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Abstract

Cardiovascular disease remains the leading cause of death for both men and women. The 

observation that premenopausal women are protected from cardiovascular disease relative to age-

matched men, and that this protection is lost with menopause, has led to extensive study of the role 

of sex steroid hormones in the pathogenesis of cardiovascular disease. However, the molecular 

basis for sex differences in cardiovascular disease is still not fully understood, limiting the ability 

to tailor therapies to male and female patients. Therefore, there is a growing need to investigate 

molecular pathways outside of traditional sex hormone signaling to fully understand sex 

differences in cardiovascular disease. Emerging evidence points to the mineralocorticoid receptor 

(MR), a steroid hormone receptor activated by the adrenal hormone aldosterone, as one such 

mediator of cardiovascular disease risk, potentially serving as a sex-dependent link between 

cardiovascular risk factors and disease. Enhanced activation of the MR by aldosterone is 

associated with increased risk of cardiovascular disease. Emerging evidence implicates the MR 

specifically within the endothelial cells lining the blood vessels in mediating some of the sex 

differences observed in cardiovascular pathology. This review summarizes the available clinical 

and preclinical literature concerning the role of the MR in the pathophysiology of endothelial 

dysfunction, hypertension, atherosclerosis, and heart failure, with a special emphasis on sex 

differences in the role of endothelial-specific MR in these pathologies. The available data 

regarding the molecular mechanisms by which endothelial-specific MR may contribute to sex 

differences in cardiovascular disease is also summarized. A paradigm emerges from synthesis of 

the literature in which endothelial-specific MR regulates vascular function in a sex-dependent 

manner in response to cardiovascular risk factors to contribute to disease. Limitations in this field 

include the relative paucity of women in clinical trials and, until recently, the nearly exclusive use 

of male animals in preclinical investigations. Enhanced understanding of the sex-specific roles of 

endothelial MR could lead to novel mechanistic insights underlying sex differences in 
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cardiovascular disease incidence and outcomes and could identify additional therapeutic targets to 

effectively treat cardiovascular disease in men and women.
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estrogen

I. INTRODUCTION

1. Gaps in Knowledge of the Mechanisms Underlying Sex Differences in Cardiovascular 
Disease

Cardiovascular pathologies such as hypertension, atherosclerosis, and heart failure lead to 

substantial morbidity, and heart disease remains the leading cause of death in both men and 

women (Xu et al. 2018). While premenopausal women are protected from cardiovascular 

disease relative to age-matched men, this protection is lost with menopause, implicating sex 

hormones in the pathogenesis of cardiovascular disease. As such, the role of sex hormones 

in the cardiovascular system, particularly signaling through estrogen receptor (ER) isoforms 

a and β, has been extensively studied (Arnold et al. 2017). However, due to the complex 

nature of sex steroid signaling pathways, the molecular basis for sex differences in 

cardiovascular disease is still not fully understood, limiting the ability to tailor therapies to 

male and female patients.

Additionally, common cardiovascular risk factors such as metabolic syndrome and obesity 

abolish the protection from cardiovascular disease in women even prior to menopause 

(Barrett-Connor et al. 1991; Sowers 1998; Wilson et al. 2002), highlighting the need to 

investigate molecular pathways outside of traditional sex hormone signaling to fully 

understand sex differences in cardiovascular disease. However, this area is currently 

understudied in both the clinical and preclinical literature. Generally, the patient cohorts in 

cardiovascular disease clinical trials are heavily weighted towards male patients, with 

women constituting only a minority of study participants. Further, most preclinical studies in 

the cardiovascular field focus on male animals, with very few directly comparing the sexes.

2. The Mineralocorticoid Receptor: Regulator of Blood Pressure, Mediator of 
Cardiovascular Disease

The mineralocorticoid receptor (MR) was first described to contribute to blood pressure 

control by regulating the transcription and expression of sodium transport proteins in the 

distal nephron (Arriza et al. 1987). Emerging evidence now points to the MR as a broader 

mediator of cardiovascular disease risk, potentially serving as a sex-dependent link between 

cardiovascular risk factors and disease (Davel et al. 2018a). The MR is a transcription factor 

that can be activated either by glucocorticoids such as cortisol (corticosterone in rodents), 

which circulate at high levels, or by its more specific but less abundant ligand aldosterone 

(Aldo) (Funder 2010). Individual tissues maintain specificity of the MR for Aldo by 

expression of the 11β-hydroxysteroid dehydrogenase 2 (11βHSD2) enzyme, which converts 
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MR-binding glucocorticoids to metabolites that cannot bind to the MR and thus affords Aldo 

specificity to the MR (Naray-Fejes-Toth et al. 1998).

Independently of the relationship between the MR and blood pressure, elevated serum Aldo 

levels are associated with a substantially increased risk of stroke, myocardial infarction 

(MI), and sudden cardiac death (Ivanes et al. 2012; Milliez et al. 2005). Conversely, 

inhibition of the MR in large randomized clinical trials such as the RALES, EPHESUS, and 

EMPHASIS-HF results in significant reductions in mortality in heart failure patients. This 

decrease in mortality is associated with only modest changes in blood pressure along with 

trends towards decreased MI risk when secondary endpoints are examined (Zannad et al. 

2011; Pitt et al. 1999; Pitt et al. 2003b). As such, substantial investigation in the preclinical 

literature has focused on understanding the role of MR signaling in non-renal cells in the 

development of cardiovascular disease, which has the potential to nominate additional 

therapeutic targets related to MR signaling.

3. Vascular Cell-Specific Mineralocorticoid Receptors Contribute to Cardiovascular 
Disease

The vascular wall is made up of three parts: an inner layer of endothelial cells (ECs) that 

forms the interface between circulating blood and underlying tissues; a medial layer of 

smooth muscle cells (SMCs) which contract or relax to control vessel diameter thereby 

regulating blood flow to downstream organs; and an outer layer of adventitial fibroblasts and 

adipose cells that provide structural support and regulatory mediators to the inner two layers. 

The inner EC layer contributes to vasodilation by activating ion channels and releasing 

paracrine factors to stimulate dilation of the underlying SMCs, including the anti-

inflammatory, antioxidant gas nitric oxide (NO) (Vanhoutte et al. 2016). The endothelium 

also regulates inflammatory cell recruitment by modulating expression of endothelial-

leukocyte adhesion molecules and by the generation of reactive oxygen species (ROS) to 

produce oxidative stress.

The MR is expressed in vascular SMCs and ECs. In its genomic role as a transcription 

factor, the MR within ECs (EC-MR) regulates genes that contribute to critical EC functions, 

including expression of inflammatory mediators and regulators of endothelial sodium 

handling and junctional integrity (Kusche-Vihrog et al. 2010; Moss and Jaffe 2015; Kirsch et 

al. 2013). EC-MR also contributes to NO bioavailability and oxidative stress via rapid, “non-

genomic” signaling outside of its traditional, gene-transcription role (Wehling 2018). 

Multiple studies have demonstrated that ECs express 11βHSD2 that is capable of 

inactivating cortisol (Christy et al. 2003; Caprio et al. 2008; Liu et al. 2009), thus it is likely 

that Aldo is the relevant ligand for EC-MR. However, some studies show low or variable 

11βHSD2 expression in ECs that may depend on cell conditions (Gong et al. 2008), raising 

the possibility that glucocorticoids may activate EC-MR under certain conditions. 

Regardless of the ligand, however, studies in mice with EC-specific MR deletion reveal that 

EC-MR contributes to the cardiovascular pathology that develops in the setting of risk 

factors such as obesity, diabetes, and hyperlipidemia (Davel et al. 2017).

In addition to ECs, functional MR is expressed in human vascular SMCs (Jaffe and 

Mendelsohn 2005), where it has been shown to contribute to vasoconstriction and blood 
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pressure regulation (McCurley et al. 2012; DuPont et al. 2016; Galmiche et al. 2014; 

Amador et al. 2016) and to vascular remodeling in response to injury, aging, and 

hypertension (Pruthi et al. 2014; Galmiche et al. 2014; Kim et al. 2018) in vivo in males. In 
vitro, SMC-MR may also contribute to SMC calcification (Jaffe et al. 2007) and cytokine 

production (McGraw et al. 2013), although it was recently shown not to contribute to the 

pathogenesis of atherosclerosis in male mice (Moss et al. 2018). The MR also contributes to 

inflammatory phenotypes in a number of leukocyte cell types, such as T cells, neutrophils, 

and monocytes (Bene et al. 2014). In vitro, macrophage MR contributes to the production of 

ROS and inflammatory cytokines and promotes pro-inflammatory “M1-like” macrophage 

polarization (Usher et al. 2010; Bene et al. 2014) and contributes to plaque development in 

atherosclerosis models (Shen et al. 2017). Recent in vivo studies further implicate T cell MR 

in the pathogenesis of hypertension (Sun et al. 2017) and pressure overload-induced cardiac 

dysfunction (Li et al. 2017a). Although this review focuses on the role of the MR 

specifically within ECs in cardiovascular disease, additional investigations of the role of the 

MR in other cell types will certainly provide substantial insight into the mechanisms driving 

cardiovascular disease.

4. Endothelial Cell Mineralocorticoid Receptors in Cardiovascular Disease: Is There 
Effect Modification by Sex?

Substantial recent exploration reveals a role for EC-specific MR in endothelial dysfunction, 

hypertension, atherosclerosis, and heart failure. However, the vast majority of preclinical 

investigations into the function of EC-MR have been conducted only in male animals, and 

those that do use female animals do not typically compare them to male counterparts to 

examine sex differences. However, rare publications in the existing literature that do directly 

compare the role of EC-MR between males and females reveal striking sex differences in the 

role of this receptor in the vascular endothelium. Further, critical analysis of studies 

performed in each sex separately may yield insight into potential sex-specific mechanisms of 

EC-MR function in the cardiovascular system.

Here we review the recent literature exploring the role of the MR in mediating sex 

differences in 1) endothelial dysfunction, 2) hypertension, 3) atherosclerosis, and 4) heart 

failure, with a focus on the MR in the vascular endothelium. The first part of the review 

focuses on the clinical literature supporting a sex-specific role for the MR in each 

cardiovascular disorder. The second part examines the preclinical literature specifically 

assessing the role of EC-MR in animal models of each disease, commenting on effect 

modification by sex where there are available data. Finally, the third part of this review 

summarizes the data regarding the molecular mechanisms that may mediate a sex-specific 

role for EC-MR in cardiovascular disease. The available data supports that EC-MR may be a 

key player in determining sex differences in cardiovascular disease and reveals many areas 

warranting further study.
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II. CLINICAL DATA: CONTRIBUTION OF THE MR TO CARDIOVASCULAR 

DISEASE IN MEN AND WOMEN

Activation of the MR in the setting of cardiovascular stress or risk factors appears to 

contribute to the development of cardiovascular diseases. However, whether there is a 

difference in this role by sex that might contribute to sex differences in cardiovascular 

disease risk and outcomes is just beginning to be elucidated. In this section, we review the 

existing clinical literature on the contribution of the MR to 1) endothelial dysfunction, 2) 

hypertension, 3) atherosclerosis, and 4) heart failure, with a focus on differentiating the role 

of the MR between men and women. A summary of the clinical studies using MR 

antagonists cited in this section can be found in Table 1.

1. Endothelial Dysfunction

A. Epidemiology—Endothelial dysfunction is marked by impaired endothelium-

dependent vasodilation, reduced NO biosynthesis, and increased vascular inflammation and 

is the earliest measurable defect in the pathogenesis of vascular diseases. A sub-analysis of 

the offspring of Framingham Heart Study participants found that female sex significantly 

correlated with defects in endothelial-dependent dilation, while male sex did not (Hamburg 

et al. 2011). These epidemiologic data suggest sex-specific mechanisms of endothelial 

dysfunction and support a potential a role for EC-MR, as mineralocorticoid signaling in the 

endothelium appears to play a substantial role in the development of endothelial dysfunction 

in the setting of cardiometabolic risk factors (Davel et al. 2017).

B. The MR May Contribute to Endothelial Dysfunction in the Setting of 
Cardiovascular Risk Factors—Data supports that under baseline conditions without 

cardiovascular risk factors, the MR does not play a substantial role in vascular dysfunction 

(reviewed in Biwer et al. 2019). Indeed, chronic MR antagonism had no beneficial effect on 

endothelial function in a group of younger (age 40’s) obese subjects without associated 

diabetes or other cardiac risk factors (Garg et al. 2014), in older (age 60’s) otherwise healthy 

adults acutely administered eplerenone (Hwang et al. 2016), or in a study of 8 older adults 

with metabolic syndrome (Hwang et al. 2015).

However, several clinical studies do support a role for the MR in the development of 

endothelial dysfunction when multiple or severe cardiovascular risk factors are present. This 

is illustrated by one study which found that MR inhibition had no effect on endothelial 

function in lean older adults but improved endothelial function in older adults with obesity 

and/or impaired glucose tolerance (Hwang et al. 2013b). Spironolactone improved NO 

bioactivity and brachial artery endothelial function in two studies of patients with heart 

failure (Farquharson and Struthers 2000; Macdonald et al. 2004). MR inhibition likewise 

improved coronary flow reserve, a measure of coronary vessel endothelial function, in type 2 

diabetics (Garg et al. 2015) and improved brachial artery endothelial function in patients 

with hypertension (Fujimura et al. 2012). In another study, acute Aldo administration 

triggered microvascular endothelial dysfunction in normotensive African Americans; 

conversely, MR inhibition with spironolactone improved resistance vessel endothelial 
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function in ex vivo vessels from hypertensive African Americans regardless of gender 

(Mohandas et al. 2015).

While it seems that premenopausal women are protected from a wide variety of 

cardiovascular pathologies relative to age-matched men (Benjamin et al. 2018), studies point 

to a role for the MR in endothelial dysfunction even prior to menopause in women with 

enhanced cardiovascular risk. For example, young women with polycystic ovarian 

syndrome, which is characterized by increased androgen synthesis along with other 

cardiometabolic risk factors such as obesity, diabetes, and hypertension (Marciniak et al. 

2016), have an increased risk of cardiovascular disease. These women also develop 

endothelial dysfunction (Paradisi et al. 2001), to which the MR may contribute. Aldo levels 

are elevated in women with polycystic ovarian syndrome compared to weight-matched 

controls (Cascella et al. 2006), and prolonged treatment with spironolactone was shown to 

improve endothelial function in a cohort of polycystic ovarian syndrome patients (Studen et 

al. 2011). It is important to note that spironolactone also inhibits the androgen receptor (AR) 

(Yang and Young 2016), thus it is difficult to distinguish whether the protective effects of 

spironolactone in this latter study are due to is anti-MR or its anti-androgen effects. 

However, in the context of rheumatoid arthritis, an autoimmune condition that also confers 

greater cardiovascular disease risk to women even prior to menopause, spironolactone 

treatment also significantly improved endothelial function and reduced inflammatory 

indicators in this predominantly-female cohort (Syngle et al. 2009). These data suggest that 

the MR may contribute to endothelial dysfunction even in premenopausal women if 

additional cardiovascular risk factors are present (see Table 1).

2. Hypertension

A. Epidemiology—High blood pressure affects 30% of American adults (Fryar et al. 

2017). Hypertension increases the risk of MI and stroke, and prolonged exposure to 

hypertension can lead to heart and kidney failure. Many pharmacotherapies exist to combat 

hypertension. This includes MR inhibitors, which have been demonstrated to be effective 

antihypertensive medications in clinical trials (Pitt et al. 2003a; Williams et al. 2004). 

Despite this, nearly half of hypertensive patients are inadequately controlled with current 

antihypertensive drugs (Fryar et al. 2017). Emerging data support that therapy-resistant 

hypertension is more likely to be dependent on MR signaling than therapy-responsive 

subtypes (Yugar-Toledo et al. 2017; Dudenbostel and Calhoun 2017). Indeed, MR 

antagonism with the competitive inhibitors spironolactone or eplerenone effectively reduces 

blood pressure in patients with therapy-resistant hypertension (Glicklich and Frishman 2015; 

Fernet et al. 2018; Rossignol et al. 2018).

The prevalence of hypertension in premenopausal women is lower than that of age-matched 

men, although hypertension still affects nearly 28% of American women. However, after 

menopause this is reversed, with women 60 years of age and older experiencing significantly 

higher rates of hypertension than age-matched men. Further, an increase in therapy-resistant 

hypertension in postmenopausal women (Fryar et al. 2017) suggests that the mechanisms 

driving hypertension in women may change with age and estrogen status, potentially 

becoming more dependent on MR signaling after menopause.
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B. The MR Contributes to Hypertension in Women—The MR has long been 

known to regulate blood pressure via its role in controlling renal sodium balance, and data 

from human studies supports a role for the MR in blood pressure regulation specifically in 

women. In a recent study of over 1,500 individuals from the HyperPATH consortium, 

women had a significantly greater rise in blood pressure compared to men in response to 

stimuli that increase Aldo secretion including salt restriction (Jurgens and Graudal 2004) and 

angiotensin-ll infusion (Shukri et al. 2018). Similarly, in a study of obese patients with 

chronic kidney disease, female subjects experienced a greater decrease in blood pressure 

with MR antagonism than males (Khosla et al. 2009). A gene variant of ERβ was also 

shown to associate with salt sensitivity of blood pressure specifically in premenopausal 

women (Manosroi et al. 2017), suggesting the potential for cross-regulation of blood 

pressure by MR and estrogen signaling.

3. Atherosclerosis

A. Epidemiology—Atherosclerosis is increasingly common, and downstream 

consequences of atherosclerosis, including MI and ischemic stroke, account for a majority of 

deaths worldwide (Barquera et al. 2015) Atherosclerosis is a diffuse vascular pathology in 

which inflamed, lipid-laden plaques accumulate in the vascular wall. Under conditions of 

excess inflammation, these plaques can rupture and thrombose, occluding the vessel and 

preventing blood flow to downstream tissues. The clinical consequence of this occlusion is 

ischemia resulting in damage to the brain in stroke, to the heart in MI, and to the skeletal 

muscle in critical limb ischemia.

It is quite clear that sex differences exist in the incidence of cardiovascular ischemic events 

in humans, with premenopausal women experiencing significantly fewer of these events than 

age-matched men (Benjamin et al. 2018). The actions of both estrogen and testosterone have 

been demonstrated to be beneficial in atherosclerosis in clinical and preclinical models 

(Boese et al. 2017). However, it is not clear whether women’s protection from 

cardiovascular ischemic events prior to menopause is due to less plaque burden or fewer 

plaque rupture events. One study found carotid intima-media thickness, a clinical index of 

plaque size, to be only slightly higher in young men than women, while coronary calcium 

score, which correlates with plaque inflammation and susceptibility to rupture, is 

substantially higher in men than in women (Benjamin et al. 2018).

B. MR Activation Contributes to Atherosclerosis in Men and Women—Clinical 

studies of the role of the MR in atherosclerosis in human patients tend to combine men and 

women. However, the available clinical data suggests that in both men and women, Aldo and 

MR activation contribute to atherosclerosis progression and complications. de Rita et al. 

(2012) reported that elevated plasma Aldo concentration significantly correlated with plaque 

progression while sex and age did not. One study of end-stage renal disease patients, a 

population at high risk for atherosclerotic ischemic events, analyzed plaques in men and 

women separately and showed that spironolactone treatment prevented increases in intima-

media thickness in both sexes (Vukusich et al. 2010). Finally, Matsuda et al. (2016) 

demonstrated that eplerenone reduced intima-media thickness in a small cohort of 12 

primary aldosteronism patients, 10 of whom were women.
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While atherosclerotic plaque progression can contribute to chronic angina and symptoms 

that reduce quality of life, plaque rupture is more dependent on inflammation and 

contributes most to the morbidity and mortality associated with atherosclerosis (Libby et al. 

2013). In atherosclerosis patients, Aldo levels correlated with serum inflammatory factors 

regardless of gender, suggesting a pro-inflammatory role of Aldo in both men and women 

(Tomaschitz et al. 2011). Further, multiple studies correlate MR activation with increased 

risk of ischemic events downstream of plaque rupture (Milliez et al. 2005; Ivanes et al. 

2012). These studies include both men and women but do not separate the data by sex. Thus, 

the available data in human observational studies and clinical trials suggests that MR 

inhibitors could be a useful tool to reduce atherosclerotic plaque progression and 

complications in both men and women and warrant further clinical study and exploration of 

the mechanisms by which the MR contributes to vascular disease in both sexes.

4. Heart Failure

A. Epidemiology—When the cardiac systolic pump function becomes impaired, this is 

known as heart failure with reduced ejection fraction (HFrEF). When the heart is unable to 

fully relax during diastole to allow blood to fill the ventricles, but is still able to contract, this 

is known as heart failure with preserved ejection fraction (HFpEF). HFrEF and HFpEF each 

account for about half of the total burden of heart failure (Dunlay et al. 2017). Men are 

somewhat more likely to develop HFrEF, likely due to higher rates of hypertension and MI 

in younger men, both of which are common causes of HFrEF (Dunlay et al. 2017; Benjamin 

et al. 2018). By contrast, HFpEF is more common in women and is the most common type 

of heart failure in the growing population over 65 years of age (Upadhya et al. 2017b). Risk 

factors for HFpEF include advanced age and obesity, both of which are increasingly 

common in women (Owan et al. 2006; Flegal et al. 2016; Tsujimoto and Kajio 2017). 

Although women with HFpEF generally have improved survival compared to men, this 

protection is lost in women with diabetes (Martinez-Selles et al. 2012) and women with 

HFpEF reported reduced quality of life relative to men in a recent study (Faxen et al. 2018). 

Thus, HFpEF is a growing clinical problem, especially in the rapidly growing elderly 

population and in women with cardiovascular risk factors.

B. Clear Benefits of MR Antagonism in Heart Failure with Reduced Ejection 
Fraction—Inhibition of the MR is well known to prevent mortality and improve outcomes 

in patients with HFrEF (Pitt et al. 1999; Pitt et al. 2003b; Zannad et al. 2011). The benefits 

of MR antagonism on HFrEF may apply to both men and women, but the data supporting 

this is scarce (see Tables 1 and 2). A sub-analysis of the Framingham Heart Study showed 

that serum Aldo levels correlate with cardiac remodeling in women but not men, suggesting 

that there may indeed be differences between the sexes in the way the MR signaling pathway 

contributes to heart failure (Vasan et al. 2004). Despite these data, clinical trials investigating 

the role of the MR in HFrEF continue to recruit predominantly male subjects. For example, 

the landmark RALES, EPHESUS, and EMPHASIS-HF trials that showed a clear mortality 

benefit of MR antagonism in HFrEF patients were heavily weighted towards male 

participants, with women making up only 27% of study subjects. While this resulted in the 

individual studies being under-powered to assess sex differences, combination of the data in 

a recent meta-analysis did enable sub-analysis of the data by sex. In this combined data, the 
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male sub-group retained the significant mortality benefit of MR antagonism, while the 

female sub-group also tended towards a decline in sudden cardiac death with MR 

antagonism that was not statistically significant (Rossello et al. 2019). Thus, it is unclear 

whether MR antagonism is beneficial in female HFrEF patients, as has been shown 

definitively for men. It will be critical to include more women in future trials of MR 

antagonists in heart failure in order to fully understand the role of this receptor in HFrEF in 

women.

C. MR Antagonism May Specifically Benefit Women with Heart Failure with 
Preserved Ejection Fraction—In contrast to the clear benefit observed with MR 

antagonism in HFrEF, investigations into the role of the MR in HFpEF in humans have 

produced variable results. However, the growing body of literature does suggest a role for 

the MR in this disease. In an open-label trial in which 11 women with HFpEF were 

administered spironolactone, the authors observed an improvement in peak exercise capacity 

from baseline and a reduction in the median heart failure score (Daniel et al. 2009). 

Subsequent studies and meta-analyses in mostly-female cohorts have largely found that 

spironolactone improves diastolic function in HFpEF patients (Pandey et al. 2015; Fukuta et 

al. 2018). Results vary as to whether spironolactone improves exercise tolerance in HFpEF 

patients, with some studies showing increased exercise capacity with MR antagonism 

(Daniel et al. 2009; Kosmala et al. 2016) and others showing no benefit (Upadhya et al. 

2017a; Pandey et al. 2015; Fukuta et al. 2018).

Larger randomized trials of MR antagonism in HFpEF have produced extensive controversy 

in recent years. The Aldo-DHF trial randomized over 400 patients and demonstrated 

improved left ventricular functional and structural parameters in HFpEF patients randomized 

to spironolactone (Edelmann et al. 2013). Subsequently, however, the TOPCAT trial 

randomized over 3,000 HFpEF patients in 6 countries to either placebo or spironolactone, 

and the results revealed that MR antagonism reduced the rate of hospitalization for heart 

failure but did not significantly affect mortality (Pitt et al. 2014). Subsequent sub-analysis of 

this otherwise negative trial revealed heterogeneity in the data that may have masked the 

beneficial effects of MR antagonism in certain patient subgroups. For example, subjects who 

qualified for the study based on natriuretic peptide levels (the majority of patients enrolled in 

the Americas) had a significant mortality benefit with spironolactone, while patients who 

qualified based solely on clinical criteria (the majority of patients enrolled in Russia and 

Georgia) did not (Pfeffer et al. 2015; Bristow et al. 2016) Another sub-analysis, which 

included 1,767 of the randomized patients and was equally comprised of men and women, 

demonstrated that women with HFpEF had a significant reduction in cardiovascular and all-

cause mortality with spironolactone, while men did not (Merrill et al. 2019). While such 

post-hoc analyses are hypothesis-generating, the results may help to contextualize the sex 

differences observed in mortality in HFpEF patients and provide opportunities for further 

study to identify sex-specific therapies for this disease, for which there are currently no 

available pharmacotherapeutic options.
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5. Summary of the Clinical Data

In summary, observational studies and clinical trials support that the MR contributes to the 

pathogenesis endothelial dysfunction, hypertension, atherosclerosis, and heart failure, as MR 

antagonist therapy has been shown to improve outcomes in patients with these conditions 

(see Tables 1 and 2). In some cases, there appear to be differences between men and women 

in the role of the MR in disease, as evidenced by the female predominance of salt-sensitivity 

of blood pressure and sex differences in the efficacy of MR therapy in heart failure. 

Importantly, many clinical trials use spironolactone as an MR antagonist, while others use 

the less potent but more selective eplerenone. Thus, it is possible that off-target effects of 

spironolactone on the progesterone or androgen receptors could contribute to sex differences 

observed in the effect of MR inhibition in various cardiovascular pathologies. Further careful 

study will be needed to fully understand the sex-specific contributions of the MR to 

cardiovascular disease in humans, with a greater focus on the inclusion of female patients in 

clinical trials and the use of selective MR inhibitors.

III. PRECLINICAL DATA: SEX-SPECIFIC ROLES FOR THE ENDOTHELIAL 

MINERALOCORTICOID RECEPTOR IN CARDIOVASCULAR DISEASE

The clinical literature points to a role for the MR in cardiovascular disease, in some cases 

with sex-specific effects. However, studies in humans by necessity rely on the use of 

systemic MR inhibitors, thus precluding examination of the role of the MR in particular cell 

types. By contrast, genetic animal models of cell-specific MR deletion have enabled 

investigations into the contribution of the MR specifically within the vascular endothelium 

to cardiovascular disease. In this section, the preclinical literature implicating EC-MR in 1) 

endothelial dysfunction, 2) hypertension, 3) atherosclerosis, and 4) heart failure is discussed, 

particularly in light of new evidence supporting a sex-specific role for EC-MR in 

cardiovascular disease. See Table 2 for a summary of the studies in this section describing 

the sex-specific role of the MR in cardiovascular disease and potential correlations to human 

clinical data.

1. A Sex-Specific Role for EC-MR in Endothelial Dysfunction

A. MR Inhibition in Animals Improves Endothelial Function, Particularly in 
the Context of Obesity—As has been demonstrated in human studies (Table 1 ), MR 

inhibition in animal models improves indices of endothelial function, particularly in the 

context of cardiovascular risk factors. Specifically, MR antagonist treatment improved aortic 

endothelial function and peak relaxations and reduced ROS generation in male 

hyperlipidemic rabbits (Rajagopalan et al. 2002) and in rats with chronic kidney disease 

(Gonzalez-Blazquez et al. 2018).

Obesity in particular may represent a state of enhanced MR activation, as higher body mass 

index correlates with higher Aldo levels in patients administered a high-salt diet (Bentley-

Lewis et al. 2007). This is likely due to adipocyte-derived factors that increase Aldo release 

either directly from the fat (Briones et al. 2012) or from the adrenal gland (Huby et al. 

2016). Specifically, the adipokine leptin, which circulates at significantly higher levels in 

obese females than males (Deng and Scherer 2010), may mediate the role of the MR in 
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endothelial dysfunction in obesity in females. Leptin was shown in preclinical models to 

increase Aldo secretion from the adrenal gland and to induce endothelial dysfunction in 

females in an MR-dependent manner (Huby et al. 2016; Faulkner and Belin de Chantemele 

2019). This may be especially important for the pathogenesis of endothelial dysfunction in 

females, as leptin levels and rates of obesity are both higher in women than in men (Flegal et 

al. 2016; Deng and Scherer 2010).

B. EC-MR Contributes to Endothelial Dysfunction, with Sex- and Vascular 
Bed-Dependent Effects—Preclinical animal studies reveal that in the setting of 

cardiovascular risk factors, EC-MR is a mediator of endothelial dysfunction and its specific 

deletion from ECs has a positive impact on vascular function (Davel et al. 2017). Either 

global MR inhibition with eplerenone or EC-specific MR deletion improved dilation of 

aortic rings in obese male mice and in lean mice with Aldo infusion (Schafer et al. 2013). 

Similarly, EC-MR deletion improved resistance vessel endothelial function in a model of 

male mice exposed to angiotensin-II-induced hypertension (Mueller et al. 2015). In female 

mice, EC-MR deletion also prevented Western diet-induced aortic endothelial dysfunction 

(Jia et al. 2016).

One recent study directly compared the role of EC-MR in mesenteric microvessel 

dysfunction in the setting of obesity and hyperlipidemia in male and female littermates. In 

this study, obese male mice were able to compensate for endothelial dysfunction, with no 

role for EC-MR in endothelial dysfunction of the mesenteric arteries. By contrast, diet-

induced obesity did result in endothelial dysfunction in female mice, and genetic deletion of 

EC-MR restored endothelial-dependent microvessel relaxation by increasing NO 

bioavailability. Notably, there was no role for EC-MR in endothelial function in healthy 

male or female mice; the EC-MR-dependent endothelial dysfunction was observed in 

females only with the addition of obesity and/or hyperlipidemia (Davel et al. 2018b).

The study by Davel et al. (2018b) was the first to directly compare the role of the MR in 

endothelial function between males and females, revealing significant sex differences in the 

role of EC-MR in vasodilatory pathways and microvascular endothelial dysfunction in 

response to cardiometabolic risk factors. Comparison to the prior literature in males suggest 

that the role of EC-MR in modulating endothelial function depends on the vascular bed and 

cardiovascular risk factor interrogated. Whereas Davel et al. (2018b) found no role for EC-

MR in mesenteric microvessel dysfunction that occurs with obesity in males, Schafer et al. 

(2013) previously demonstrated a role for EC-MR in aortic endothelial dysfunction in obese 

males. Further, Mueller et al. (2015) showed improvement in microvessel function with EC-

MR deletion in male mice subjected to angiotensin-II hypertension.

Thus, the role of EC-MR in endothelial function may depend on sex, vascular bed, and 

clinical context. Further studies comparing the role of the MR in endothelial dysfunction 

between men and women and in the setting of a variety of cardiovascular risk factors could 

translate these preclinical results into actionable sex-specific therapies to reverse endothelial 

dysfunction and prevent further cardiovascular disease.
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2. A Nuanced Role for EC-MR in Hypertension

A. The MR May Regulate Blood Pressure in Females with Cardiometabolic 
Risk Factors, As Has Been Shown for Males—As in humans, ample data 

demonstrates that the MR influences blood pressure in male animal models (reviewed in 

DuPont and Jaffe 2017). As most mechanistic studies exploring the role of the MR in blood 

pressure changes have used only male animals, less is known regarding females. One 

notable exception is a study by Huby et al. (2016) in which MR inhibition with 

spironolactone substantially reduced blood pressure in female agouti yellow obese mice. 

Another study directly compared the blood pressure-lowering effect of spironolactone 

between gonadectomized male and female rats, revealing that while high salt diet increased 

blood pressure in both sexes, MR inhibition with spironolactone reduced blood pressure 

only in males (Michaelis et al. 2012). These studies highlight the need for further detailed 

exploration into MR-mediated mechanisms of hypertension in females and for direct 

comparisons between the sexes.

B. EC-MR May Not Directly Control Blood Pressure but Modulates the 
Response to Hypertension—A focus on the specific role of endothelial MR reveals that 

genetic deletion of EC-MR in male mice does not affect blood pressure at baseline (Salvador 

et al. 2017; Mueller et al. 2015) or in models of experimentally-induced hypertension 

(Rickard et al. 2014; Dinh et al. 2016; Lother et al. 2016; Laursen et al. 2018; Mueller et al. 

2015). By contrast, male mice overexpressing the MR specifically in ECs have higher 

systolic blood pressure and exaggerated vasoconstrictor responses, suggesting that under 

conditions where EC-MR is upregulated, it may contribute to elevated blood pressure 

potentially via crosstalk between vascular ECs and SMCs (Nguyen Dinh Cat et al. 2010).

Data concerning the contribution of EC-MR to blood pressure regulation or hypertension in 

females is scarce but suggests that EC-MR may not play a role in blood pressure regulation 

in females, as has been shown rigorously for males. In their recent study of sex differences 

in endothelial function, Davel et al. (2018b) measured blood pressure by tail cuff 

plethysmography in a subset of animals and reported no effect of EC-MR deletion in either 

sex under any of the dietary conditions studied. Likewise, measurement of blood pressure in 

anesthetized female animals after Western diet feeding revealed no difference in blood 

pressure with EC-MR deletion (Jia et al. 2015b). However, studies directly comparing males 

and females and using sensitive blood pressure measurement techniques such as 

radiotelemetry in conscious mice are needed to confirm this lack of a role for EC-MR in 

blood pressure regulation in females.

Although EC-MR may not contribute to blood pressure regulation per se, studies indicate 

that it may be critical for the pathologic arterial and myocardial remodeling observed as a 

consequence of hypertension. In a study of male mice with angiotensin-II-induced 

hypertension, EC-MR deletion completely prevented the decreases in cerebral vessel outer 

diameter, lumen diameter, and cross-sectional area observed in MR-intact littermates with 

the same degree of hypertension. This indicates that EC-MR is necessary for the pathologic 

cerebral arterial remodeling observed in hypertension (Diaz-Otero et al. 2017), and further 

studies suggest a role for the MR in cognitive dysfunction induced by hypertension (Diaz-
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Otero et al. 2018). EC-MR deletion also prevented pathologic cardiac remodeling without 

modulating blood pressure in two studies of male mice in models of experimental 

hypertension-induced cardiac dysfunction (Rickard et al. 2014; Lother et al. 2016).

Thus, the role of EC-MR in hypertension and its downstream consequences is well 

characterized in male animal models, but less is known regarding its role in females. As 

hypertension affects over a quarter of all women in America, and two-thirds of women over 

the age of 60, understanding the sex-specific mechanisms and downstream consequences of 

this pathology in females will be critical to crafting appropriate sex-specific therapies and 

preventative strategies.

3. EC-MR Differentially Contributes to Atherosclerosis in Males and Females

A. The MR Promotes Atherosclerosis in Male Animals—Despite human data 

suggesting a role for the MR in atherosclerosis in both men and women, preclinical 

investigations exploring mechanisms in animal models have almost exclusively focused on 

the pathology in males. In the apolipoprotein-E-knockout atherogenic mouse model, Aldo 

administration along with high fat diet increases plaque size and inflammation in males in as 

little as 4 weeks (McGraw et al. 2013; Marzolla et al. 2017). Similarly, deletion of 

11βHSD2, which leads to constitutive activation of the MR by corticosterone, accelerates 

plaque formation and inflammation in male apolipoprotein-E-knockout mice (Deuchar et al. 

2011). Conversely, MR inhibition with eplerenone or spironolactone has repeatedly been 

shown to decrease plaque size and inflammation in male mice (Raz-Pasteur et al. 2014; Raz-

Pasteur et al. 2012; Keidar et al. 2003; Suzuki et al. 2006; Kratz et al. 2016; Moss et al. 

2019), rabbits (Rajagopalan et al. 2002), and pigs (Li et al. 2017b).

B. EC-MR Contributes to Atherosclerotic Plaque Inflammation, with Sex-
Specific Effects—Preclinical studies indicate that EC-MR plays a critical role in the 

inflammation of the atherosclerotic plaque. In male apolipoprotein-E-knockout mice, 

intracellular adhesion molecule (ICAM)-1, a surface protein expressed on endothelial cells 

that mediates leukocyte-endothelial interactions, was found to be necessary for Aldo to 

increase plaque formation and inflammation (Marzolla et al. 2017). In male mice, activation 

of the MR by genetic 11βHSD2 ablation also increased endothelial expression of vascular 

cell adhesion molecule (VCAM)-1, another mediator of leukocyte-endothelial adhesion 

(Deuchar et al. 2011).

A recent study further explored the possibility that EC-MR regulates inflammation of the 

atherosclerotic plaque, this time directly comparing male and female mice. In this study, EC-

MR deletion in males significantly reduced atherosclerotic plaque inflammation and 

leukocyte rolling and adhesion to the vasculature in vivo. By contrast, gonad-intact female 

littermates exhibited less atherosclerotic plaque inflammation and fewer leukocyte-

endothelial interactions, even with intact MR. Moreover, in females, EC-MR deletion did 

not provide additional protection against atherosclerotic vascular inflammation, in contrast 

to the observed benefit of EC-MR deletion in males (Moss et al. 2019). These data reveal a 

significant sex difference not only in atherosclerotic vascular inflammation overall, but in 

the role of EC-MR in regulating inflammation in the context of atherosclerosis. The results 
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of this study suggest new mechanisms for the contribution of Aldo and the MR to 

cardiovascular ischemia in humans and for the protection from atherosclerotic plaque 

rupture observed in premenopausal women. Further investigations into the relationship 

between female sex and EC-MR function, such as studies using ovariectomized versus 

gonad-intact females with intact MR or EC-MR deletion, could identify mechanisms by 

which MR and female sex hormone signaling interact in vivo in the context of 

atherosclerosis.

4. EC-MR Contributes to the Pathogenesis of Heart Failure with Both Reduced and 
Preserved Ejection Fraction

A. MR Inhibitors Improve Function and Survival in Animals with Heart 
Failure—Inhibition of the MR has been demonstrated to improve clinically relevant 

features of HFrEF in animal models, especially when combined with other standard heart 

failure therapies. Addition of eplerenone to a standard regimen consisting of an angiotensin-

converting enzyme inhibitor, a thiazide diuretic, and a β-adrenergic blocker prevented left 

ventricular hypertrophy and echocardiographic anomalies in male spontaneously 

hypertensive heart failure rats beyond the effect of standard therapy alone (Munoz-Pacheco 

et al. 2013). Combination of MR inhibition with angiotensin-converting enzyme blockade 

appears to be especially effective at attenuating cardiac contraction defects and fibrosis in 

male rats (Fraccarollo et al. 2003) and mice (Wang et al. 2004) subjected to MI to induce 

heart failure. In the transverse aortic constriction model of pressure overload-induced heart 

failure, MR inhibition either by inducible whole-body genetic knockdown (Montes-Cobos et 

al. 2015) or by inhibition of the Aldo synthase enzyme (Furuzono et al. 2017) reduced 

mortality and improved cardiac function in male mice, even without additional therapies.

Only one study has compared male and female animals side-by-side to assess sex-specific 

roles of MR signaling in experimental heart failure. Kanashiro-Takeuchi et al. (2009) found 

that after MI, female rats benefited more from eplerenone therapy than males. Specifically, 

ejection fraction, infarct size, cardiac fibrosis, and contraction anomalies were all improved 

in female rats, while males experienced smaller changes in these parameters that did not 

reach statistical significance in this study.

B. In Animal Models, EC-MR Contributes to HFrEF in Males and to HFpEF in 
Females, but Sex Differences Have Not Been Studied—EC-MR has also been 

shown to contribute to the pathophysiology of HFrEF, at least in male animals. EC-MR 

deletion reduced ventricle weight and prevented an increase in cardiac fibrosis in male 

hypertensive mice (Rickard et al. 2014; Lother et al. 2016) and improved ejection fraction in 

male mice in the transverse aortic constriction model (Salvador et al. 2017), independent of 

effects on inflammation (Salvador et al. 2016). As no study has investigated the role of EC-

MR in HFrEF in female animals, further studies are needed to understand whether EC-MR 

contributes to this pathology in females.

Much of the preclinical literature in HFpEF focuses on female animal models, opposite of 

the trends in the other cardiovascular outcomes described in this Review. This is largely due 

to the activities of the Sowers research group, which uses a model of female mice fed a 
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Western diet (containing high fat and high sucrose) resulting in obesity-induced cardiac 

diastolic dysfunction. This group found that only female mice, not male mice, develop 

diastolic dysfunction in this treatment paradigm, suggesting sex differences in the 

mechanisms driving HFpEF (Manrique et al. 2013). In this model, MR antagonism 

improved diastolic function and reduced cardiac fibrosis, inflammation, and other markers of 

adverse myocardial remodeling (Bostick et al. 2015). This correlates with clinical studies in 

human HFpEF patients demonstrating beneficial effects of MR antagonists on diastolic 

function (Pandey et al. 2015; Fukuta et al. 2018) (see Table 2). EC-MR deletion in female 

mice recapitulates most of these benefits of pharmacologic MR blockade, implying that the 

MR within ECs plays a critical role in the development of diastolic dysfunction in this 

model (Jia et al. 2015b). Future work is needed to explore potential sex differences in the 

role of EC-MR in HFpEF in different model systems in which both sexes develop 

dysfunction. Such investigations could shed light on the mechanisms driving the sex 

differences in outcomes and quality of life in patients with HFpEF (Faxen et al. 2018; 

Martinez-Selles et al. 2012) and would support future clinical trials of MR inhibition in 

HFpEF, particularly in the context of obesity.

5. Summary of the Data from Animal Models

In animal models, the MR specifically within the vascular endothelium promotes endothelial 

dysfunction, mediates inflammation in atherosclerosis, and contributes to cardiac 

remodeling in heart failure. In many cases, these preclinical data are consistent with the 

effects of MR inhibition that have been observed in human clinical cohorts (Table 2). While 

sex differences in these diseases have been directly investigated in a few cases, for the most 

part our understanding of the mechanisms driving cardiovascular disease comes from studies 

in male model systems or comparisons of males and females studied separately. Notable 

exceptions, such as studies of the role of the MR in endothelial-dependent relaxation (Davel 

et al. 2018b), atherosclerotic inflammation (Moss et al. 2019), and diastolic dysfunction in 

diet-induced obesity (Manrique et al. 2013; Jia et al. 2015b) point to intriguing sex 

differences in the function of the MR in the vascular endothelium. Additional studies 

directly comparing male and female animals are needed to provide critical insight into the 

mechanisms mediating sex differences in cardiovascular disease in humans.

IV. MOLECULAR MECHANISMS FOR THE SEX-SPECIFIC ROLES OF 

ENDOTHELIAL MINERALOCORTICOID RECEPTORS IN CARDIOVASCULAR 

DISEASE

In this section, we review the literature describing the contribution of EC-MR to: 1) 

inflammation; 2) vascular stiffness; and 3) oxidative stress as potential mechanisms for the 

sex-dependent role of EC-MR in various cardiovascular pathologies. We further discuss the 

relevant mechanistic insight gleaned from studies exploring 4) crosstalk between the MR 

and sex hormone signaling. Figure 1 provides a model summarizing these data.
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1. Inflammation

Inflammation plays a critical role in the pathophysiology of a number of cardiovascular 

diseases, including hypertension, atherosclerosis, and heart failure (Ruparelia et al. 2017). 

EC-MR has been demonstrated to contribute to a number of inflammatory processes, in 

some cases sex-dependently. This may represent a molecular mechanism by which EC-MR 

contributes to a wide variety of cardiovascular diseases.

A. EC-MR Regulates Inflammatory Endothelial Adhesion Molecules—The first 

description of the MR gene regulatory function within ECs was in human coronary artery 

ECs, where EC-MR was shown to transcriptionally regulate ICAM-1, a key endothelial 

mediator of leukocyte adhesion (Caprio et al. 2008). Later studies in apolipoprotein-E-

knockout male mice demonstrated that ICAM-1 is necessary for Aldo to enhance 

atherosclerosis (Marzolla et al. 2017), and MR inhibition with eplerenone in Dahl salt-

sensitive rats decreased renal ICAM-1 expression (Kobayashi et al. 2005), further 

implicating MR regulation of ICAM-1 in tissue inflammation (Figure 1 A-i). Additional in 
vitro studies using human ECs demonstrated that estrogen, via ERα, inhibits MR 

transcription of ICAM-1, suggesting that estrogen signaling diminishes the role of MR-

induced ICAM-1 in inflammation (Barrett Mueller et al. 2014). This is in line with a study 

in which the effect of estrogen on atherosclerosis in females was found to be independent of 

ICAM-1 (Gourdy et al. 2003), while in male mice ICAM-1 deletion has been shown to 

reduce lesion size (Bourdillon et al. 2000). Taken together, these data suggest a model in 

which EC-MR regulates ICAM-1 in males to promote inflammation, while in females ERα 
blocks this function of EC-MR (Figure 1B-iv).

The MR has also been linked to regulation of VCAM-1, another endothelial molecule 

involved in leukocyte adhesion to the vasculature. Deletion of 11βHSD2, which leads to 

overactivation of the MR by corticosterone, increased endothelial VCAM-1 expression in 

the aortic roots of male apolipoprotein-E-knockout mice (Deuchar et al. 2011). In another 

study, VCAM-1 expression was inhibited by eplerenone in the renal tissue of Dahl salt-

sensitive rats (Kobayashi et al. 2005). Conversely, VCAM-1 may be negatively regulated by 

estrogen: in a study of ovariectomized female atherosclerotic mice, addition of estrogen 

decreased VCAM-1 relative to placebo (Gourdy et al. 2003). Scant data studying VCAM-1 

regulation in EC-MR deficient mice points to potential endothelial-specific regulation of this 

molecule in males that may vary by the model used. In one model of male mice subjected to 

mineralocorticoid/high-salt hypertension, EC-MR deletion prevented VCAM-1 upregulation 

in cardiac ECs (Lother et al. 2016). By contrast, EC-MR deletion did not alter whole-heart 

VCAM-1 expression in males subjected to pressure-overload cardiac hypertrophy (Salvador 

et al. 2017). No study has yet explored the role of EC-MR in regulating VCAM-1 in 

females.

B. EC-MR Sex-Dependently Regulates the Selectins, Endothelial Molecules 
Critical for Leukocyte Recruitment—The selectins are a family of molecules expressed 

on the EC surface that mediate leukocyte rolling interactions with the endothelium, the 

necessary first step for tissue inflammation. P-selectin is involved in leukocyte capture and 

fast rolling, while E-selectin is necessary for leukocyte slow-rolling interactions, which 
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precede firm adhesion and trans-endothelial migration (Sundd et al. 2011). EC-MR was 

recently found to regulate E-selectin in vivo in males. When compared directly to female 

littermates, TNFα-induced mesenteric venous expression of E-selectin was lower than that 

of males and not further affected by the deletion of EC-MR. This pattern of E-selectin 

expression correlated with sex-dependent effects on leukocyte slow rolling in the vasculature 

in the setting of an acute inflammatory stimulus and with the accumulation of inflammatory 

cells in aortic plaques in a model of hyperlipidemia-induced atherosclerosis (Moss et al. 

2019). This recent study is consistent with prior in vitro investigations suggesting E-selectin 

regulation by the MR (Seeger et al. 2009; Hashikabe et al. 2006) and demonstrating that 

patients with high Aldo levels have higher circulating levels of soluble E-selectin 

(Tomaschitz et al. 2011). Further, E-selectin has been demonstrated to be negatively 

regulated by estrogen signaling (Tyree et al. 2002), consistent with the reduction in E-

selectin expression observed in female mice compared to males (Moss et al. 2019).

P-selectin may also be regulated by EC-MR, though the data supporting this is less certain 

than that for E-selectin. P-selectin expression in whole-kidney lysates was increased in Dahl 

salt-sensitive rats relative to normotensive rats, and this expression was reduced by 

eplerenone (Kobayashi et al. 2005). In vitro, the Aldo-induced increase in leukocyte 

adhesion to ECs in static culture could be prevented by P-selectin inhibition, implicating P-

selectin in this effect of EC-MR (Jeong et al. 2009). P-selectin is critical for leukocyte fast 

rolling interactions with the endothelium, and Moss et al. (2019) found that leukocyte fast 

rolling tended to be reduced by EC-MR deletion in males and females, however this was not 

statistically significant and P-selectin expression was not assessed in that study. That this 

tendency was the same in both sexes is consistent with data indicating that P-selectin is not 

involved in the protective effect of estrogen on atherosclerosis, suggesting that it is not an 

estrogen target and therefore may not be differentially regulated between the sexes (Gourdy 

et al. 2003).

C. A Role for EC-MR in Endothelial Permeability—The integrity of the endothelial 

tight junction also contributes to inflammation, as endothelial permeability to proteins, 

lipids, and leukocytes facilitates inflammation of underlying tissues. MR activation by Aldo 

treatment disrupted the membrane localization of tight junction proteins in human cultured 

ECs, resulting in permeability of the endothelial monolayer to labeled dextrans (Kirsch et al. 

2013). Conversely, in female rats, eplerenone blocked degradation of tight junction proteins 

in response to hemodynamic instability, thereby preventing cerebral aneurysm formation 

(Tada et al. 2010). Thus, EC-MR may contribute to endothelial permeability, at least in 

females. This may be via its regulation of the RhoA signaling pathway, which among other 

activities promotes EC-EC junction stability via actions on the cytoskeleton (Shimokawa et 

al. 2016). Aldo has been found to activate RhoA in various cardiovascular cell types (Kirsch 

et al. 2013; Lavall et al. 2014; Nguyen Dinh Cat et al. 2018), leading to F-actin stress fiber 

formation. In cultured human ECs, this promotes disruption of endothelial junction proteins 

and permeability of the endothelial monolayer (Kirsch et al. 2013). Genomic ER signaling 

may also activate RhoA in ECs (Oviedo et al. 2011; Simoncini et al. 2006), although non-

genomic estrogen signaling may counteract this effect (Li et al. 2016). Thus, in the case of 
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endothelial junction integrity, estrogen signaling may not block MR effects on endothelial 

junction integrity and may instead work in parallel to promote endothelial permeability.

D. EC-MR-Mediated Inflammation May Contribute to Cardiovascular Fibrosis
—Fibrosis is often a consequence of inflammation. While no studies have directly compared 

the role of EC-MR in cardiovascular fibrosis between males and females, analysis of the 

existing literature reveals the possibility of sex differences. One study found that EC-MR 

deletion did not alter cardiac inflammation or fibrosis in male mice subjected to transverse 

aortic constriction, a model of pressure overload-induced cardiac remodeling (Salvador et al. 

2017). By contrast, EC-MR deletion in females attenuated cardiac (Jia et al. 2015b) and 

aortic (Jia et al. 2016) fibrosis in a Western diet-fed model, which corresponded to 

reductions in inflammatory markers in these mice. Western diet-fed females also develop 

renal artery dysfunction, inflammation, and fibrosis, which was recently also shown to be 

prevented by EC-MR deletion (Aroor et al. 2019). Thus, the limited data so far could be 

interpreted to suggest that EC-MR may specifically contribute to cardiovascular fibrosis 

only in females via effects on inflammation. However, since each study was performed in 

only one sex and in different models of cardiovascular fibrosis, it is not possible to 

distinguish true sex differences from differences in the models or methods used by different 

investigators. Direct comparison of males and females in the same model system is needed 

to definitively interrogate these potential sex differences in the role of EC-MR in fibrosis.

In summary, EC-MR appears to contribute to inflammation by regulating EC adhesion 

molecule expression and endothelial permeability (Figure 1A-i). In some circumstances, 

these processes are differentially regulated in males and females and appear to be subject to 

opposite regulation by estrogen signaling. Further work, especially studies comparing 

inflammation in male and female animal models, will be instrumental in elucidating the sex-

specific mechanisms by which EC-MR contributes to inflammation to induce cardiovascular 

pathology.

2. Vascular Stiffness

Vascular stiffening occurs with aging and in response to chronic cardiometabolic risk factors 

and precedes and predicts the development of cardiovascular diseases including 

hypertension and atherosclerosis (Huveneers et al. 2015). The phenomenon of vascular 

stiffening involves dysfunction of all parts of the vessel wall, including the vascular SMCs, 

ECs, and extracellular matrix (Jia et al. 2015a). Mineralocorticoid signaling contributes to 

stiffening of the vascular wall, particularly in the presence of cardiovascular disease or risk 

factors, as MR blockade reduced aortic stiffness in human subjects with dilated 

cardiomyopathy (Vizzardi et al. 2015) and attenuated the aortic stiffening observed in female 

mice fed a Western diet (DeMarco et al. 2015). This role for the MR in vascular stiffness 

may only emerge in the presence of cardiovascular risk factors, as one study found that in 

older but otherwise healthy individuals, MR blockade did not change indices of arterial 

stiffness (Hwang et al. 2013a).

The MR in vascular SMCs contributes to arterial stiffening, as specific deletion of smooth 

muscle cell MR was recently shown to attenuate aortic stiffness in aging male mice (Kim et 
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al. 2018). However, the MR specifically within the vascular endothelium has also been 

found to contribute to arterial stiffness via regulation of endothelial ion channels. ECs 

stiffness is modulated by changes in intracellular ion concentrations thereby altering 

intracellular water content. The resulting mechano-signals are then transmitted to 

neighboring ECs and the SMCs of the vessel wall. In female mice, Aldo administration 

induced aortic stiffness via endothelial expression of the epithelial sodium channel (EnNaC, 

Figure 1A-ii), a well-known gene target of the MR in the renal epithelium (Jia et al. 2018b; 

Kusche-Vihrog et al. 2010). Conversely, EC-MR deletion attenuated aortic stiffness 

observed in female mice administered Aldo or fed a Western diet, also via regulation of 

EnNaC (Jia et al. 2016). Downstream of EC-MR, EnNaC activity in the endothelium also 

promotes endothelial permeability and inflammation, thus increasing susceptibility to further 

cardiovascular dysfunction (Jia et al. 2018a).

In addition to EnNaC, the MR also regulates other ion channels, though many of these 

investigations have been performed in non-ECs (reviewed in DuPont et al. 2014). Notably, in 

breast cancer-derived ECs, Aldo has been shown to upregulate expression of the sodium/

hydrogen exchanger via a mechanism that involves both the MR and rapid estrogen 

signaling (Rigiracciolo et al. 2016). Further study is required to determine whether EC-MR 

may regulate homeostasis of ion channels beyond EnNaC or the sodium/hydrogen exchanger 

to promote endothelial and vascular stiffness and thus contribute to the pathogenesis of 

cardiovascular disease.

3. Oxidative Stress

The role of the MR in oxidative stress and its contribution to endothelial dysfunction has 

been reviewed elsewhere (Queisser and Schupp 2012; Davel et al. 2017). The activity of the 

MR in the endothelium appears to be critical for these activities in both sexes. In male mice, 

EC-MR deletion prevented Aldo-induced increases in superoxide formation in the cerebral 

arteries (Dinh et al. 2016). In females fed a Western diet, EC-MR deletion increased eNOS 

activation and reduced nitrogen free radicals in the aorta (Jia et al. 2016). Thus, it appears 

that in both male and female animal models, EC-MR contributes to vascular oxidative stress. 

However, the mechanism by which EC-MR exerts these effects may differ between males 

and females. Hyperlipidemic male mice were recently found to developed endothelial 

dysfunction characterized by impaired endothelium-mediated vasodilation that was not 

ameliorated with genetic EC-MR deletion. Female hyperlipidemic littermates also developed 

endothelial dysfunction, but in females, EC-MR deletion resulted in a compensatory 

increase in NO production and NO-mediated dilation (Davel et al. 2018b) (Figure 1A-iii). 

This enhanced role for EC-MR in females may have been possible due to higher Aldo levels 

or potentially also low estrogen levels in these female mice with cardiometabolic risk factors 

(Davel et al. 2018b). Indeed, data from human studies suggests that Aldo is increased 

(Bentley-Lewis et al. 2007) and sex hormones may be dysregulated in the context of obesity 

(Poddar et al. 2017), which may activate EC-MR to promote vascular oxidative stress in 

obese females. This is supported by a separate study of ovariectomized female 

spontaneously hypertensive rats, in which estrogen replacement attenuated oxidative stress 

in the coronary arteries, while the addition of drospirenone, a progestin with anti-MR 

activity, had no additional effect in estrogen-replete females (Borgo et al. 2016).
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4. Crosstalk Between the Mineralocorticoid Receptor and Sex Hormones

A. Sex-Dependent Regulation of Aldo Production—Women tend to have higher 

levels of circulating Aldo than men, both at baseline (Sequeira et al. 1986) and in pathogenic 

states (Szymanski et al. 2011; Shukri et al. 2018; Bentley-Lewis et al. 2007), a finding that 

has been recapitulated in rodent models (Tang 1985; Davel et al. 2018b; Faulkner and Belin 

de Chantemele 2018). Sex-specific effects on Aldo levels may be related to sex differences 

in adrenal Aldo production in the zona glomerulosa (ZG). Female rat ZG cells produced 

more Aldo at baseline than cells from male rats (Huang et al. 2018), and Aldo synthase 

expression was increased in female mice exposed to either leptin sensitization or obesity, 

resulting in higher circulating Aldo levels and blood pressure (Huby et al. 2016). By 

contrast, female rats exhibit a higher Aldo clearance rate than males (Morris et al. 1975), 

suggesting sex-specific control of Aldo balance at both the production and excretion levels.

The mechanism for the sex dependence of Aldo homeostasis may also be related to sex 

hormones other than estrogen. Women in the luteal phase of the menstrual cycle, when 

progesterone levels are highest, have higher Aldo levels than in the follicular phase, when 

progesterone levels drop (Szmuilowicz et al. 2006). This study also observed an increase in 

Aldo production in the ZG cells of female rats when treated with progesterone. It is unclear 

whether serum levels of glucocorticoids, which can also activate the MR, follow the same 

pattern, as two small studies show discrepant results: one study of 5 women found that both 

Aldo and corticosterone were higher in the luteal phase than the follicular (Schwartz and 

Abraham 1975), while another study found no difference in cortisol levels between the 

phases in 4 women (Stewart et al. 1993). The progesterone-related effect on Aldo production 

may be due to increased secretion of the hormone, rather than synthesis, as a separate study 

found that progesterone inhibited the Aldo synthase enzyme in transfected cells (Vecchiola 

et al. 2013).

By contrast, data support that estrogen likely does not to influence Aldo production. 

Estrogen did not correlate with Aldo levels in the above study of menstrual cycle variation, 

nor did estrogen alter Aldo production in rat ZG cells (Szmuilowicz et al. 2006) or in a 

separate study of human adrenocortical cells (Yanes and Romero 2009). Estrogen also did 

not affect the activity of the Aldo synthase enzyme in transfected cells (Vecchiola et al. 

2013). Consistent with these results, a study of human adrenocortical cells found that 

estrogen increased Aldo production only when ERβ was inhibited, indicating that ERβ may 

prevent Aldo secretion that may otherwise occur with estrogen exposure (Caroccia et al. 

2014).

Testosterone and AR signaling also appear to influence Aldo production, with opposite 

effects depending on the timing of exposure. AR signaling during prenatal development 

promotes Aldo production in male offspring (Martinez-Arguelles et al. 2011), while in adult 

male animals AR signaling inhibits Aldo production (Kau et al. 1999; Hofmann et al. 2012; 

Carsia et al. 2018). It is unclear whether AR signaling may regulate Aldo production in 

females, as one study demonstrated decreased Aldo production in testosterone-treated 

female geckos (Carsia et al. 2018) while another study observed no effect on Aldo 

production in ovariectomized female rats treated with an AR inhibitor (Hofmann et al. 

Moss et al. Page 20

Pharmacol Ther. Author manuscript; available in PMC 2020 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2012). Thus, Aldo levels in males and females appear to be regulated by sex steroid 

hormone signaling. The female sex hormone progesterone generally upregulates Aldo 

production in women and in rat adrenal cells, while testosterone inhibits Aldo production in 

adult male animals (Figure 1B-i).

B. Interactions Between the MR and Estrogen Receptors—In addition to sex 

differences in Aldo levels that may result in differential MR activation in males and females, 

there is also evidence that the MR can interact with sex hormone receptors directly in the 

effector cells, providing another mechanistic link between MR signaling and sex differences 

in cardiovascular disease. In particular, the α and β isoforms of the ER have been shown to 

modulate MR function. In a study of human ECs in vitro, ERα activation triggered the 

formation of a complex containing ERα and the MR that inhibited MR transcriptional 

function. This repression of the MR required ERα to be able to translocate to the nucleus but 

did not involve the DNA-binding domain or the rapid non-genomic signaling functions of 

ERα (Figure 1B-ii). In functional assays, Aldo treatment of human ECs induced ICAM-1 

expression and leukocyte adhesion, effects that were blocked by co-administration of 

estrogen (Barrett Mueller et al. 2014). Recently, EC-MR was shown to regulate ICAM-1 and 

E-selectin only in males in vivo or in the absence of estrogen in vitro, further implicating 

MR-estrogen crosstalk in the regulation of endothelial inflammatory mediators (Moss et al. 

2019). Other data also suggests that the MR can interact with ERs in vascular SMCs: in 

these cells, both ERα and ERβ attenuated Aldo-induced oxidative stress (Muehlfelder et al. 

2012), suggesting that ERβ, like ERα, may antagonize MR-mediated processes in the 

vasculature, through mechanisms that have not yet been elucidated (Figure 1B-iii). Thus, 

interactions between the MR and ERs are likely not limited to ECs but may occur in many 

cell types throughout the body. Gene expression profiling has been performed in vascular 

tissue to describe the gene sets activated by estrogen (Schnoes et al. 2008), ERα and ERβ 
(O’Lone et al. 2007), and Aldo (Newfell et al. 2011). Independent pathway analyses from 

these studies supports that the MR activates genes in the vasculature related to oxidative 

stress and inflammation, while estrogen signaling appears to inhibit similar pathways. Direct 

comparison of the data sets described in these three publications and further studies on the 

impact of estrogen signaling on MR-mediated vascular gene expression could provide 

exciting insight into potential genomic crosstalk between the MR and ERs.

Current evidence suggests additional non-genomic interactions between estrogen- and Aldo-

mediated pathways via the scaffolding protein striatin (Figure 1B-iii). In a cultured human 

EC line (EAhy.926), the scaffolding protein striatin recruits ERα to the caveolar membrane, 

thus facilitating its activation by estradiol and rapid downstream phosphorylation and 

activation of eNOS (Lu et al. 2004). Striatin protein expression is upregulated by the MR in 

EAhy.926 cells (Pojoga et al. 2012), and striatin facilitates the non-genomic phosphorylation 

of ERK1/2 and induction of ROS observed upon MR activation (Coutinho et al. 2014; 

Grossmann et al. 2005). The striatin pathway appears to confer protection from salt 

sensitivity of blood pressure, at least in male rodents (Garza et al. 2015). Thus, the binding 

of both the MR and ERα to the striatin scaffold could be an additional mechanism for 

interactions between the non-genomic functions of these two receptors. However, as this link 
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is currently only circumstantial, a direct investigation into this mechanism is certainly 

warranted.

An additional emerging mechanism for nongenomic crosstalk between MR and estrogen 

signaling is via the G-protein coupled ER (GPER), which was first described as a mediator 

of rapid estrogen effects (Filardo et al. 2000). Since then, various pharmacologic and genetic 

perturbations of this receptor have shown it to be involved in a number of disease processes 

from obesity and metabolic syndrome to inflammation, often in a sex-specific manner 

(Sharma and Prossnitz 2017). Further studies implicate GPER as a potential mediator of 

nongenomic Aldo signaling as well, though whether this occurs via direct binding of Aldo to 

GPER or downstream of traditional binding of Aldo to the MR is still controversial (Figure 

1B-iv). GPER was first suggested as an Aldo-binding receptor by Gros et al. (2011), wherein 

the authors demonstrated that Aldo can induce ERK1/2 phosphorylation and apoptosis in rat 

vascular SMCs infected with MR or GPER overexpression vectors, effects which could be 

inhibited by the GPER antagonist G15. Subsequently, Aldo stimulation of ERK1/2 

phosphorylation was shown to be blocked by either G15 or short hairpin RNA-mediated 

knockdown of GPER in rat vascular ECs (Gros et al. 2013). By contrast, Ferreira et al. 

(2015) showed that GPER was involved in Aldo-induced vasoconstriction but not 

vasodilation in the mesenteric resistance arteries of female mice, suggesting GPER effects 

on SMCs but not ECs. Finally, Aldo induces vasoconstriction of the afferent renal arteriole, 

an effect that can be blocked by GPER inhibition (Ren et al. 2016). While these data 

implicate GPER in the rapid effects of Aldo on vascular cells, it is not clear that GPER is the 

sole mediator of nongenomic Aldo signaling. In all of the above-mentioned studies, the 

addition of MR antagonists eplerenone and spironolactone blocked the rapid effects 

attributed to GPER, as did siRNA knockdown of the MR in a study of breast cancer cell 

lines (Rigiracciolo et al. 2016). This indicates that the canonical MR is also involved in the 

rapid, nongenomic effects of Aldo. Further, data from Cheng et al. (2014) suggested that 

Aldo may not directly bind to GPER, furthering the controversy over whether GPER may be 

a novel Aldo receptor.

Despite the controversy, growing evidence supports that GPER and the MR mediate rapid 

Aldo-induced signaling in concert (Figure 1B-iv). Indeed, GPER and the MR have been 

shown to colocalize in the presence of Aldo in breast cancer cell lines (Rigiracciolo et al. 

2016). Further studies to enhance our understanding of the potential interactions between the 

MR, Aldo, estrogen, and GPER could provide additional insight into the mechanisms of sex 

differences observed in Aldo- and MR-mediated cardiovascular disease.

C. Interactions Between the MR and the Progesterone Receptor—Progesterone 

and the progesterone receptor (PR) may also interact with the MR, providing yet another 

link between MR signaling and female sex hormones. Whereas progesterone levels 

positively correlate with Aldo secretion as described above, progesterone itself can bind to 

and inhibit the MR in mammalian cells (Rupprecht et al. 1993; Mooij et al. 2015) (Figure 

1B-v). While progesterone negatively regulates the wild-type MR, a point mutation in the 

ligand-binding domain of the MR has been identified that instead leads to activation of the 

MR by progesterone, resulting in early-onset hypertension and severe pregnancy-associated 

hypertension (Geller et al. 2000). PR has also been shown to inhibit MR transcriptional 
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activity (McDonnell et al. 1994), while the MR may in turn activate the PR. Aldo promoted 

cell spreading and F-actin stress fiber formation in PR-positive breast cancer cells, an effect 

that was largely absent in PR-negative cells (Leo et al. 2004) (Figure 1B-v). However, this 

paradigm of mutual signaling is tentative at best, and specific study of the interactions 

between the MR and PR will be critical to understanding what role, if any, progestin 

signaling may have in MR-mediated cardiovascular disease.

D. Interactions Between the MR and the Androgen Receptor—The majority of 

data concerning potential interactions between MR and AR signaling comes from the 

prostate cancer literature. Prostate cancer cell lines have been shown to express 11βHSD2, 

thereby confering Aldo specificity to the MR by modifying cortisol to the MR-inactive 

cortisone (Page et al. 1994). In a recent study, Aldo treatment sensitized prostate cancer cells 

to the AR inhibitor enzalutamide and MR knockdown increased AR expression (Shiota et al. 

2018). By contrast, testosterone and its active metabolite dihydrotestosterone have been 

shown to bind to and inhibit the MR (Takeda et al. 2007). In addition, the AR coactivator 

XRCC6 can also bind to the MR, inhibiting its transcription of target genes in the H9c2 

embryonic cardiac myocyte cell line (Yang et al. 2014). Of note, this latter result is the only 

evidence to date linking the MR to the AR in a cardiovascular-relevant cell type and this 

paradigm has not been studied in ECs. Taken together, these data suggest a feedback model 

in which MR activation suppresses AR expression and activity, and androgens themselves 

may in turn inhibit the MR (Figure 1B-v). Much more study is needed to confirm this 

hypothesis and the explore possible physiologic ramifications of MR/AR crosstalk in the 

cardiovascular system.

5. Summary of the Molecular Mechanistic Data

The existing data indicates that the MR within the vascular endothelium contributes to 

cardiovascular disease via several molecular mechanisms. EC-MR regulates the expression 

of inflammatory adhesion molecules and promotes endothelial barrier permeability (Figure 

1A-i), which together promote tissue inflammation in cardiovascular disease models such as 

atherosclerosis and heart failure. By regulating expression of the epithelial sodium channel 

and other ion channels in ECs, EC-MR promotes vascular stiffness, a precursor to 

hypertension and risk factor for atherosclerosis and cardiac dysfunction (Figure 1A-ii). By 

promoting oxidative stress and inhibiting NO availability, EC-MR contributes to impaired 

endothelial function in the setting of risk factors including hypertension, obesity and 

hyperlipidemia (Figure 1A-iii).

Where it has been studied, the role of EC-MR in promoting tissue inflammation, vascular 

stiffness, and endothelial dysfunction has often been found to be sex-specific. This is 

particularly evident in animal models of cardiovascular risk factors such as obesity and 

hyperlipidemia. This may be due to a variety of interactions between the MR and sex 

hormone receptors that either promote or inhibit MR activity. Progesterone and testosterone 

have been shown to regulate adrenal production of Aldo (Figure 1B-i); estrogen and 

progesterone receptors inhibit the genomic activity of the MR (Figure 1B-ii); the MR and 

various estrogen receptors may cooperate or inhibit one another in the context of rapid, non-

genomic signaling (Figure 1B-iii–iv); and progesterone and testosterone themselves have 

Moss et al. Page 23

Pharmacol Ther. Author manuscript; available in PMC 2020 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



been shown to directly inhibit the MR (Figure 1B-v). The MR may in turn regulate the 

activity of the androgen and progesterone receptors (Figure 1B-v). In our review of the 

literature, we found no evidence to suggest that sex hormones can directly activate the wild-

type MR.

The current understanding of this complex ecosystem of ligands, receptors, and subcellular 

process regulation is limited by a scarcity of literature rigorously comparing differences in 

these mechanisms between the sexes. However, the available data suggests that in general, 

sex hormones tend to inhibit the harmful effects of the MR in the cardiovascular system. 

This paradigm could help to explain increases in cardiovascular disease risk in 

postmenopausal women, when ovarian hormone levels are low (Benjamin et al. 2018), and 

in men with low testosterone levels (Channer and Jones 2003; Rovira-Llopis et al. 2017). 

This may also be consistent with activated MR promoting cardiovascular disease even in 

premenopausal women who exhibit additional cardiovascular risk factors such as obesity, 

where hormone production and MR activity are often dysregulated (reviewed in Poddar et al. 

2017). Certainly, further study is warranted to fully understand the nature of the interactions 

between the MR and sex hormones in order to adequately design therapies to combat 

cardiovascular disease in both sexes.

V. CONCLUSIONS AND PERSPECTIVES

In this review, we have explored the evidence for a sex-specific role for EC-MR in 

cardiovascular disease. In humans, the MR is involved in the pathophysiology of endothelial 

dysfunction, hypertension, atherosclerosis, and heart failure, and inhibition of the MR has 

been demonstrated to be beneficial in each of these conditions. In male animal models EC-

MR has been shown to contribute to endothelial dysfunction in response to cardiovascular 

risk factors, to tissue inflammation, and to the adverse cardiac remodeling that occurs in 

models of heart failure and hypertension, without contributing to the blood pressure 

regulation itself. In women the role of the MR becomes evident after menopause, when 

preclinical data suggests that the MR may be more active due to low levels of MR-inhibiting 

sex hormones and increased Aldo levels in obese females. However, a role for the MR in 

cardiovascular disease can be observed even in premenopausal women if additional 

cardiovascular risk factors are present that may diminish the beneficial effects of female sex 

hormones. The specific role of EC-MR in cardiovascular pathology in females is just 

beginning to be understood, with data supporting a role for this receptor in endothelial 

dysfunction and cardiac diastolic dysfunction but not inflammation or hypertension. 

However, substantial further investigation is needed to fully appreciate the nuances of 

potential sex differences and sex hormone effects in many different models of cardiovascular 

disease.

An important limitation in this field is the paucity of women in clinical trials and, until 

recently, the nearly exclusive use of male animals in preclinical investigations. With the 

recent requirement by the National Institutes of Health that biological sex be addressed as an 

important variable in basic science and clinical research (McCullough et al. 2014), data is 

beginning to surface demonstrating sex differences in the role of the MR in cardiovascular 

disease, with mechanistic insights likely to expand. Further, tens of thousands of men and 
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women have been randomized to MR antagonist therapy in clinical trials. Sub-analysis of 

this existing wealth of data by sex and equitable inclusion of women in future studies would 

provide excellent opportunities to understand sex differences in the renin-angiotensin-

aldosterone system in human subjects.

It is critical to understand the differences between men and women in the etiology, natural 

history, and downstream consequences of cardiovascular pathology. Endothelial-specific MR 

may be a tantalizing factor mediating sex differences in endothelial dysfunction, 

atherosclerosis, and heart failure. By contrast, EC-MR may not contribute to sex differences 

in hypertension incidence, instead mediating the adverse consequences of elevated blood 

pressure. Additionally, the MR has been suggested to contribute to the pathophysiology of 

MI (Beygui et al. 2006), cardiac arrhythmia (Neefs et al. 2017), and certain pathologies of 

the heart valves (Liu et al. 2018), but whether there is an effect of sex or a role for EC-MR 

has not yet been explored. Such an understanding could profoundly impact the clinical 

management of male and female patients, with current and emerging new MR antagonists as 

versatile tools in the treatment of cardiovascular disease. Furthermore, understanding the 

molecular mechanisms driving sex differences in the role of EC-MR in cardiovascular 

disease has the potential to nominate additional therapeutic targets downstream of EC-MR 

that could allow for tailored treatment of cardiovascular disease to improve outcomes in both 

men and women.
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Figure 1. Molecular Mechanisms for the Sex-Specific Contributions of EC-MR to 
Cardiovascular Disease.
(A) The MR participates in a number of processes in ECs that may contribute to 

cardiovascular disease in a sex-specific manner. (i) EC-MR promotes the expression of 

endothelial adhesion molecules such as P- and E-selectin and ICAM-1, and this differs by 

sex for E-selectin and ICAM-1. This results in differential leukocyte recruitment to the 

vasculature in males and females. EC-MR also promotes endothelial permeability by 

activating RhoA, which leads to tight junction destabilization and may facilitate leukocyte 

trans-endothelial migration. (ii) The MR is well known to promote the expression of sodium 

transport proteins such as EnNaC, which in the endothelium can promote vascular stiffness. 

Whether this differs by sex is unclear, as all studies of EC-MR in vascular stiffness have 

been performed in female mice. (iii) EC-MR promotes oxidative stress in both males and 

females, though the mechanism for this effect may differ by sex. The ROS produced by this 

effect inactivate NO, thus preventing effective endothelium-dependent dilation of the 

underlying smooth muscle cells. This effect appears to vary by sex, arterial bed, and disease 

model. (B) There are several potential nodes for crosstalk between the MR and sex hormone 

receptors, many of which have yet to be fully explored. (i) Sex hormones may modulate 

production of the MR ligand Aldo at the level of the adrenal gland: testosterone may 

increase Aldo production, while progesterone may inhibit it. (ii) Activated ERα can bind to 

and inhibit the transcriptional function of the MR, which requires nuclear translocation but 

does not require ERα itself to bind DNA. The PR has also been demonstrated to inhibit MR 

transcriptional activities. (iii) The MR and ERα may compete for occupancy of striatin at 

the caveolar membrane, where they mediate non-genomic effects on eNOS and other rapid 

signaling cascades. (iv) Possible interactions between Aldo, the MR, and GPER are 

particularly controversial. Activation of either the MR or GPER can activate similar rapid 

signaling pathways, and many of these effects can be blocked by either MR inhibition or 
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GPER inhibition. Possible models for this crosstalk include activation of GPER by MR, 

direct binding of Aldo to GPER, and complex formation between the MR and GPER. (v) 
Progesterone has been shown to bind to and inhibit the MR, and testosterone has been 

hypothesized to do the same. AR/MR interactions are not well characterized but may include 

inhibition of the AR by MR. ERβ has also been demonstrated to attenuate Aldo-induced 

ROS production, through unclear mechanisms. The MR may also promote PR activity. Solid 

arrow=positive regulation, dotted line=negative regulation; A=Aldo; AR=androgen receptor; 

EnNaC=endothelial epithelial sodium channel; eNOS=endothelial nitric oxide synthase; 

ER=estrogen receptor; GPER=G protein-coupled estrogen receptor; NO=nitric oxide; 

P=progesterone; PR=progesterone receptor; ROS=reactive oxygen species; T=testosterone.
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