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Abstract

Cardiovascular disease remains the leading cause of death for both men and women. The
observation that premenopausal women are protected from cardiovascular disease relative to age-
matched men, and that this protection is lost with menopause, has led to extensive study of the role
of sex steroid hormones in the pathogenesis of cardiovascular disease. However, the molecular
basis for sex differences in cardiovascular disease is still not fully understood, limiting the ability
to tailor therapies to male and female patients. Therefore, there is a growing need to investigate
molecular pathways outside of traditional sex hormone signaling to fully understand sex
differences in cardiovascular disease. Emerging evidence points to the mineralocorticoid receptor
(MR), a steroid hormone receptor activated by the adrenal hormone aldosterone, as one such
mediator of cardiovascular disease risk, potentially serving as a sex-dependent link between
cardiovascular risk factors and disease. Enhanced activation of the MR by aldosterone is
associated with increased risk of cardiovascular disease. Emerging evidence implicates the MR
specifically within the endothelial cells lining the blood vessels in mediating some of the sex
differences observed in cardiovascular pathology. This review summarizes the available clinical
and preclinical literature concerning the role of the MR in the pathophysiology of endothelial
dysfunction, hypertension, atherosclerosis, and heart failure, with a special emphasis on sex
differences in the role of endothelial-specific MR in these pathologies. The available data
regarding the molecular mechanisms by which endothelial-specific MR may contribute to sex
differences in cardiovascular disease is also summarized. A paradigm emerges from synthesis of
the literature in which endothelial-specific MR regulates vascular function in a sex-dependent
manner in response to cardiovascular risk factors to contribute to disease. Limitations in this field
include the relative paucity of women in clinical trials and, until recently, the nearly exclusive use
of male animals in preclinical investigations. Enhanced understanding of the sex-specific roles of
endothelial MR could lead to novel mechanistic insights underlying sex differences in
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cardiovascular disease incidence and outcomes and could identify additional therapeutic targets to
effectively treat cardiovascular disease in men and women.
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endothelial cell; mineralocorticoid receptor; cardiovascular disease; sex differences; aldosterone;
estrogen

[. INTRODUCTION

1. Gaps in Knowledge of the Mechanisms Underlying Sex Differences in Cardiovascular
Disease

Cardiovascular pathologies such as hypertension, atherosclerosis, and heart failure lead to
substantial morbidity, and heart disease remains the leading cause of death in both men and
women (Xu et al. 2018). While premenopausal women are protected from cardiovascular
disease relative to age-matched men, this protection is lost with menopause, implicating sex
hormones in the pathogenesis of cardiovascular disease. As such, the role of sex hormones
in the cardiovascular system, particularly signaling through estrogen receptor (ER) isoforms
a and B, has been extensively studied (Arnold et al. 2017). However, due to the complex
nature of sex steroid signaling pathways, the molecular basis for sex differences in
cardiovascular disease is still not fully understood, limiting the ability to tailor therapies to
male and female patients.

Additionally, common cardiovascular risk factors such as metabolic syndrome and obesity
abolish the protection from cardiovascular disease in women even prior to menopause
(Barrett-Connor et al. 1991; Sowers 1998; Wilson et al. 2002), highlighting the need to
investigate molecular pathways outside of traditional sex hormone signaling to fully
understand sex differences in cardiovascular disease. However, this area is currently
understudied in both the clinical and preclinical literature. Generally, the patient cohorts in
cardiovascular disease clinical trials are heavily weighted towards male patients, with
women constituting only a minority of study participants. Further, most preclinical studies in
the cardiovascular field focus on male animals, with very few directly comparing the sexes.

2. The Mineralocorticoid Receptor: Regulator of Blood Pressure, Mediator of
Cardiovascular Disease

The mineralocorticoid receptor (MR) was first described to contribute to blood pressure
control by regulating the transcription and expression of sodium transport proteins in the
distal nephron (Arriza et al. 1987). Emerging evidence now points to the MR as a broader
mediator of cardiovascular disease risk, potentially serving as a sex-dependent link between
cardiovascular risk factors and disease (Davel et al. 2018a). The MR is a transcription factor
that can be activated either by glucocorticoids such as cortisol (corticosterone in rodents),
which circulate at high levels, or by its more specific but less abundant ligand aldosterone
(Aldo) (Funder 2010). Individual tissues maintain specificity of the MR for Aldo by
expression of the 11B-hydroxysteroid dehydrogenase 2 (118HSDZ2) enzyme, which converts
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MR-binding glucocorticoids to metabolites that cannot bind to the MR and thus affords Aldo
specificity to the MR (Naray-Fejes-Toth et al. 1998).

Independently of the relationship between the MR and blood pressure, elevated serum Aldo
levels are associated with a substantially increased risk of stroke, myocardial infarction
(M1), and sudden cardiac death (Ivanes et al. 2012; Milliez et al. 2005). Conversely,
inhibition of the MR in large randomized clinical trials such as the RALES, EPHESUS, and
EMPHASIS-HF results in significant reductions in mortality in heart failure patients. This
decrease in mortality is associated with only modest changes in blood pressure along with
trends towards decreased MI risk when secondary endpoints are examined (Zannad et al.
2011; Pitt et al. 1999; Pitt et al. 2003b). As such, substantial investigation in the preclinical
literature has focused on understanding the role of MR signaling in non-renal cells in the
development of cardiovascular disease, which has the potential to nominate additional
therapeutic targets related to MR signaling.

3. Vascular Cell-Specific Mineralocorticoid Receptors Contribute to Cardiovascular

Disease

The vascular wall is made up of three parts: an inner layer of endothelial cells (ECs) that
forms the interface between circulating blood and underlying tissues; a medial layer of
smooth muscle cells (SMCs) which contract or relax to control vessel diameter thereby
regulating blood flow to downstream organs; and an outer layer of adventitial fibroblasts and
adipose cells that provide structural support and regulatory mediators to the inner two layers.
The inner EC layer contributes to vasodilation by activating ion channels and releasing
paracrine factors to stimulate dilation of the underlying SMCs, including the anti-
inflammatory, antioxidant gas nitric oxide (NO) (Vanhoutte et al. 2016). The endothelium
also regulates inflammatory cell recruitment by modulating expression of endothelial-
leukocyte adhesion molecules and by the generation of reactive oxygen species (ROS) to
produce oxidative stress.

The MR is expressed in vascular SMCs and ECs. In its genomic role as a transcription
factor, the MR within ECs (EC-MR) regulates genes that contribute to critical EC functions,
including expression of inflammatory mediators and regulators of endothelial sodium
handling and junctional integrity (Kusche-Vihrog et al. 2010; Moss and Jaffe 2015; Kirsch et
al. 2013). EC-MR also contributes to NO bioavailability and oxidative stress via rapid, “non-
genomic” signaling outside of its traditional, gene-transcription role (Wehling 2018).
Multiple studies have demonstrated that ECs express 11BHSD?2 that is capable of
inactivating cortisol (Christy et al. 2003; Caprio et al. 2008; Liu et al. 2009), thus it is likely
that Aldo is the relevant ligand for EC-MR. However, some studies show low or variable
11BHSD2 expression in ECs that may depend on cell conditions (Gong et al. 2008), raising
the possibility that glucocorticoids may activate EC-MR under certain conditions.
Regardless of the ligand, however, studies in mice with EC-specific MR deletion reveal that
EC-MR contributes to the cardiovascular pathology that develops in the setting of risk
factors such as obesity, diabetes, and hyperlipidemia (Davel et al. 2017).

In addition to ECs, functional MR is expressed in human vascular SMCs (Jaffe and
Mendelsohn 2005), where it has been shown to contribute to vasoconstriction and blood
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pressure regulation (McCurley et al. 2012; DuPont et al. 2016; Galmiche et al. 2014;
Amador et al. 2016) and to vascular remodeling in response to injury, aging, and
hypertension (Pruthi et al. 2014; Galmiche et al. 2014; Kim et al. 2018) /n vivo in males. /n
vitro, SMC-MR may also contribute to SMC calcification (Jaffe et al. 2007) and cytokine
production (McGraw et al. 2013), although it was recently shown not to contribute to the
pathogenesis of atherosclerosis in male mice (Moss et al. 2018). The MR also contributes to
inflammatory phenotypes in a number of leukocyte cell types, such as T cells, neutrophils,
and monocytes (Bene et al. 2014). /n vitro, macrophage MR contributes to the production of
ROS and inflammatory cytokines and promotes pro-inflammatory “M1-like” macrophage
polarization (Usher et al. 2010; Bene et al. 2014) and contributes to plaque development in
atherosclerosis models (Shen et al. 2017). Recent /n vivo studies further implicate T cell MR
in the pathogenesis of hypertension (Sun et al. 2017) and pressure overload-induced cardiac
dysfunction (Li et al. 2017a). Although this review focuses on the role of the MR
specifically within ECs in cardiovascular disease, additional investigations of the role of the
MR in other cell types will certainly provide substantial insight into the mechanisms driving
cardiovascular disease.

4. Endothelial Cell Mineralocorticoid Receptors in Cardiovascular Disease: Is There
Effect Modification by Sex?

Substantial recent exploration reveals a role for EC-specific MR in endothelial dysfunction,
hypertension, atherosclerosis, and heart failure. However, the vast majority of preclinical
investigations into the function of EC-MR have been conducted only in male animals, and
those that do use female animals do not typically compare them to male counterparts to
examine sex differences. However, rare publications in the existing literature that do directly
compare the role of EC-MR between males and females reveal striking sex differences in the
role of this receptor in the vascular endothelium. Further, critical analysis of studies
performed in each sex separately may yield insight into potential sex-specific mechanisms of
EC-MR function in the cardiovascular system.

Here we review the recent literature exploring the role of the MR in mediating sex
differences in 1) endothelial dysfunction, 2) hypertension, 3) atherosclerosis, and 4) heart
failure, with a focus on the MR in the vascular endothelium. The first part of the review
focuses on the clinical literature supporting a sex-specific role for the MR in each
cardiovascular disorder. The second part examines the preclinical literature specifically
assessing the role of EC-MR in animal models of each disease, commenting on effect
modification by sex where there are available data. Finally, the third part of this review
summarizes the data regarding the molecular mechanisms that may mediate a sex-specific
role for EC-MR in cardiovascular disease. The available data supports that EC-MR may be a
key player in determining sex differences in cardiovascular disease and reveals many areas
warranting further study.
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CLINICAL DATA: CONTRIBUTION OF THE MR TO CARDIOVASCULAR

DISEASE IN MEN AND WOMEN

Activation of the MR in the setting of cardiovascular stress or risk factors appears to
contribute to the development of cardiovascular diseases. However, whether there is a
difference in this role by sex that might contribute to sex differences in cardiovascular
disease risk and outcomes is just beginning to be elucidated. In this section, we review the
existing clinical literature on the contribution of the MR to 1) endothelial dysfunction, 2)
hypertension, 3) atherosclerosis, and 4) heart failure, with a focus on differentiating the role
of the MR between men and women. A summary of the clinical studies using MR
antagonists cited in this section can be found in Table 1.

1. Endothelial Dysfunction

A. Epidemiology—Endothelial dysfunction is marked by impaired endothelium-
dependent vasodilation, reduced NO biosynthesis, and increased vascular inflammation and
is the earliest measurable defect in the pathogenesis of vascular diseases. A sub-analysis of
the offspring of Framingham Heart Study participants found that female sex significantly
correlated with defects in endothelial-dependent dilation, while male sex did not (Hamburg
et al. 2011). These epidemiologic data suggest sex-specific mechanisms of endothelial
dysfunction and support a potential a role for EC-MR, as mineralocorticoid signaling in the
endothelium appears to play a substantial role in the development of endothelial dysfunction
in the setting of cardiometabolic risk factors (Davel et al. 2017).

B. The MR May Contribute to Endothelial Dysfunction in the Setting of
Cardiovascular Risk Factors—Data supports that under baseline conditions without
cardiovascular risk factors, the MR does not play a substantial role in vascular dysfunction
(reviewed in Biwer et al. 2019). Indeed, chronic MR antagonism had no beneficial effect on
endothelial function in a group of younger (age 40’s) obese subjects without associated
diabetes or other cardiac risk factors (Garg et al. 2014), in older (age 60°’s) otherwise healthy
adults acutely administered eplerenone (Hwang et al. 2016), or in a study of 8 older adults
with metabolic syndrome (Hwang et al. 2015).

However, several clinical studies do support a role for the MR in the development of
endothelial dysfunction when multiple or severe cardiovascular risk factors are present. This
is illustrated by one study which found that MR inhibition had no effect on endothelial
function in lean older adults but improved endothelial function in older adults with obesity
and/or impaired glucose tolerance (Hwang et al. 2013b). Spironolactone improved NO
bioactivity and brachial artery endothelial function in two studies of patients with heart
failure (Farquharson and Struthers 2000; Macdonald et al. 2004). MR inhibition likewise
improved coronary flow reserve, a measure of coronary vessel endothelial function, in type 2
diabetics (Garg et al. 2015) and improved brachial artery endothelial function in patients
with hypertension (Fujimura et al. 2012). In another study, acute Aldo administration
triggered microvascular endothelial dysfunction in normotensive African Americans;
conversely, MR inhibition with spironolactone improved resistance vessel endothelial
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function in ex vivo vessels from hypertensive African Americans regardless of gender
(Mohandas et al. 2015).

While it seems that premenopausal women are protected from a wide variety of
cardiovascular pathologies relative to age-matched men (Benjamin et al. 2018), studies point
to a role for the MR in endothelial dysfunction even prior to menopause in women with
enhanced cardiovascular risk. For example, young women with polycystic ovarian
syndrome, which is characterized by increased androgen synthesis along with other
cardiometabolic risk factors such as obesity, diabetes, and hypertension (Marciniak et al.
2016), have an increased risk of cardiovascular disease. These women also develop
endothelial dysfunction (Paradisi et al. 2001), to which the MR may contribute. Aldo levels
are elevated in women with polycystic ovarian syndrome compared to weight-matched
controls (Cascella et al. 2006), and prolonged treatment with spironolactone was shown to
improve endothelial function in a cohort of polycystic ovarian syndrome patients (Studen et
al. 2011). It is important to note that spironolactone also inhibits the androgen receptor (AR)
(YYang and Young 2016), thus it is difficult to distinguish whether the protective effects of
spironolactone in this latter study are due to is anti-MR or its anti-androgen effects.
However, in the context of rheumatoid arthritis, an autoimmune condition that also confers
greater cardiovascular disease risk to women even prior to menopause, spironolactone
treatment also significantly improved endothelial function and reduced inflammatory
indicators in this predominantly-female cohort (Syngle et al. 2009). These data suggest that
the MR may contribute to endothelial dysfunction even in premenopausal women if
additional cardiovascular risk factors are present (see Table 1).

2. Hypertension

A. Epidemiology—High blood pressure affects 30% of American adults (Fryar et al.
2017). Hypertension increases the risk of MI and stroke, and prolonged exposure to
hypertension can lead to heart and kidney failure. Many pharmacotherapies exist to combat
hypertension. This includes MR inhibitors, which have been demonstrated to be effective
antihypertensive medications in clinical trials (Pitt et al. 2003a; Williams et al. 2004).
Despite this, nearly half of hypertensive patients are inadequately controlled with current
antihypertensive drugs (Fryar et al. 2017). Emerging data support that therapy-resistant
hypertension is more likely to be dependent on MR signaling than therapy-responsive
subtypes (Yugar-Toledo et al. 2017; Dudenbostel and Calhoun 2017). Indeed, MR
antagonism with the competitive inhibitors spironolactone or eplerenone effectively reduces
blood pressure in patients with therapy-resistant hypertension (Glicklich and Frishman 2015;
Fernet et al. 2018; Rossignol et al. 2018).

The prevalence of hypertension in premenopausal women is lower than that of age-matched
men, although hypertension still affects nearly 28% of American women. However, after
menopause this is reversed, with women 60 years of age and older experiencing significantly
higher rates of hypertension than age-matched men. Further, an increase in therapy-resistant
hypertension in postmenopausal women (Fryar et al. 2017) suggests that the mechanisms
driving hypertension in women may change with age and estrogen status, potentially
becoming more dependent on MR signaling after menopause.
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B. The MR Contributes to Hypertension in Women—The MR has long been
known to regulate blood pressure via its role in controlling renal sodium balance, and data
from human studies supports a role for the MR in blood pressure regulation specifically in
women. In a recent study of over 1,500 individuals from the HyperPATH consortium,
women had a significantly greater rise in blood pressure compared to men in response to
stimuli that increase Aldo secretion including salt restriction (Jurgens and Graudal 2004) and
angiotensin-1l infusion (Shukri et al. 2018). Similarly, in a study of obese patients with
chronic kidney disease, female subjects experienced a greater decrease in blood pressure
with MR antagonism than males (Khosla et al. 2009). A gene variant of ERP was also
shown to associate with salt sensitivity of blood pressure specifically in premenopausal
women (Manosroi et al. 2017), suggesting the potential for cross-regulation of blood
pressure by MR and estrogen signaling.

3. Atherosclerosis

A. Epidemiology—Atherosclerosis is increasingly common, and downstream
consequences of atherosclerosis, including Ml and ischemic stroke, account for a majority of
deaths worldwide (Barquera et al. 2015) Atherosclerosis is a diffuse vascular pathology in
which inflamed, lipid-laden plaques accumulate in the vascular wall. Under conditions of
excess inflammation, these plaques can rupture and thrombose, occluding the vessel and
preventing blood flow to downstream tissues. The clinical consequence of this occlusion is
ischemia resulting in damage to the brain in stroke, to the heart in Ml, and to the skeletal
muscle in critical limb ischemia.

It is quite clear that sex differences exist in the incidence of cardiovascular ischemic events
in humans, with premenopausal women experiencing significantly fewer of these events than
age-matched men (Benjamin et al. 2018). The actions of both estrogen and testosterone have
been demonstrated to be beneficial in atherosclerosis in clinical and preclinical models
(Boese et al. 2017). However, it is not clear whether women’s protection from
cardiovascular ischemic events prior to menopause is due to less plague burden or fewer
plaque rupture events. One study found carotid intima-media thickness, a clinical index of
plaque size, to be only slightly higher in young men than women, while coronary calcium
score, which correlates with plaque inflammation and susceptibility to rupture, is
substantially higher in men than in women (Benjamin et al. 2018).

B. MR Activation Contributes to Atherosclerosis in Men and Women—cClinical
studies of the role of the MR in atherosclerosis in human patients tend to combine men and
women. However, the available clinical data suggests that in both men and women, Aldo and
MR activation contribute to atherosclerosis progression and complications. de Rita et al.
(2012) reported that elevated plasma Aldo concentration significantly correlated with plaque
progression while sex and age did not. One study of end-stage renal disease patients, a
population at high risk for atherosclerotic ischemic events, analyzed plagues in men and
women separately and showed that spironolactone treatment prevented increases in intima-
media thickness in both sexes (Vukusich et al. 2010). Finally, Matsuda et al. (2016)
demonstrated that eplerenone reduced intima-media thickness in a small cohort of 12
primary aldosteronism patients, 10 of whom were women.
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While atherosclerotic plague progression can contribute to chronic angina and symptoms
that reduce quality of life, plaque rupture is more dependent on inflammation and
contributes most to the morbidity and mortality associated with atherosclerosis (Libby et al.
2013). In atherosclerosis patients, Aldo levels correlated with serum inflammatory factors
regardless of gender, suggesting a pro-inflammatory role of Aldo in both men and women
(Tomaschitz et al. 2011). Further, multiple studies correlate MR activation with increased
risk of ischemic events downstream of plaque rupture (Milliez et al. 2005; Ivanes et al.
2012). These studies include both men and women but do not separate the data by sex. Thus,
the available data in human observational studies and clinical trials suggests that MR
inhibitors could be a useful tool to reduce atherosclerotic plaque progression and
complications in both men and women and warrant further clinical study and exploration of
the mechanisms by which the MR contributes to vascular disease in both sexes.

4. Heart Failure

A. Epidemiology—When the cardiac systolic pump function becomes impaired, this is
known as heart failure with reduced ejection fraction (HFrEF). When the heart is unable to
fully relax during diastole to allow blood to fill the ventricles, but is still able to contract, this
is known as heart failure with preserved ejection fraction (HFpEF). HFrEF and HFpEF each
account for about half of the total burden of heart failure (Dunlay et al. 2017). Men are
somewhat more likely to develop HFrEF, likely due to higher rates of hypertension and Ml
in younger men, both of which are common causes of HFrEF (Dunlay et al. 2017; Benjamin
et al. 2018). By contrast, HFpEF is more common in women and is the most common type
of heart failure in the growing population over 65 years of age (Upadhya et al. 2017b). Risk
factors for HFpEF include advanced age and obesity, both of which are increasingly
common in women (Owan et al. 2006; Flegal et al. 2016; Tsujimoto and Kajio 2017).
Although women with HFpEF generally have improved survival compared to men, this
protection is lost in women with diabetes (Martinez-Selles et al. 2012) and women with
HFpEF reported reduced quality of life relative to men in a recent study (Faxen et al. 2018).
Thus, HFpEF is a growing clinical problem, especially in the rapidly growing elderly
population and in women with cardiovascular risk factors.

B. Clear Benefits of MR Antagonism in Heart Failure with Reduced Ejection
Fraction—Inhibition of the MR is well known to prevent mortality and improve outcomes
in patients with HFrEF (Pitt et al. 1999; Pitt et al. 2003b; Zannad et al. 2011). The benefits
of MR antagonism on HFrEF may apply to both men and women, but the data supporting
this is scarce (see Tables 1 and 2). A sub-analysis of the Framingham Heart Study showed
that serum Aldo levels correlate with cardiac remodeling in women but not men, suggesting
that there may indeed be differences between the sexes in the way the MR signaling pathway
contributes to heart failure (Vasan et al. 2004). Despite these data, clinical trials investigating
the role of the MR in HFrEF continue to recruit predominantly male subjects. For example,
the landmark RALES, EPHESUS, and EMPHASIS-HF trials that showed a clear mortality
benefit of MR antagonism in HFrEF patients were heavily weighted towards male
participants, with women making up only 27% of study subjects. While this resulted in the
individual studies being under-powered to assess sex differences, combination of the data in
a recent meta-analysis did enable sub-analysis of the data by sex. In this combined data, the
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male sub-group retained the significant mortality benefit of MR antagonism, while the
female sub-group also tended towards a decline in sudden cardiac death with MR
antagonism that was not statistically significant (Rossello et al. 2019). Thus, it is unclear
whether MR antagonism is beneficial in female HFrEF patients, as has been shown
definitively for men. It will be critical to include more women in future trials of MR
antagonists in heart failure in order to fully understand the role of this receptor in HFrEF in
women.

C. MR Antagonism May Specifically Benefit Women with Heart Failure with
Preserved Ejection Fraction—In contrast to the clear benefit observed with MR
antagonism in HFrEF, investigations into the role of the MR in HFpEF in humans have
produced variable results. However, the growing body of literature does suggest a role for
the MR in this disease. In an open-label trial in which 11 women with HFpEF were
administered spironolactone, the authors observed an improvement in peak exercise capacity
from baseline and a reduction in the median heart failure score (Daniel et al. 2009).
Subsequent studies and meta-analyses in mostly-female cohorts have largely found that
spironolactone improves diastolic function in HFpEF patients (Pandey et al. 2015; Fukuta et
al. 2018). Results vary as to whether spironolactone improves exercise tolerance in HFpEF
patients, with some studies showing increased exercise capacity with MR antagonism
(Daniel et al. 2009; Kosmala et al. 2016) and others showing no benefit (Upadhya et al.
2017a; Pandey et al. 2015; Fukuta et al. 2018).

Larger randomized trials of MR antagonism in HFpEF have produced extensive controversy
in recent years. The Aldo-DHF trial randomized over 400 patients and demonstrated
improved left ventricular functional and structural parameters in HFpEF patients randomized
to spironolactone (Edelmann et al. 2013). Subsequently, however, the TOPCAT trial
randomized over 3,000 HFpEF patients in 6 countries to either placebo or spironolactone,
and the results revealed that MR antagonism reduced the rate of hospitalization for heart
failure but did not significantly affect mortality (Pitt et al. 2014). Subsequent sub-analysis of
this otherwise negative trial revealed heterogeneity in the data that may have masked the
beneficial effects of MR antagonism in certain patient subgroups. For example, subjects who
qualified for the study based on natriuretic peptide levels (the majority of patients enrolled in
the Americas) had a significant mortality benefit with spironolactone, while patients who
qualified based solely on clinical criteria (the majority of patients enrolled in Russia and
Georgia) did not (Pfeffer et al. 2015; Bristow et al. 2016) Another sub-analysis, which
included 1,767 of the randomized patients and was equally comprised of men and women,
demonstrated that women with HFpEF had a significant reduction in cardiovascular and all-
cause mortality with spironolactone, while men did not (Merrill et al. 2019). While such
post-hoc analyses are hypothesis-generating, the results may help to contextualize the sex
differences observed in mortality in HFpEF patients and provide opportunities for further
study to identify sex-specific therapies for this disease, for which there are currently no
available pharmacotherapeutic options.
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5. Summary of the Clinical Data

In summary, observational studies and clinical trials support that the MR contributes to the
pathogenesis endothelial dysfunction, hypertension, atherosclerosis, and heart failure, as MR
antagonist therapy has been shown to improve outcomes in patients with these conditions
(see Tables 1 and 2). In some cases, there appear to be differences between men and women
in the role of the MR in disease, as evidenced by the female predominance of salt-sensitivity
of blood pressure and sex differences in the efficacy of MR therapy in heart failure.
Importantly, many clinical trials use spironolactone as an MR antagonist, while others use
the less potent but more selective eplerenone. Thus, it is possible that off-target effects of
spironolactone on the progesterone or androgen receptors could contribute to sex differences
observed in the effect of MR inhibition in various cardiovascular pathologies. Further careful
study will be needed to fully understand the sex-specific contributions of the MR to
cardiovascular disease in humans, with a greater focus on the inclusion of female patients in
clinical trials and the use of selective MR inhibitors.

Ill.  PRECLINICAL DATA: SEX-SPECIFIC ROLES FOR THE ENDOTHELIAL
MINERALOCORTICOID RECEPTOR IN CARDIOVASCULAR DISEASE

The clinical literature points to a role for the MR in cardiovascular disease, in some cases
with sex-specific effects. However, studies in humans by necessity rely on the use of
systemic MR inhibitors, thus precluding examination of the role of the MR in particular cell
types. By contrast, genetic animal models of cell-specific MR deletion have enabled
investigations into the contribution of the MR specifically within the vascular endothelium
to cardiovascular disease. In this section, the preclinical literature implicating EC-MR in 1)
endothelial dysfunction, 2) hypertension, 3) atherosclerosis, and 4) heart failure is discussed,
particularly in light of new evidence supporting a sex-specific role for EC-MR in
cardiovascular disease. See Table 2 for a summary of the studies in this section describing
the sex-specific role of the MR in cardiovascular disease and potential correlations to human
clinical data.

1. A Sex-Specific Role for EC-MR in Endothelial Dysfunction

A. MR Inhibition in Animals Improves Endothelial Function, Particularly in
the Context of Obesity—As has been demonstrated in human studies (Table 1), MR
inhibition in animal models improves indices of endothelial function, particularly in the
context of cardiovascular risk factors. Specifically, MR antagonist treatment improved aortic
endothelial function and peak relaxations and reduced ROS generation in male
hyperlipidemic rabbits (Rajagopalan et al. 2002) and in rats with chronic kidney disease
(Gonzalez-Blazquez et al. 2018).

Obesity in particular may represent a state of enhanced MR activation, as higher body mass
index correlates with higher Aldo levels in patients administered a high-salt diet (Bentley-
Lewis et al. 2007). This is likely due to adipocyte-derived factors that increase Aldo release
either directly from the fat (Briones et al. 2012) or from the adrenal gland (Huby et al.
2016). Specifically, the adipokine leptin, which circulates at significantly higher levels in
obese females than males (Deng and Scherer 2010), may mediate the role of the MR in

Pharmacol Ther. Author manuscript; available in PMC 2020 November 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Moss et al.

Page 11

endothelial dysfunction in obesity in females. Leptin was shown in preclinical models to
increase Aldo secretion from the adrenal gland and to induce endothelial dysfunction in
females in an MR-dependent manner (Huby et al. 2016; Faulkner and Belin de Chantemele
2019). This may be especially important for the pathogenesis of endothelial dysfunction in
females, as leptin levels and rates of obesity are both higher in women than in men (Flegal et
al. 2016; Deng and Scherer 2010).

B. EC-MR Contributes to Endothelial Dysfunction, with Sex- and Vascular
Bed-Dependent Effects—Preclinical animal studies reveal that in the setting of
cardiovascular risk factors, EC-MR is a mediator of endothelial dysfunction and its specific
deletion from ECs has a positive impact on vascular function (Davel et al. 2017). Either
global MR inhibition with eplerenone or EC-specific MR deletion improved dilation of
aortic rings in obese male mice and in lean mice with Aldo infusion (Schafer et al. 2013).
Similarly, EC-MR deletion improved resistance vessel endothelial function in a model of
male mice exposed to angiotensin-I1-induced hypertension (Mueller et al. 2015). In female
mice, EC-MR deletion also prevented Western diet-induced aortic endothelial dysfunction
(Jia et al. 2016).

One recent study directly compared the role of EC-MR in mesenteric microvessel
dysfunction in the setting of obesity and hyperlipidemia in male and female littermates. In
this study, obese male mice were able to compensate for endothelial dysfunction, with no
role for EC-MR in endothelial dysfunction of the mesenteric arteries. By contrast, diet-
induced obesity did result in endothelial dysfunction in female mice, and genetic deletion of
EC-MR restored endothelial-dependent microvessel relaxation by increasing NO
bioavailability. Notably, there was no role for EC-MR in endothelial function in healthy
male or female mice; the EC-MR-dependent endothelial dysfunction was observed in
females only with the addition of obesity and/or hyperlipidemia (Davel et al. 2018b).

The study by Davel et al. (2018b) was the first to directly compare the role of the MR in
endothelial function between males and females, revealing significant sex differences in the
role of EC-MR in vasodilatory pathways and microvascular endothelial dysfunction in
response to cardiometabolic risk factors. Comparison to the prior literature in males suggest
that the role of EC-MR in modulating endothelial function depends on the vascular bed and
cardiovascular risk factor interrogated. Whereas Davel et al. (2018b) found no role for EC-
MR in mesenteric microvessel dysfunction that occurs with obesity in males, Schafer et al.
(2013) previously demonstrated a role for EC-MR in aortic endothelial dysfunction in obese
males. Further, Mueller et al. (2015) showed improvement in microvessel function with EC-
MR deletion in male mice subjected to angiotensin-11 hypertension.

Thus, the role of EC-MR in endothelial function may depend on sex, vascular bed, and
clinical context. Further studies comparing the role of the MR in endothelial dysfunction
between men and women and in the setting of a variety of cardiovascular risk factors could
translate these preclinical results into actionable sex-specific therapies to reverse endothelial
dysfunction and prevent further cardiovascular disease.
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2. A Nuanced Role for EC-MR in Hypertension

A. The MR May Regulate Blood Pressure in Females with Cardiometabolic
Risk Factors, As Has Been Shown for Males—As in humans, ample data
demonstrates that the MR influences blood pressure in male animal models (reviewed in
DuPont and Jaffe 2017). As most mechanistic studies exploring the role of the MR in blood
pressure changes have used only male animals, less is known regarding females. One
notable exception is a study by Huby et al. (2016) in which MR inhibition with
spironolactone substantially reduced blood pressure in female agouti yellow obese mice.
Another study directly compared the blood pressure-lowering effect of spironolactone
between gonadectomized male and female rats, revealing that while high salt diet increased
blood pressure in both sexes, MR inhibition with spironolactone reduced blood pressure
only in males (Michaelis et al. 2012). These studies highlight the need for further detailed
exploration into MR-mediated mechanisms of hypertension in females and for direct
comparisons between the sexes.

B. EC-MR May Not Directly Control Blood Pressure but Modulates the
Response to Hypertension—A focus on the specific role of endothelial MR reveals that
genetic deletion of EC-MR in male mice does not affect blood pressure at baseline (Salvador
et al. 2017; Mueller et al. 2015) or in models of experimentally-induced hypertension
(Rickard et al. 2014; Dinh et al. 2016; Lother et al. 2016; Laursen et al. 2018; Mueller et al.
2015). By contrast, male mice overexpressing the MR specifically in ECs have higher
systolic blood pressure and exaggerated vasoconstrictor responses, suggesting that under
conditions where EC-MR is upregulated, it may contribute to elevated blood pressure
potentially via crosstalk between vascular ECs and SMCs (Nguyen Dinh Cat et al. 2010).

Data concerning the contribution of EC-MR to blood pressure regulation or hypertension in
females is scarce but suggests that EC-MR may not play a role in blood pressure regulation
in females, as has been shown rigorously for males. In their recent study of sex differences
in endothelial function, Davel et al. (2018b) measured blood pressure by tail cuff
plethysmography in a subset of animals and reported no effect of EC-MR deletion in either
sex under any of the dietary conditions studied. Likewise, measurement of blood pressure in
anesthetized female animals after Western diet feeding revealed no difference in blood
pressure with EC-MR deletion (Jia et al. 2015b). However, studies directly comparing males
and females and using sensitive blood pressure measurement techniques such as
radiotelemetry in conscious mice are needed to confirm this lack of a role for EC-MR in
blood pressure regulation in females.

Although EC-MR may not contribute to blood pressure regulation per se, studies indicate
that it may be critical for the pathologic arterial and myocardial remodeling observed as a
consequence of hypertension. In a study of male mice with angiotensin-1I-induced
hypertension, EC-MR deletion completely prevented the decreases in cerebral vessel outer
diameter, lumen diameter, and cross-sectional area observed in MR-intact littermates with
the same degree of hypertension. This indicates that EC-MR is necessary for the pathologic
cerebral arterial remodeling observed in hypertension (Diaz-Otero et al. 2017), and further
studies suggest a role for the MR in cognitive dysfunction induced by hypertension (Diaz-
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Otero et al. 2018). EC-MR deletion also prevented pathologic cardiac remodeling without
modulating blood pressure in two studies of male mice in models of experimental
hypertension-induced cardiac dysfunction (Rickard et al. 2014; Lother et al. 2016).

Thus, the role of EC-MR in hypertension and its downstream consequences is well
characterized in male animal models, but less is known regarding its role in females. As
hypertension affects over a quarter of all women in America, and two-thirds of women over
the age of 60, understanding the sex-specific mechanisms and downstream consequences of
this pathology in females will be critical to crafting appropriate sex-specific therapies and
preventative strategies.

3. EC-MR Differentially Contributes to Atherosclerosis in Males and Females

A. The MR Promotes Atherosclerosis in Male Animals—Despite human data
suggesting a role for the MR in atherosclerosis in both men and women, preclinical
investigations exploring mechanisms in animal models have almost exclusively focused on
the pathology in males. In the apolipoprotein-E-knockout atherogenic mouse model, Aldo
administration along with high fat diet increases plaque size and inflammation in males in as
little as 4 weeks (McGraw et al. 2013; Marzolla et al. 2017). Similarly, deletion of
11BHSD2, which leads to constitutive activation of the MR by corticosterone, accelerates
plaque formation and inflammation in male apolipoprotein-E-knockout mice (Deuchar et al.
2011). Conversely, MR inhibition with eplerenone or spironolactone has repeatedly been
shown to decrease plaque size and inflammation in male mice (Raz-Pasteur et al. 2014; Raz-
Pasteur et al. 2012; Keidar et al. 2003; Suzuki et al. 2006; Kratz et al. 2016; Moss et al.
2019), rabbits (Rajagopalan et al. 2002), and pigs (Li et al. 2017b).

B. EC-MR Contributes to Atherosclerotic Plaque Inflammation, with Sex-
Specific Effects—Preclinical studies indicate that EC-MR plays a critical role in the
inflammation of the atherosclerotic plaque. In male apolipoprotein-E-knockout mice,
intracellular adhesion molecule (ICAM)-1, a surface protein expressed on endothelial cells
that mediates leukocyte-endothelial interactions, was found to be necessary for Aldo to
increase plaque formation and inflammation (Marzolla et al. 2017). In male mice, activation
of the MR by genetic 11BHSD?2 ablation also increased endothelial expression of vascular
cell adhesion molecule (VCAM)-1, another mediator of leukocyte-endothelial adhesion
(Deuchar et al. 2011).

A recent study further explored the possibility that EC-MR regulates inflammation of the
atherosclerotic plaque, this time directly comparing male and female mice. In this study, EC-
MR deletion in males significantly reduced atherosclerotic plaque inflammation and
leukocyte rolling and adhesion to the vasculature /n7 vivo. By contrast, gonad-intact female
littermates exhibited less atherosclerotic plaque inflammation and fewer leukocyte-
endothelial interactions, even with intact MR. Moreover, in females, EC-MR deletion did
not provide additional protection against atherosclerotic vascular inflammation, in contrast
to the observed benefit of EC-MR deletion in males (Moss et al. 2019). These data reveal a
significant sex difference not only in atherosclerotic vascular inflammation overall, but in
the role of EC-MR in regulating inflammation in the context of atherosclerosis. The results
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of this study suggest new mechanisms for the contribution of Aldo and the MR to
cardiovascular ischemia in humans and for the protection from atherosclerotic plaque
rupture observed in premenopausal women. Further investigations into the relationship
between female sex and EC-MR function, such as studies using ovariectomized versus
gonad-intact females with intact MR or EC-MR deletion, could identify mechanisms by
which MR and female sex hormone signaling interact /77 vivo in the context of
atherosclerosis.

4. EC-MR Contributes to the Pathogenesis of Heart Failure with Both Reduced and
Preserved Ejection Fraction

A. MR Inhibitors Improve Function and Survival in Animals with Heart
Failure—Inhibition of the MR has been demonstrated to improve clinically relevant
features of HFrEF in animal models, especially when combined with other standard heart
failure therapies. Addition of eplerenone to a standard regimen consisting of an angiotensin-
converting enzyme inhibitor, a thiazide diuretic, and a B-adrenergic blocker prevented left
ventricular hypertrophy and echocardiographic anomalies in male spontaneously
hypertensive heart failure rats beyond the effect of standard therapy alone (Munoz-Pacheco
et al. 2013). Combination of MR inhibition with angiotensin-converting enzyme blockade
appears to be especially effective at attenuating cardiac contraction defects and fibrosis in
male rats (Fraccarollo et al. 2003) and mice (Wang et al. 2004) subjected to Ml to induce
heart failure. In the transverse aortic constriction model of pressure overload-induced heart
failure, MR inhibition either by inducible whole-body genetic knockdown (Montes-Cobos et
al. 2015) or by inhibition of the Aldo synthase enzyme (Furuzono et al. 2017) reduced
mortality and improved cardiac function in male mice, even without additional therapies.

Only one study has compared male and female animals side-by-side to assess sex-specific
roles of MR signaling in experimental heart failure. Kanashiro-Takeuchi et al. (2009) found
that after M1, female rats benefited more from eplerenone therapy than males. Specifically,
ejection fraction, infarct size, cardiac fibrosis, and contraction anomalies were all improved
in female rats, while males experienced smaller changes in these parameters that did not
reach statistical significance in this study.

B. In Animal Models, EC-MR Contributes to HFrEF in Males and to HFpEF in
Females, but Sex Differences Have Not Been Studied—EC-MR has also been
shown to contribute to the pathophysiology of HFrEF, at least in male animals. EC-MR
deletion reduced ventricle weight and prevented an increase in cardiac fibrosis in male
hypertensive mice (Rickard et al. 2014; Lother et al. 2016) and improved ejection fraction in
male mice in the transverse aortic constriction model (Salvador et al. 2017), independent of
effects on inflammation (Salvador et al. 2016). As no study has investigated the role of EC-
MR in HFrEF in female animals, further studies are needed to understand whether EC-MR
contributes to this pathology in females.

Much of the preclinical literature in HFpEF focuses on female animal models, opposite of
the trends in the other cardiovascular outcomes described in this Review. This is largely due
to the activities of the Sowers research group, which uses a model of female mice fed a
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Western diet (containing high fat and high sucrose) resulting in obesity-induced cardiac
diastolic dysfunction. This group found that only female mice, not male mice, develop
diastolic dysfunction in this treatment paradigm, suggesting sex differences in the
mechanisms driving HFpEF (Manrique et al. 2013). In this model, MR antagonism
improved diastolic function and reduced cardiac fibrosis, inflammation, and other markers of
adverse myocardial remodeling (Bostick et al. 2015). This correlates with clinical studies in
human HFpEF patients demonstrating beneficial effects of MR antagonists on diastolic
function (Pandey et al. 2015; Fukuta et al. 2018) (see Table 2). EC-MR deletion in female
mice recapitulates most of these benefits of pharmacologic MR blockade, implying that the
MR within ECs plays a critical role in the development of diastolic dysfunction in this
model (Jia et al. 2015b). Future work is needed to explore potential sex differences in the
role of EC-MR in HFpEF in different model systems in which both sexes develop
dysfunction. Such investigations could shed light on the mechanisms driving the sex
differences in outcomes and quality of life in patients with HFpEF (Faxen et al. 2018;
Martinez-Selles et al. 2012) and would support future clinical trials of MR inhibition in
HFpEF, particularly in the context of obesity.

5. Summary of the Data from Animal Models

In animal models, the MR specifically within the vascular endothelium promotes endothelial
dysfunction, mediates inflammation in atherosclerosis, and contributes to cardiac
remodeling in heart failure. In many cases, these preclinical data are consistent with the
effects of MR inhibition that have been observed in human clinical cohorts (Table 2). While
sex differences in these diseases have been directly investigated in a few cases, for the most
part our understanding of the mechanisms driving cardiovascular disease comes from studies
in male model systems or comparisons of males and females studied separately. Notable
exceptions, such as studies of the role of the MR in endothelial-dependent relaxation (Davel
et al. 2018b), atherosclerotic inflammation (Moss et al. 2019), and diastolic dysfunction in
diet-induced obesity (Manrique et al. 2013; Jia et al. 2015b) point to intriguing sex
differences in the function of the MR in the vascular endothelium. Additional studies
directly comparing male and female animals are needed to provide critical insight into the
mechanisms mediating sex differences in cardiovascular disease in humans.

IV. MOLECULAR MECHANISMS FOR THE SEX-SPECIFIC ROLES OF
ENDOTHELIAL MINERALOCORTICOID RECEPTORS IN CARDIOVASCULAR

DISEASE

In this section, we review the literature describing the contribution of EC-MR to: 1)
inflammation; 2) vascular stiffness; and 3) oxidative stress as potential mechanisms for the
sex-dependent role of EC-MR in various cardiovascular pathologies. We further discuss the
relevant mechanistic insight gleaned from studies exploring 4) crosstalk between the MR
and sex hormone signaling. Figure 1 provides a model summarizing these data.
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Inflammation

Inflammation plays a critical role in the pathophysiology of a number of cardiovascular
diseases, including hypertension, atherosclerosis, and heart failure (Ruparelia et al. 2017).
EC-MR has been demonstrated to contribute to a number of inflammatory processes, in
some cases sex-dependently. This may represent a molecular mechanism by which EC-MR
contributes to a wide variety of cardiovascular diseases.

A. EC-MR Regulates Inflammatory Endothelial Adhesion Molecules—The first
description of the MR gene regulatory function within ECs was in human coronary artery
ECs, where EC-MR was shown to transcriptionally regulate ICAM-1, a key endothelial
mediator of leukocyte adhesion (Caprio et al. 2008). Later studies in apolipoprotein-E-
knockout male mice demonstrated that ICAM-1 is necessary for Aldo to enhance
atherosclerosis (Marzolla et al. 2017), and MR inhibition with eplerenone in Dahl salt-
sensitive rats decreased renal ICAM-1 expression (Kobayashi et al. 2005), further
implicating MR regulation of ICAM-1 in tissue inflammation (Figure 1 A-i). Additional /n
vitro studies using human ECs demonstrated that estrogen, via ERa, inhibits MR
transcription of ICAM-1, suggesting that estrogen signaling diminishes the role of MR-
induced ICAM-1 in inflammation (Barrett Mueller et al. 2014). This is in line with a study
in which the effect of estrogen on atherosclerosis in females was found to be independent of
ICAM-1 (Gourdy et al. 2003), while in male mice ICAM-1 deletion has been shown to
reduce lesion size (Bourdillon et al. 2000). Taken together, these data suggest a model in
which EC-MR regulates ICAM-1 in males to promote inflammation, while in females ERa
blocks this function of EC-MR (Figure 1B-iv).

The MR has also been linked to regulation of VCAM-1, another endothelial molecule
involved in leukocyte adhesion to the vasculature. Deletion of 11BHSD2, which leads to
overactivation of the MR by corticosterone, increased endothelial VCAM-1 expression in
the aortic roots of male apolipoprotein-E-knockout mice (Deuchar et al. 2011). In another
study, VCAM-1 expression was inhibited by eplerenone in the renal tissue of Dahl salt-
sensitive rats (Kobayashi et al. 2005). Conversely, VCAM-1 may be negatively regulated by
estrogen: in a study of ovariectomized female atherosclerotic mice, addition of estrogen
decreased VCAM-1 relative to placebo (Gourdy et al. 2003). Scant data studying VCAM-1
regulation in EC-MR deficient mice points to potential endothelial-specific regulation of this
molecule in males that may vary by the model used. In one model of male mice subjected to
mineralocorticoid/high-salt hypertension, EC-MR deletion prevented VCAM-1 upregulation
in cardiac ECs (Lother et al. 2016). By contrast, EC-MR deletion did not alter whole-heart
VCAM-1 expression in males subjected to pressure-overload cardiac hypertrophy (Salvador
etal. 2017). No study has yet explored the role of EC-MR in regulating VCAM-1 in
females.

B. EC-MR Sex-Dependently Regulates the Selectins, Endothelial Molecules
Critical for Leukocyte Recruitment—The selectins are a family of molecules expressed
on the EC surface that mediate leukocyte rolling interactions with the endothelium, the
necessary first step for tissue inflammation. P-selectin is involved in leukocyte capture and
fast rolling, while E-selectin is necessary for leukocyte slow-rolling interactions, which
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precede firm adhesion and trans-endothelial migration (Sundd et al. 2011). EC-MR was
recently found to regulate E-selectin /n vivo in males. When compared directly to female
littermates, TNFa-induced mesenteric venous expression of E-selectin was lower than that
of males and not further affected by the deletion of EC-MR. This pattern of E-selectin
expression correlated with sex-dependent effects on leukocyte slow rolling in the vasculature
in the setting of an acute inflammatory stimulus and with the accumulation of inflammatory
cells in aortic plaques in a model of hyperlipidemia-induced atherosclerosis (Moss et al.
2019). This recent study is consistent with prior /n vitro investigations suggesting E-selectin
regulation by the MR (Seeger et al. 2009; Hashikabe et al. 2006) and demonstrating that
patients with high Aldo levels have higher circulating levels of soluble E-selectin
(Tomaschitz et al. 2011). Further, E-selectin has been demonstrated to be negatively
regulated by estrogen signaling (Tyree et al. 2002), consistent with the reduction in E-
selectin expression observed in female mice compared to males (Moss et al. 2019).

P-selectin may also be regulated by EC-MR, though the data supporting this is less certain
than that for E-selectin. P-selectin expression in whole-kidney lysates was increased in Dahl
salt-sensitive rats relative to normotensive rats, and this expression was reduced by
eplerenone (Kobayashi et al. 2005). /n vitro, the Aldo-induced increase in leukocyte
adhesion to ECs in static culture could be prevented by P-selectin inhibition, implicating P-
selectin in this effect of EC-MR (Jeong et al. 2009). P-selectin is critical for leukocyte fast
rolling interactions with the endothelium, and Moss et al. (2019) found that leukocyte fast
rolling tended to be reduced by EC-MR deletion in males and females, however this was not
statistically significant and P-selectin expression was not assessed in that study. That this
tendency was the same in both sexes is consistent with data indicating that P-selectin is not
involved in the protective effect of estrogen on atherosclerosis, suggesting that it is not an
estrogen target and therefore may not be differentially regulated between the sexes (Gourdy
et al. 2003).

C. ARole for EC-MR in Endothelial Permeability—The integrity of the endothelial
tight junction also contributes to inflammation, as endothelial permeability to proteins,
lipids, and leukocytes facilitates inflammation of underlying tissues. MR activation by Aldo
treatment disrupted the membrane localization of tight junction proteins in human cultured
ECs, resulting in permeability of the endothelial monolayer to labeled dextrans (Kirsch et al.
2013). Conversely, in female rats, eplerenone blocked degradation of tight junction proteins
in response to hemodynamic instability, thereby preventing cerebral aneurysm formation
(Tada et al. 2010). Thus, EC-MR may contribute to endothelial permeability, at least in
females. This may be via its regulation of the RhoA signaling pathway, which among other
activities promotes EC-EC junction stability via actions on the cytoskeleton (Shimokawa et
al. 2016). Aldo has been found to activate RhoA in various cardiovascular cell types (Kirsch
et al. 2013; Lavall et al. 2014; Nguyen Dinh Cat et al. 2018), leading to F-actin stress fiber
formation. In cultured human ECs, this promotes disruption of endothelial junction proteins
and permeability of the endothelial monolayer (Kirsch et al. 2013). Genomic ER signaling
may also activate RhoA in ECs (Oviedo et al. 2011; Simoncini et al. 2006), although non-
genomic estrogen signaling may counteract this effect (Li et al. 2016). Thus, in the case of
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endothelial junction integrity, estrogen signaling may not block MR effects on endothelial
junction integrity and may instead work in parallel to promote endothelial permeability.

D. EC-MR-Mediated Inflammation May Contribute to Cardiovascular Fibrosis
—Fibrosis is often a consequence of inflammation. While no studies have directly compared
the role of EC-MR in cardiovascular fibrosis between males and females, analysis of the
existing literature reveals the possibility of sex differences. One study found that EC-MR
deletion did not alter cardiac inflammation or fibrosis in male mice subjected to transverse
aortic constriction, a model of pressure overload-induced cardiac remodeling (Salvador et al.
2017). By contrast, EC-MR deletion in females attenuated cardiac (Jia et al. 2015b) and
aortic (Jia et al. 2016) fibrosis in a Western diet-fed model, which corresponded to
reductions in inflammatory markers in these mice. Western diet-fed females also develop
renal artery dysfunction, inflammation, and fibrosis, which was recently also shown to be
prevented by EC-MR deletion (Aroor et al. 2019). Thus, the limited data so far could be
interpreted to suggest that EC-MR may specifically contribute to cardiovascular fibrosis
only in females via effects on inflammation. However, since each study was performed in
only one sex and in different models of cardiovascular fibrosis, it is not possible to
distinguish true sex differences from differences in the models or methods used by different
investigators. Direct comparison of males and females in the same model system is needed
to definitively interrogate these potential sex differences in the role of EC-MR in fibrosis.

In summary, EC-MR appears to contribute to inflammation by regulating EC adhesion
molecule expression and endothelial permeability (Figure 1A-i). In some circumstances,
these processes are differentially regulated in males and females and appear to be subject to
opposite regulation by estrogen signaling. Further work, especially studies comparing
inflammation in male and female animal models, will be instrumental in elucidating the sex-
specific mechanisms by which EC-MR contributes to inflammation to induce cardiovascular
pathology.

2. Vascular Stiffness

Vascular stiffening occurs with aging and in response to chronic cardiometabolic risk factors
and precedes and predicts the development of cardiovascular diseases including
hypertension and atherosclerosis (Huveneers et al. 2015). The phenomenon of vascular
stiffening involves dysfunction of all parts of the vessel wall, including the vascular SMCs,
ECs, and extracellular matrix (Jia et al. 2015a). Mineralocorticoid signaling contributes to
stiffening of the vascular wall, particularly in the presence of cardiovascular disease or risk
factors, as MR blockade reduced aortic stiffness in human subjects with dilated
cardiomyopathy (Vizzardi et al. 2015) and attenuated the aortic stiffening observed in female
mice fed a Western diet (DeMarco et al. 2015). This role for the MR in vascular stiffness
may only emerge in the presence of cardiovascular risk factors, as one study found that in
older but otherwise healthy individuals, MR blockade did not change indices of arterial
stiffness (Hwang et al. 2013a).

The MR in vascular SMCs contributes to arterial stiffening, as specific deletion of smooth
muscle cell MR was recently shown to attenuate aortic stiffness in aging male mice (Kim et
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al. 2018). However, the MR specifically within the vascular endothelium has also been
found to contribute to arterial stiffness via regulation of endothelial ion channels. ECs
stiffness is modulated by changes in intracellular ion concentrations thereby altering
intracellular water content. The resulting mechano-signals are then transmitted to
neighboring ECs and the SMCs of the vessel wall. In female mice, Aldo administration
induced aortic stiffness via endothelial expression of the epithelial sodium channel (EnNaC,
Figure 1A-ii), a well-known gene target of the MR in the renal epithelium (Jia et al. 2018b;
Kusche-Vihrog et al. 2010). Conversely, EC-MR deletion attenuated aortic stiffness
observed in female mice administered Aldo or fed a Western diet, also via regulation of
EnNaC (Jia et al. 2016). Downstream of EC-MR, EnNaC activity in the endothelium also
promotes endothelial permeability and inflammation, thus increasing susceptibility to further
cardiovascular dysfunction (Jia et al. 2018a).

In addition to EnNaC, the MR also regulates other ion channels, though many of these
investigations have been performed in non-ECs (reviewed in DuPont et al. 2014). Notably, in
breast cancer-derived ECs, Aldo has been shown to upregulate expression of the sodium/
hydrogen exchanger via a mechanism that involves both the MR and rapid estrogen
signaling (Rigiracciolo et al. 2016). Further study is required to determine whether EC-MR
may regulate homeostasis of ion channels beyond EnNaC or the sodium/hydrogen exchanger
to promote endothelial and vascular stiffness and thus contribute to the pathogenesis of
cardiovascular disease.

3. Oxidative Stress

The role of the MR in oxidative stress and its contribution to endothelial dysfunction has
been reviewed elsewhere (Queisser and Schupp 2012; Davel et al. 2017). The activity of the
MR in the endothelium appears to be critical for these activities in both sexes. In male mice,
EC-MR deletion prevented Aldo-induced increases in superoxide formation in the cerebral
arteries (Dinh et al. 2016). In females fed a Western diet, EC-MR deletion increased eNOS
activation and reduced nitrogen free radicals in the aorta (Jia et al. 2016). Thus, it appears
that in both male and female animal models, EC-MR contributes to vascular oxidative stress.
However, the mechanism by which EC-MR exerts these effects may differ between males
and females. Hyperlipidemic male mice were recently found to developed endothelial
dysfunction characterized by impaired endothelium-mediated vasodilation that was not
ameliorated with genetic EC-MR deletion. Female hyperlipidemic littermates also developed
endothelial dysfunction, but in females, EC-MR deletion resulted in a compensatory
increase in NO production and NO-mediated dilation (Davel et al. 2018b) (Figure 1A-iii).
This enhanced role for EC-MR in females may have been possible due to higher Aldo levels
or potentially also low estrogen levels in these female mice with cardiometabolic risk factors
(Davel et al. 2018b). Indeed, data from human studies suggests that Aldo is increased
(Bentley-Lewis et al. 2007) and sex hormones may be dysregulated in the context of obesity
(Poddar et al. 2017), which may activate EC-MR to promote vascular oxidative stress in
obese females. This is supported by a separate study of ovariectomized female
spontaneously hypertensive rats, in which estrogen replacement attenuated oxidative stress
in the coronary arteries, while the addition of drospirenone, a progestin with anti-MR
activity, had no additional effect in estrogen-replete females (Borgo et al. 2016).
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4. Crosstalk Between the Mineralocorticoid Receptor and Sex Hormones

A. Sex-Dependent Regulation of Aldo Production—Women tend to have higher
levels of circulating Aldo than men, both at baseline (Sequeira et al. 1986) and in pathogenic
states (Szymanski et al. 2011; Shukri et al. 2018; Bentley-Lewis et al. 2007), a finding that
has been recapitulated in rodent models (Tang 1985; Davel et al. 2018b; Faulkner and Belin
de Chantemele 2018). Sex-specific effects on Aldo levels may be related to sex differences
in adrenal Aldo production in the zona glomerulosa (ZG). Female rat ZG cells produced
more Aldo at baseline than cells from male rats (Huang et al. 2018), and Aldo synthase
expression was increased in female mice exposed to either leptin sensitization or obesity,
resulting in higher circulating Aldo levels and blood pressure (Huby et al. 2016). By
contrast, female rats exhibit a higher Aldo clearance rate than males (Morris et al. 1975),
suggesting sex-specific control of Aldo balance at both the production and excretion levels.

The mechanism for the sex dependence of Aldo homeostasis may also be related to sex
hormones other than estrogen. Women in the luteal phase of the menstrual cycle, when
progesterone levels are highest, have higher Aldo levels than in the follicular phase, when
progesterone levels drop (Szmuilowicz et al. 2006). This study also observed an increase in
Aldo production in the ZG cells of female rats when treated with progesterone. It is unclear
whether serum levels of glucocorticoids, which can also activate the MR, follow the same
pattern, as two small studies show discrepant results: one study of 5 women found that both
Aldo and corticosterone were higher in the luteal phase than the follicular (Schwartz and
Abraham 1975), while another study found no difference in cortisol levels between the
phases in 4 women (Stewart et al. 1993). The progesterone-related effect on Aldo production
may be due to increased secretion of the hormone, rather than synthesis, as a separate study
found that progesterone inhibited the Aldo synthase enzyme in transfected cells (Vecchiola
etal. 2013).

By contrast, data support that estrogen likely does not to influence Aldo production.
Estrogen did not correlate with Aldo levels in the above study of menstrual cycle variation,
nor did estrogen alter Aldo production in rat ZG cells (Szmuilowicz et al. 2006) or in a
separate study of human adrenocortical cells (Yanes and Romero 2009). Estrogen also did
not affect the activity of the Aldo synthase enzyme in transfected cells (Mecchiola et al.
2013). Consistent with these results, a study of human adrenocortical cells found that
estrogen increased Aldo production only when ERB was inhibited, indicating that ERB may
prevent Aldo secretion that may otherwise occur with estrogen exposure (Caroccia et al.
2014).

Testosterone and AR signaling also appear to influence Aldo production, with opposite
effects depending on the timing of exposure. AR signaling during prenatal development
promotes Aldo production in male offspring (Martinez-Arguelles et al. 2011), while in adult
male animals AR signaling inhibits Aldo production (Kau et al. 1999; Hofmann et al. 2012;
Carsia et al. 2018). It is unclear whether AR signaling may regulate Aldo production in
females, as one study demonstrated decreased Aldo production in testosterone-treated
female geckos (Carsia et al. 2018) while another study observed no effect on Aldo
production in ovariectomized female rats treated with an AR inhibitor (Hofmann et al.
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2012). Thus, Aldo levels in males and females appear to be regulated by sex steroid
hormone signaling. The female sex hormone progesterone generally upregulates Aldo
production in women and in rat adrenal cells, while testosterone inhibits Aldo production in
adult male animals (Figure 1B-i).

B. Interactions Between the MR and Estrogen Receptors—In addition to sex
differences in Aldo levels that may result in differential MR activation in males and females,
there is also evidence that the MR can interact with sex hormone receptors directly in the
effector cells, providing another mechanistic link between MR signaling and sex differences
in cardiovascular disease. In particular, the a and p isoforms of the ER have been shown to
modulate MR function. In a study of human ECs /n vitro, ERa activation triggered the
formation of a complex containing ERa and the MR that inhibited MR transcriptional
function. This repression of the MR required ERa to be able to translocate to the nucleus but
did not involve the DNA-binding domain or the rapid non-genomic signaling functions of
ERa (Figure 1B-ii). In functional assays, Aldo treatment of human ECs induced ICAM-1
expression and leukocyte adhesion, effects that were blocked by co-administration of
estrogen (Barrett Mueller et al. 2014). Recently, EC-MR was shown to regulate ICAM-1 and
E-selectin only in males /n vivo or in the absence of estrogen in vitro, further implicating
MR-estrogen crosstalk in the regulation of endothelial inflammatory mediators (Moss et al.
2019). Other data also suggests that the MR can interact with ERs in vascular SMCs: in
these cells, both ERa and ERp attenuated Aldo-induced oxidative stress (Muehlfelder et al.
2012), suggesting that ERB, like ERa, may antagonize MR-mediated processes in the
vasculature, through mechanisms that have not yet been elucidated (Figure 1B-iii). Thus,
interactions between the MR and ERs are likely not limited to ECs but may occur in many
cell types throughout the body. Gene expression profiling has been performed in vascular
tissue to describe the gene sets activated by estrogen (Schnoes et al. 2008), ERa and ERB
(O’Lone et al. 2007), and Aldo (Newfell et al. 2011). Independent pathway analyses from
these studies supports that the MR activates genes in the vasculature related to oxidative
stress and inflammation, while estrogen signaling appears to inhibit similar pathways. Direct
comparison of the data sets described in these three publications and further studies on the
impact of estrogen signaling on MR-mediated vascular gene expression could provide
exciting insight into potential genomic crosstalk between the MR and ERs.

Current evidence suggests additional non-genomic interactions between estrogen- and Aldo-
mediated pathways via the scaffolding protein striatin (Figure 1B-iii). In a cultured human
EC line (EAhy.926), the scaffolding protein striatin recruits ERa to the caveolar membrane,
thus facilitating its activation by estradiol and rapid downstream phosphorylation and
activation of eNOS (Lu et al. 2004). Striatin protein expression is upregulated by the MR in
EAhy.926 cells (Pojoga et al. 2012), and striatin facilitates the non-genomic phosphorylation
of ERK1/2 and induction of ROS observed upon MR activation (Coutinho et al. 2014;
Grossmann et al. 2005). The striatin pathway appears to confer protection from salt
sensitivity of blood pressure, at least in male rodents (Garza et al. 2015). Thus, the binding
of both the MR and ERa to the striatin scaffold could be an additional mechanism for
interactions between the non-genomic functions of these two receptors. However, as this link
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is currently only circumstantial, a direct investigation into this mechanism is certainly
warranted.

An additional emerging mechanism for nongenomic crosstalk between MR and estrogen
signaling is via the G-protein coupled ER (GPER), which was first described as a mediator
of rapid estrogen effects (Filardo et al. 2000). Since then, various pharmacologic and genetic
perturbations of this receptor have shown it to be involved in a number of disease processes
from obesity and metabolic syndrome to inflammation, often in a sex-specific manner
(Sharma and Prossnitz 2017). Further studies implicate GPER as a potential mediator of
nongenomic Aldo signaling as well, though whether this occurs via direct binding of Aldo to
GPER or downstream of traditional binding of Aldo to the MR is still controversial (Figure
1B-iv). GPER was first suggested as an Aldo-binding receptor by Gros et al. (2011), wherein
the authors demonstrated that Aldo can induce ERK1/2 phosphorylation and apoptosis in rat
vascular SMCs infected with MR or GPER overexpression vectors, effects which could be
inhibited by the GPER antagonist G15. Subsequently, Aldo stimulation of ERK1/2
phosphorylation was shown to be blocked by either G15 or short hairpin RNA-mediated
knockdown of GPER in rat vascular ECs (Gros et al. 2013). By contrast, Ferreira et al.
(2015) showed that GPER was involved in Aldo-induced vasoconstriction but not
vasodilation in the mesenteric resistance arteries of female mice, suggesting GPER effects
on SMCs but not ECs. Finally, Aldo induces vasoconstriction of the afferent renal arteriole,
an effect that can be blocked by GPER inhibition (Ren et al. 2016). While these data
implicate GPER in the rapid effects of Aldo on vascular cells, it is not clear that GPER is the
sole mediator of nongenomic Aldo signaling. In all of the above-mentioned studies, the
addition of MR antagonists eplerenone and spironolactone blocked the rapid effects
attributed to GPER, as did siRNA knockdown of the MR in a study of breast cancer cell
lines (Rigiracciolo et al. 2016). This indicates that the canonical MR is also involved in the
rapid, nongenomic effects of Aldo. Further, data from Cheng et al. (2014) suggested that
Aldo may not directly bind to GPER, furthering the controversy over whether GPER may be
a novel Aldo receptor.

Despite the controversy, growing evidence supports that GPER and the MR mediate rapid
Aldo-induced signaling in concert (Figure 1B-iv). Indeed, GPER and the MR have been
shown to colocalize in the presence of Aldo in breast cancer cell lines (Rigiracciolo et al.
2016). Further studies to enhance our understanding of the potential interactions between the
MR, Aldo, estrogen, and GPER could provide additional insight into the mechanisms of sex
differences observed in Aldo- and MR-mediated cardiovascular disease.

C. Interactions Between the MR and the Progesterone Receptor—Progesterone
and the progesterone receptor (PR) may also interact with the MR, providing yet another
link between MR signaling and female sex hormones. Whereas progesterone levels
positively correlate with Aldo secretion as described above, progesterone itself can bind to
and inhibit the MR in mammalian cells (Rupprecht et al. 1993; Mooij et al. 2015) (Figure
1B-v). While progesterone negatively regulates the wild-type MR, a point mutation in the
ligand-binding domain of the MR has been identified that instead leads to activation of the
MR by progesterone, resulting in early-onset hypertension and severe pregnancy-associated
hypertension (Geller et al. 2000). PR has also been shown to inhibit MR transcriptional
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activity (McDonnell et al. 1994), while the MR may in turn activate the PR. Aldo promoted
cell spreading and F-actin stress fiber formation in PR-positive breast cancer cells, an effect
that was largely absent in PR-negative cells (Leo et al. 2004) (Figure 1B-v). However, this
paradigm of mutual signaling is tentative at best, and specific study of the interactions
between the MR and PR will be critical to understanding what role, if any, progestin
signaling may have in MR-mediated cardiovascular disease.

D. Interactions Between the MR and the Androgen Receptor—The majority of
data concerning potential interactions between MR and AR signaling comes from the
prostate cancer literature. Prostate cancer cell lines have been shown to express 11pHSD2,
thereby confering Aldo specificity to the MR by modifying cortisol to the MR-inactive
cortisone (Page et al. 1994). In a recent study, Aldo treatment sensitized prostate cancer cells
to the AR inhibitor enzalutamide and MR knockdown increased AR expression (Shiota et al.
2018). By contrast, testosterone and its active metabolite dihydrotestosterone have been
shown to bind to and inhibit the MR (Takeda et al. 2007). In addition, the AR coactivator
XRCC6 can also bind to the MR, inhibiting its transcription of target genes in the H9c2
embryonic cardiac myocyte cell line (Yang et al. 2014). Of note, this latter result is the only
evidence to date linking the MR to the AR in a cardiovascular-relevant cell type and this
paradigm has not been studied in ECs. Taken together, these data suggest a feedback model
in which MR activation suppresses AR expression and activity, and androgens themselves
may in turn inhibit the MR (Figure 1B-v). Much more study is needed to confirm this
hypothesis and the explore possible physiologic ramifications of MR/AR crosstalk in the
cardiovascular system.

5. Summary of the Molecular Mechanistic Data

The existing data indicates that the MR within the vascular endothelium contributes to
cardiovascular disease via several molecular mechanisms. EC-MR regulates the expression
of inflammatory adhesion molecules and promotes endothelial barrier permeability (Figure
1A-i), which together promote tissue inflammation in cardiovascular disease models such as
atherosclerosis and heart failure. By regulating expression of the epithelial sodium channel
and other ion channels in ECs, EC-MR promotes vascular stiffness, a precursor to
hypertension and risk factor for atherosclerosis and cardiac dysfunction (Figure 1A-ii). By
promoting oxidative stress and inhibiting NO availability, EC-MR contributes to impaired
endothelial function in the setting of risk factors including hypertension, obesity and
hyperlipidemia (Figure 1A-iii).

Where it has been studied, the role of EC-MR in promoting tissue inflammation, vascular
stiffness, and endothelial dysfunction has often been found to be sex-specific. This is
particularly evident in animal models of cardiovascular risk factors such as obesity and
hyperlipidemia. This may be due to a variety of interactions between the MR and sex
hormone receptors that either promote or inhibit MR activity. Progesterone and testosterone
have been shown to regulate adrenal production of Aldo (Figure 1B-i); estrogen and
progesterone receptors inhibit the genomic activity of the MR (Figure 1B-ii); the MR and
various estrogen receptors may cooperate or inhibit one another in the context of rapid, non-
genomic signaling (Figure 1B-iii—iv); and progesterone and testosterone themselves have
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been shown to directly inhibit the MR (Figure 1B-v). The MR may in turn regulate the
activity of the androgen and progesterone receptors (Figure 1B-v). In our review of the
literature, we found no evidence to suggest that sex hormones can directly activate the wild-
type MR.

The current understanding of this complex ecosystem of ligands, receptors, and subcellular
process regulation is limited by a scarcity of literature rigorously comparing differences in
these mechanisms between the sexes. However, the available data suggests that in general,
sex hormones tend to inhibit the harmful effects of the MR in the cardiovascular system.
This paradigm could help to explain increases in cardiovascular disease risk in
postmenopausal women, when ovarian hormone levels are low (Benjamin et al. 2018), and
in men with low testosterone levels (Channer and Jones 2003; Rovira-Llopis et al. 2017).
This may also be consistent with activated MR promoting cardiovascular disease even in
premenopausal women who exhibit additional cardiovascular risk factors such as obesity,
where hormone production and MR activity are often dysregulated (reviewed in Poddar et al.
2017). Certainly, further study is warranted to fully understand the nature of the interactions
between the MR and sex hormones in order to adequately design therapies to combat
cardiovascular disease in both sexes.

V. CONCLUSIONS AND PERSPECTIVES

In this review, we have explored the evidence for a sex-specific role for EC-MR in
cardiovascular disease. In humans, the MR is involved in the pathophysiology of endothelial
dysfunction, hypertension, atherosclerosis, and heart failure, and inhibition of the MR has
been demonstrated to be beneficial in each of these conditions. In male animal models EC-
MR has been shown to contribute to endothelial dysfunction in response to cardiovascular
risk factors, to tissue inflammation, and to the adverse cardiac remodeling that occurs in
models of heart failure and hypertension, without contributing to the blood pressure
regulation itself. In women the role of the MR becomes evident after menopause, when
preclinical data suggests that the MR may be more active due to low levels of MR-inhibiting
sex hormones and increased Aldo levels in obese females. However, a role for the MR in
cardiovascular disease can be observed even in premenopausal women if additional
cardiovascular risk factors are present that may diminish the beneficial effects of female sex
hormones. The specific role of EC-MR in cardiovascular pathology in females is just
beginning to be understood, with data supporting a role for this receptor in endothelial
dysfunction and cardiac diastolic dysfunction but not inflammation or hypertension.
However, substantial further investigation is needed to fully appreciate the nuances of
potential sex differences and sex hormone effects in many different models of cardiovascular
disease.

An important limitation in this field is the paucity of women in clinical trials and, until
recently, the nearly exclusive use of male animals in preclinical investigations. With the
recent requirement by the National Institutes of Health that biological sex be addressed as an
important variable in basic science and clinical research (McCullough et al. 2014), data is
beginning to surface demonstrating sex differences in the role of the MR in cardiovascular
disease, with mechanistic insights likely to expand. Further, tens of thousands of men and
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women have been randomized to MR antagonist therapy in clinical trials. Sub-analysis of
this existing wealth of data by sex and equitable inclusion of women in future studies would
provide excellent opportunities to understand sex differences in the renin-angiotensin-
aldosterone system in human subjects.

It is critical to understand the differences between men and women in the etiology, natural
history, and downstream consequences of cardiovascular pathology. Endothelial-specific MR
may be a tantalizing factor mediating sex differences in endothelial dysfunction,
atherosclerosis, and heart failure. By contrast, EC-MR may not contribute to sex differences
in hypertension incidence, instead mediating the adverse consequences of elevated blood
pressure. Additionally, the MR has been suggested to contribute to the pathophysiology of
MI (Beygui et al. 2006), cardiac arrhythmia (Neefs et al. 2017), and certain pathologies of
the heart valves (Liu et al. 2018), but whether there is an effect of sex or a role for EC-MR
has not yet been explored. Such an understanding could profoundly impact the clinical
management of male and female patients, with current and emerging new MR antagonists as
versatile tools in the treatment of cardiovascular disease. Furthermore, understanding the
molecular mechanisms driving sex differences in the role of EC-MR in cardiovascular
disease has the potential to nominate additional therapeutic targets downstream of EC-MR
that could allow for tailored treatment of cardiovascular disease to improve outcomes in both
men and women.
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(A) Molecular mechanisms for EC-MR contribution (B) Models for crosstalk between the MR, sex
to cardiovascular disease hormones, and sex hormone receptors
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Figure 1. Molecular Mechanisms for the Sex-Specific Contributions of EC-MR to
Cardiovascular Disease.

(A) The MR participates in a number of processes in ECs that may contribute to
cardiovascular disease in a sex-specific manner. (7) EC-MR promotes the expression of
endothelial adhesion molecules such as P- and E-selectin and ICAM-1, and this differs by
sex for E-selectin and ICAM-1. This results in differential leukocyte recruitment to the
vasculature in males and females. EC-MR also promotes endothelial permeability by
activating RhoA, which leads to tight junction destabilization and may facilitate leukocyte
trans-endothelial migration. (77) The MR is well known to promote the expression of sodium
transport proteins such as EnNaC, which in the endothelium can promote vascular stiffness.
Whether this differs by sex is unclear, as all studies of EC-MR in vascular stiffness have
been performed in female mice. (7/7)) EC-MR promotes oxidative stress in both males and
females, though the mechanism for this effect may differ by sex. The ROS produced by this
effect inactivate NO, thus preventing effective endothelium-dependent dilation of the
underlying smooth muscle cells. This effect appears to vary by sex, arterial bed, and disease
model. (B) There are several potential nodes for crosstalk between the MR and sex hormone
receptors, many of which have yet to be fully explored. (7) Sex hormones may modulate
production of the MR ligand Aldo at the level of the adrenal gland: testosterone may
increase Aldo production, while progesterone may inhibit it. (7/) Activated ERa can bind to
and inhibit the transcriptional function of the MR, which requires nuclear translocation but
does not require ERa itself to bind DNA. The PR has also been demonstrated to inhibit MR
transcriptional activities. (777) The MR and ERa may compete for occupancy of striatin at
the caveolar membrane, where they mediate non-genomic effects on eNOS and other rapid
signaling cascades. (7v) Possible interactions between Aldo, the MR, and GPER are
particularly controversial. Activation of either the MR or GPER can activate similar rapid
signaling pathways, and many of these effects can be blocked by either MR inhibition or
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GPER inhibition. Possible models for this crosstalk include activation of GPER by MR,
direct binding of Aldo to GPER, and complex formation between the MR and GPER. (v)
Progesterone has been shown to bind to and inhibit the MR, and testosterone has been
hypothesized to do the same. AR/MR interactions are not well characterized but may include
inhibition of the AR by MR. ERp has also been demonstrated to attenuate Aldo-induced
ROS production, through unclear mechanisms. The MR may also promote PR activity. Solid
arrow=positive regulation, dotted line=negative regulation; A=Aldo; AR=androgen receptor;
EnNaC=endothelial epithelial sodium channel; eNOS=endothelial nitric oxide synthase;
ER=estrogen receptor; GPER=G protein-coupled estrogen receptor; NO=nitric oxide;
P=progesterone; PR=progesterone receptor; ROS=reactive oxygen species; T=testosterone.
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