rate approximation of two motile species.  An approximation to the phage–bacteria 
encounter rate kernel, which extends previous encounter kernel models50,51, was derived using a modified diffu-
sion equation and a rest frame centered on the bacterium. The propagator P was the probability for a phage to be 
at position r at time t and was modeled using the modified diffusion equation in radial coordinates

∂
∂

=
∂
∂







∂
∂







DP
t

t
r r

r P
r

( ) ,
(3)2

2

where = ∂〈 〉 ∂D t d r t( ) (1/2 ) /2  was the instantaneous diffusion coefficient52 of the particles in dimension d, and r 
was the radial distance between the bacterium and phage centers. Similar models, using a instantaneous diffusion 
coefficient, have previously been shown to reproduce the power law dependence of the MSD of anomalously 
diffusing particles52,53. Adopting a restframe centered on the bacterium (located at the origin) where the bacte-
rium was stationary and the phage move in relative motion results in a relative phage MSD 〈 〉r2  expressed as

τ
〈 〉 =

〈 〉
+ α

α

� ���� ����� � ��� ���r t d v t dD t( ) 2
3

2 ,B2
2

R

bacteria MSD
phage MSD

which is a superposition of the MSD’s of the bacteria and phage microbes. In =d 3, taking the derivative of 〈 〉r2  
with respect to time gives τ α= 〈 〉 + α

α−D t v D t( ) /3B
2

R
1. The encounter rate problem was defined by Eq. (3) with 

the boundary condition =P t(0, ) 0 and initial conditions = ≤P r r R( , 0) 0, if C and = >∞P r P r R( , 0) , if C. 
Transforming the problem into a 1-D framework using the substitution =v r t P r t r( , ) ( , )  and applying Fourier 
methods54 gave an analytic expression for P (see full derivation in the Supplementary Information) that was used 
to compute the phage flux (encounter rates): = ∂ ∂ ⋅ →∮ ˆDt t P r r d s( ) ( )( / )  evaluated at =r RC to obtain theoret-
ical approximations to the phage encounter kernel to compare with the simulation results (see Results).

Results
Phage continuous time random walks in mucus: an example computation.  A first goal of the 
study was to determine how simulated phage trajectories could be calibrated so they would resemble their labo-
ratory trajectories. The method for deriving equations for the phage minimum sticking times (τ0) and diffusion 
times (τD) resulted in general expressions for calibrating random walk models to generate simulated trajectories 
using the Pareto distribution ψ τ ν τ( ; , )0 . Specifically, the constraint between the minimum sticking time and the 
diffusion time (τD) was

τ τ ν= .νsinc( ) (4)D0
1/

This led to a relationship between the generalized diffusion coefficient ( νD ) and the standard diffusion con-
stant (D) given as

τ
= .ν ν−D D

(5)D
1

Equations (4) and (5), which relate the phage minimum sticking and diffusion times to the generalized and 
standard diffusion constants, were validated using a generic 2-dimensional CTRW scenario: =


x Wt D t( ) 2 ( ). 

For the simulations, μ= . −D 3 66 m sec2 1 was the diffusion constant which was representative of a small T4 phage 
in water, with radius =R 60 nm, at 25C , τ = .0 05sD  was the diffusion time (time step) and sticking times were 
drawn from the Pareto distribution ψ ν τt( ; , )0  with τ0 related to ν using Eq. (4). To generate displacement times, 
ψ ν τt( ; , )0  is first integrated from the minimum sticking time to the desired displacement time τ to get the cumu-
lative distribution function ∫τ ψ τ τ= = −

τ

τ νt dtcdf( ) ( ) 1 ( / )0
0

.
The differential equation for 


x t( ) was numerically solved and subdiffusion induced by using a simple finite 

difference algorithm and a single scheduling process. In terms of the finite differences, x was discretized by setting 
τ= −+

x x xt( ) ( )/k k D1  and +xk 1 solved for to get τ ξ= ++x x D2 ,k k D k1  where k was the time step ( τ=t k D) and 
the noise was discretely approximated55 as ξ τ=W t( ) /k D  using Gaussian random numbers, ξk, of mean zero and 
unit variance. At =t 0 the phage particle was initialized at the origin ( =x 00 ). Setting the equation for τcdf( ) to 
a uniform random variable ~U Uni(0, 1) between 0 and 1 and solving for τ gave the random displacement time 
τ τ= ν(1/U)0

1/ . If τ<t  the noise was held fixed at zero (ξ = 0k ) so the phage would remain stationary. Once 
τ≥t  a random Guassian number would be drawn and the phage would displace for a single time step, another 
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displacement time would be drawn and the process would repeat. To produce the results, simulations would pro-
gress for 104 time steps and 104 replicate trajectories would be simulated.

From the simulated trajectories, the ensemble MSD 〈 〉 = −+x x x( )k i k i
2 2 was calculated and a log-log linear 

regression model β β τ ε〈 〉 = + +xlog log( )k
2

0 1 , was applied to extract the trajectories effective diffusion coeffi-
cient ( β=αK exp 0) and anomalous diffusion exponent α β= 1

56. The term ε is a random variable accounting for 
unexplained random variation in the response 〈 〉xlog k

2 . Figure 2A shows that as ν was varied between 0 to 2 then 
〈 〉 α

α~x K tk
2  where τ=α

α−K D4 / D
1 as predicted by Eq. (5). Plotting the anomalous exponent α against the Pareto 

exponent ν (Fig. 2B) revealed α ν~  in the region ν< <0 1 (subdiffusion) and converged to one α =( 1) for 
ν > 1 (diffusion). Thus, the simulated MSD asymptotics showed the diffusion exponent of the trajectories con-
verged to the exponent in the Pareto distribution used to generate the displacement times.

Phage and bacteria model calibration.  The empirical values of the generalized diffusion constant αD( ) 
and anomalous diffusion exponent α( ) for T4 wt and the standard diffusion constant (D) for T4Δhoc (Table 1) 
were combined in Eq’s (4) and (5) with ν α=  and =d 3 to estimate the typical diffusion time τ = α

α−D D( / )D
1/ 1 

and minimum sticking time τ τ απ= αsinc( )D0
1/  for different mucin concentrations (Fig. 2D). The diffusion time 

was similar across mucin concentrations with a typical value of τ ≈ .0 01D  sec so that τ τ Drelax . The minimum 
sticking time was also similar across mucin concentrations with a mean value of τ ≈ .0 0010  sec.

Since τ τ Drelax , the inertial term in Eq. (1) was neglected and the Stokes-Einstein relation applied to find

=v Wt D t( ) 2 ( ), (6)P

where D was set to the empirical values for T4Δhoc listed in Table 1. Using α as the index in the Pareto distribu-
tion ψ τ α τ( ; , )0  would generate random walks of phage with = α

αt D tMSD( ) 6 . Simulations of Eq. (6) recovered 
the expected transport properties measured experimentally at different mucin concentrations (Fig. 2E,f).

Similarly, since τ τ Drelax  the inertial term in Eq. (2) was neglected. The thermal contribution of mucus to the 
bacteria’s velocity was close to that experienced in water and was orders of magnitude smaller than its typical 
propelling velocity, which yields

γ
= .v ft t( ) 1 ( )

(7)B
B

B

This was the equation of motion used for the bacteria’s run regime for the propulsive term and run times (see 
Methods: bacteria motion in mucus).

Encounter rate simulations: the impact of subdiffusion.  Phage T4 and E. coli microbes were simu-
lated by numerically integrating Eq’s (6) and (7) and applying the methods for bacteria-phage encounter rates 
as described in the methods section. The values of the physical and modeling parameters are listed in Table 5. 
The simulations were conducted for 1% (w/v) mucin, which was the reported maximum onset of T4 wt sub-
diffusion32. For all simulations, the analytical expressions indicated these results would be robust across mucus 
concentrations.

Case 1: E. coli Running and Tumbling. When the E. coli bacterium operated within its typical run-and-tumble 
regime47 (ω = −1 secT

1), the simulated encounter rate kernels for T4 wt and T4Δhoc appeared to vary around an 
average steady state over time (Fig. 3A). To interpret this result, it was noted that for time scales on the order of 
the E. coli’s average run time τ〈 〉R , its path is linear and the bacterium would travel a distance τ μ〈 〉 = 〈 〉 =l v 30 mB R . 
On the other hand, T4 has a root mean square (RMS) value of τ μ= = .α

αDRMS 6 2 49 mR  (T4 wt) and μ.3 90 m 
(T4Δhoc) which are both an order of magnitude less than 〈 〉l  (net distance traveled) and increases at a slower rate 
for τt R since more time would be spent lingering or backtracking over areas already covered. Hence, the E. coli 
bacterium traveled a more ballistic path, whereas the T4’s transport was more diffusive. Put more explicitly, 
〈 〉 l RMS, so the bacterium explored much more space than the phage (Fig. 3E). Thus, it was natural to suspect 
the encounter rates to be ballistic and primarily governed by the bacterium’s velocity and run time parameters. 
This interpretation motivated the calculation of a theoretical ballistic encounter kernel β π= R vC Bball

2 . 
Computing βball with μ= −v 30 msecB

1 and μ= .R 1 1 mC  gives β = . × −4 1 10ball
7 (mLh−1) which agreed well 

with the simulation results (Fig. 3A solid red line).

Parameter Description Value Ref.

RP T4 radius 0.09 μm Methods

RB E. coli radius 1 μm 47

vB E. coli velocity 30 μm/sec 47

ωT E. coli tumble rate 1–100 sec−1 47

τD T4 diffusion time 0.01 sec Methods

V Simulation volume 106 μm3 Methods

Table 5.  Definitions of the physical and modeling parameters used in simulations of E. coli and T4 phage in 
mucus.
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Case 2: E. coli with Short Run Times. Next, the effect of phage subdiffusion on encounter rates when the bacte-
rium’s motility was less dominate 〈 〉 l( RMS) was studied. For the simulations, the E. coli bacterium’s average 
run time was reduced by increasing the tumble frequency (ω = −100 secT

1) in τ ωΦ( ; )R T  resulting in a theoretical 
diffusion constant of τ= 〈 〉 = × − −D v /3 3 10 (m sec )B B R

2 12 2 1  which was comparable to the empirical T4Δhoc dif-

Figure 3.  E. coli-T4 Encounter Rates =([mucin] 1%). Panels (A–C) are plots of the E. coli -T4 encounters per 
unit time and the corresponding encounter kernels: βball (ballistic)–shown in red, βdiff (diffusive)–shown in blue, 
as a function of time (solid lines–steady state, dashed lines–transient) for three different motility regimes of E. 
coli. (A) The simulated data for ballistic E. coli with a small tumble frequency which physiologically corresponds 
to the bacterium swimming for long duration. (B) Diffusive E. coli with large tumble frequency or short swim 
times. (C) Static E. coli not swimming =v( 0)B . The black curve corresponds to T4 wild type, and the grey curve 
corresponds to T4Δhoc. (D) Analytical and simulated mean squared displacement for T4 wild type and 
T4Δhoc using the subdiffusion exponents observed empirically at =[mucin] 1%. (E) The bottom right image 
displays 2D projections of 43.3 sec trajectories for E. coli, T4 wild type, and T4Δhoc at a ∼50 μm scale. The inset 
displays both phage trajectories at a higher resolution (∼5 μm).
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fusion constant, = . × − −D 2 54 10 (m sec )12 2 1  in 1% mucus. In this case, the simulated encounter rate kernels for 
both T4 wt and T4Δhoc appeared to be bounded and convergent to average steady states that were on the same 
order of magnitude (Fig. 3B).

The simulation outputs were compared to the theoretical encounter rate approximation described in the 
methods section for two motile bacteria and phage species, given as

 π
π λ

=





+






∞ Dt P R t R

t
( ) 4 ( ) 1

( )
,

(8)
C

C
2

where τ α= 〈 〉 + α
α−D t v D t( ) /3B R

2 1 and ∫λ = Dt t dt( ) ( ) . Dividing Eq. (8) by ∞P  gave the time dependent 
encounter rate kernel β t( ) which varies with both D t( ) and λ t( )1/2. In the case of the T4 wt in 1% mucus; α = .0 82, 
so as t gets large, τ≈ 〈 〉D v /3B R

2  and the terms in parentheses converge to one which indicated the bacterium’s 
diffusion primarily determined encounter rates over phage subdiffusion. The approximate encounter kernel for 
T4 wt computed with μ= −v 30 msecB

1 and τ〈 〉 = 1/100 secR  was β = . × −1 49 10diff
7 (mLh−1). On the other 

hand, for the T4Δhoc, α = 1 gave τ= +⟨ ⟩D v D/3B R
2 . Using = . × − −D 2 54 10 (m sec )12 2 1  gave a T4Δhoc encoun-

ter kernel of β = . × −2 77 10diff
7 (mLh−1). Thus, when the bacterium tumbled frequently, the encounter rate 

kernels for both T4 wt and T4Δhoc converged to average steady states (Fig. 3B solid blue line) that were close in 
magnitude and accurately predicted the simulation results.

Case 3: E. coli Static. For the static regime =f( 0)B , the analytical expression in Eq. (8) for the encounter kernel 
predicted that for a static bacterium the subdiffusive T4 wt would underperform against its diffusive counterpart 
T4Δhoc, a result that was validated by the simulations (Fig. 3C). Here =v 0B  so β π α= α

α−R D t4 ( )Cdiff
1 . Setting 

α = .0 82 in Eq. (8) gave a decaying transient solution which is shown in Fig. 3C (blue dashed line). When α = 1 
then the encounter rate kernel also had a transient solution (Fig. 3C blue dashed line) but stabilized to a value of 
β π= = . × −R D4 1 26 10Cdiff

7 (mLh−1). Hence, the bacterium had a greater intake of T4Δhoc (diffusion) over 
that of T4 wt (subdiffusion) even when it was static.

For the experiments in 1% mucin concentration and using a 10-minute adsoprtion assay with chips32, Barr et 
al. estimated the adsorption of T4 wt phage by E. coli in the laboratory as = . × −k 2 8 10T4

7 (mLh−1) and the 
control was = . × −k 1 4 10 7 (mLh−1). Both values of phage adsorption observed in the laboratory were on the 
same order of the values obtained from the simulations conducted in cases 1–3 above. This shows while the 
CTRW framework provides a mechanistic description of the phage-bacteria-mucus dynamics at the qualitative 
level, subdiffusion on its own can not explain the increased absorbtion of T4 wt by E. coli.

Discussion
Subdiffusion has previously been correlated with an increase in bacteria-phage encounter rates in mucosal envi-
ronments32. However, during the current study a most interesting result in relation to the BAM32 model’s argu-
ment for a subdiffusion mediated bacteria-phage encounter rate mechanism was demonstrated: high bacteria 
motility ω =( 1)T  renders bacteria-phage encounter rates almost independent of phage transport. Moreover, even 
if T4 wt subdiffuse α <( 1) around lowly motile, often tumbling ω ( 1)T  or static bacteria, then regular diffu-
sion α =( 1) is predicted to be a superior search strategy for the T4 phage. Therefore, subdiffusion is deemed a 
highly unlikely candidate for the mechanism that enhances bacteria-phage encounter rates in mucus as currently 
proposed by the BAM model. The importance of these results, both independently and in relation to the BAM 
model, can be better understood in the context of previous work on encounter rates between swimming organ-
isms and viruses and the ensuing adsorption process51,57,58.

In a study on the uptake of aquatic viruses by microorganisms57, Murray and Jackson used the Sherwood 
number (Sh) as a proxy to calculate the factor by which diffusive transport is increased due to local fluid motion. 
In particular, they demonstrated how a 1 μm particle, such as a bacterium, swimming at 50 μmsec−1 as opposed 
to being static, should experience only a very small increase ≈(Sh 1) in its uptake of viruses diffusing regularly in 
the environment. Building on their work, the present study included subdiffusion into the viral uptake model in 
addition to the regular diffusion used by Murray and Jackson57. However, our simulations and calculations pre-
dict a E. coli bacterium, with typical run and tumble dynamics ω= =v( 30, 1)B T , should experience a higher 
uptake ratio of β β = ./ 3 25ball diff  between the ballistic (βball) to static (βdiff) encounter rate kernels, regardless of 
phage diffusivity (see results: cases 1 and 3). Additionally, it was shown that due to the E. coli’s run and tumble 
dynamics, when the bacterium tumbled often with the same run velocity =v( 30)B  but higher tumble frequency 
ω ( 1)T , the bacterium’s viral uptake was decreased by almost half (see results: cases 1 and 2). The findings for 

this study elaborate on Murray and Jackson’s prior work57 by providing a more detailed mechanistic account of 
how bacterial motility dominates phage transport in regards to their encounter rates in mucus. Equally impor-
tant, these findings describe encounter rates as an emergent population phenomena manifesting from the com-
plex interactions of the underlying species on a scale where macroscopic fluid models lose resolution.

Our results also show both E. coli’s motility and phage diffusivity is not enough to account for the increased 
adsorption of T4 wt over the T4Δhoc phage that Barr et al. observed in the laboratory32. Therefore, we reason how 
this may be accounted for, first in an analytical framework supported by classical work, and second in a more fine 
scale descriptive setting uniquely proposed in this study.

First, in the classical work “Encounter efficiency of coliphage-bacterium interaction”, author Arthur L. Koch 
revived the art of mathematical biology using the classical Smoluchoswki diffusion limited coagulation equation 
and collision theory51. Koch’s findings relied heavily on the use of a so called “effective radius” in the stationary 
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solution of the Smoluchowski equation to account for discrepancies between encounter rates and the adsorption 
of viruses by bacteria in the laboratory51. Building upon Koch’s work and that of others52,53,58, the study presented 
here included subdiffusion into the Smoluchowski equation (Eq. (3)). Since subdiffusion was found to be an 
insufficient mechanism to boost T4 wt encounter rates, it is therefore supposed the virus may somehow change 
the physics of adsorption by increasing the effective radius through another mechanism by which subdiffusion is 
symptomatic. This new mechanism is different from the alternative hypothesis proposed by Abedon58 that bind-
ing to mucus simply allows phage to “sit and wait” for diffusing bacteria.

Second, for this study, encounter rate simulations included only the geometry of encounters and the mecha-
nism of diffusion for the rates. A more advanced formulation of the model could consider the fluid flow field 
around a swimming bacterium (see Fig. 4). Using the phage to effectively probe mucus showed the viscosity of 
low concentration mucus is similar to that of water (see: Methods), thus for concentrations <5% [mucin], mucus 
should behave similar to a Newtonian fluid59. It is hypothesized that the localized fluid flow around a bacterium 
with high motility ω =( 1)T  would generate near field drag forces60 that would cause the mucus polymer field to 
become deformed. The deformed polymer field should more efficiently pull T4 phages adhering with mucins 
toward the nearby bacterium. Since T4 phage has a ∼100 nm tail31,44 and provided the interaction with mucus 
might align T4 wt in a way through hydrophobic and electrostatic interactions that is more favorable for adsorp-
tion, the effective radius of adsorption for T4 wt may be greater than that for T4Δhoc. This provides an alternative 
hypothesis in which phage adherence to mucus could work as a mechanism alongside bacterial motility to increase 
T4 wt adsorption in mucus. This hypothesis could be readily tested against static and swimming bacteria in the 
laboratory.

For this study, the CTRW modeling formalism proved to be a viable framework for simulating random walks 
with diffusion parameters as emergent phenomena. Using the calibration technology developed in this paper, 
cellular subdiffusion may also be modeled by CTRW using empirical data. CTRW shares many attractive features 
with diffusion in other biological structures such as bacteria in biofilms61 and tracers in crowded media such as 
living biological cells62–64. The analytical approximations used in this paper are generic, implying the essential 
observations for the encounter rates found herein should be similar for the case of other types of subdiffusive 
systems such as fractal Brownian motion.

Data availability
All materials, data and associated protocols contained in this manuscript will be made available in Github upon 
publication. Repository: https://github.com/luque82/Kevin_etal_SciRep_2019.
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