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Evolution and Impact of Subclonal Mutations
in Papillary Thyroid Cancer

Tariq Masoodi,1,6 Abdul K. Siraj,1,6 Sarah Siraj,1,6 Saud Azam,1 Zeeshan Qadri,1

Sandeep K. Parvathareddy,1 Saif S. Al-Sobhi,2 Mohammed AlDawish,3 Fowzan S. Alkuraya,4,5,*
and Khawla S. Al-Kuraya1,*

Unlike many cancers, the pattern of tumor evolution in papillary thyroid cancer (PTC) and its potential role in relapse have not been

elucidated. In this study, multi-region whole-exome sequencing (WES) was performed on early-stage PTC tumors (n ¼ 257 tumor re-

gions) from 79 individuals, including 17 who had developed relapse, to understand the temporal and spatial framework within which

subclonal mutations catalyze tumor evolution and its potential clinical relevance. Paired primary-relapse tumor tissues were also avail-

able for a subset of individuals. The resulting catalog of variants was analyzed to explore evolutionary histories, define clonal and sub-

clonal events, and assess the relationship between intra-tumor heterogeneity and relapse-free survival. The multi-region WES approach

was key in correctly classifying subclonal mutations, 40% of which would have otherwise been erroneously considered clonal. We

observed both linear and branching evolution patterns in our PTC cohort. A higher burden of subclonal mutations was significantly

associated with increased risk of relapse. We conclude that relapse in PTC, while generally rare, does not follow a predictable evolu-

tionary path and that subclonal mutation burden may serve as a prognostic factor. Larger studies utilizing multi-region sequencing

in relapsed PTC case subjects with matching primary tissues are needed to confirm these observations.
Introduction

Papillary thyroid carcinoma (PTC) is the most prevalent

endocrine malignancy with a steadily increasing preva-

lence.1,2 Although highly curable (�85% of case subjects)

due to its relatively indolent biological nature,3 10%–

20% of individuals with PTC tend to develop either local

or distant relapse.4,5 Presence of lymph node metastases,

extrathyroidal extension, older age, and BRAF (MIM:

164757) mutations are some of the factors shown to be

associated with relapse.6–8 Nevertheless, the high cure

rate overshadows the fact that factors associated with

relapse remain poorly understood, especially at the molec-

ular level.

Cancer is a heterogeneous disease, where tumorigenesis

is often instigated by a single neoplastic cell propelled by

somatic mutation from which it develops into a tumor

mass, evolving through a series of sequential events, such

as clonal expansions, driven by shifting selective pressures

and mutational processes.9–11 During this intricate biolog-

ical process, clonal ancestral mutations that are ubiquitous

in all clones (a group of tumor cells sharing highly similar

mutational profiles) diversify through the Darwinian pro-

cess of clonal expansions by acquiring additional muta-

tions and forming distinct subclonal populations in the

evolutionary lineage, resulting in intratumor heterogene-

ity.12–14 Thus, intratumor heterogeneity can provide

the evolutionary dynamics of mutations, chronologically

accumulated and selected for during the lifetime of a tu-
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mor, driven by external pressures andmicroenvironmental

niches such as the immune system, pH changes, chemo-

therapy, radiation, nutrient deprivation, and anatomical

barriers.15–20 Several recent cancer genomics studies have

explored this extensive genetic diversity within tumors,

characterizing the genomic landscape of either untreated

and treated primary tumors, or comparing the genomic

landscapes of primary tumors with that of their corre-

sponding local or distant relapsed tumors.13,21–24

Evolutionary processes can be mapped by sequencing

tumor samples spatially, through multi-region sampling,

and temporally, through multiple time-point sampling,

followed by the clustering of somatic mutations and infer-

ring genetic phylogenies according to their cellular preva-

lence.24,25 Several competing patterns of tumor evolution

exist, such as linear and branching evolution, which can

be deduced from phylogenetic trees and cancer cell frac-

tions (CCFs). Linear evolution represents the successive

growth of dominant clones by passively accumulating

many mutations without expansion before additional

fitness is acquired in the form of infrequent driver events

conferring a selective advantage to produce clonal expan-

sions.26 Branching evolution, on the other hand, is charac-

terized by the divergence of subclones from a common

ancestral clone, leading to the coexistence of subclones

sharing no more than partial sets of mutations.27,28 Some

cancers have also exhibited mixed models of tumor evolu-

tion.29,30 Cancer relapses traced evolutionarily demon-

strate selective expansion of subpopulations of tumor cells
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with resistant subclones providing added fitness, leading

to the development of relapse.31–34 Various models of tu-

mor evolution in cancer can have diverse clinical implica-

tions for the clinical diagnosis, prognosis, and treatment

of the individuals;35 therefore, interpreting intratumor

heterogeneity and tumor evolution is of great clinical

importance.28

We hypothesized that the evolutionary dynamics of

subclonal mutations in PTC might also contribute to

relapse. Therefore, we performed relatively large-scale

whole-exome sequencing (WES) of 257 PTC tumor tissues

from 79 individuals, including 6 individuals sampled at

two time points (primary and relapse). This analysis al-

lowed us to study tumor mutations, their clonality and

evolution, and their potential correlation with the clinical

outcome (Figure 1).
Material and Methods

PTC Cohort and Tumor Samples
We collected a total of 257 tumor tissue samples, with a median of

3 (range 2–11) tumor tissues per case subject, along with corre-

sponding normal whole blood, from 79 individuals with early-

stage PTC, including 17 with relapse PTC, 6 of whom were

sampled at two time points (following primary diagnosis and after

incurring local relapse within the thyroid bed), from King Faisal

Specialist Hospital and Research Centre and Prince Sultan Military

Medical City. All the individuals were treatment naive at the time

of surgery for primary tumor. 91% (72/79) of the cohort under-

went total thyroidectomy, whereas the remaining 9% (7/79) un-

derwent hemi-thyroidectomy, for removal of primary tumor.

Subsequent local relapse was defined as the development of tumor

recurrence within the soft tissues of the neck, forming the thyroid-

ectomy bed, following optimized surgery and radioactive iodine

therapy.3 To assess intra-tumor heterogeneity, samples of at least

two tumor regions, separated by a margin of 0.5 cm to 1.0 cm (de-

pending on the size of the tumor), have been taken for the study.

Clinical characteristics of the PTC cohort are provided in Table S1

and Figure 1. Institutional Review Board (IRB) of the King Faisal

Specialist Hospital & Research Centre approved the study under

the Project RAC # 2110 031 and # 2170 022 on PTC archival clin-

ical samples. Written consent was obtained from all the individ-

uals included in the study.

Sample Processing
Tumor tissue from each region was used for genomic DNA extrac-

tion using Gentra DNA isolation kit, following the manufacturer’s

recommendations as described previously.36 DNA was quantified

by Qubit (Invitrogen).

Whole-Exome Sequencing and Mutation Calling
For each tumor region (n ¼ 257) and matched germline (n ¼
79), whole-exome sequencing (WES) was performed using

SureSelectXT Target Enrichment (Agilent) on Illumina NovaSeq

6000. We sequenced to a median depth of 1783, 257 tumor re-

gions (240 primary and 17 relapse tissues), with a median of 3 re-

gions per tumor (range 2–11), and 79 matched germline samples

derived from whole blood. Sequencing reads were aligned to the

human reference genome hg19 using Burrows-Wheeler Aligner
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(BWA) v.0.7.15 algorithm;37 followed by local realignment and

PCR duplicatemarking via Picard tools (v.1.119). Base-quality reca-

libration was performed with GATK v.3.8.0.38 All the quality met-

rics were obtained using GATK and FastQC.

Somatic single-nucleotide variants (SNVs) were identified using

MuTect v.1.1.7,39 while somatic small insertions and deletions (in-

dels) were obtained using VarScan v.2.3.9. Different annotations

were performed for the identified variants using ANNOVAR.40

SNVs identified by MuTect were filtered with the filter parameter

‘‘KEEP’’ and the indels identified by VarScanwith a somatic p value

filter of % 0.001. In addition to passing the standard MuTect and

VarScan filters, variants presenting with the following features

were excluded: common SNPs with a minor allele frequency of

>0.01, as found in dbSNP, the National Heart, Lung, and Blood

Institute exome-sequencing project, 1000 Genomes, Exome Ag-

gregation Consortium (ExAC), and in our in-house data from

exome sequencing of �800 normal samples. Variants present in

segmental duplication regions were removed from the analyses.

All the mutations were also manually analyzed using Integrated

Genomics Viewer (IGV) v.2.4.10 to check the relative position

and mapping quality of variants in the aligned reads to filter out

false positives.

To further reduce false-positive variant calls, additional filtering

was performed. A variant was considered a true positive if the VAF

was at least 2%. Furthermore, sequencing depth in the variant

location region was required to be R15 and at least 4 altered

sequence reads had to support the variant call. On the other

hand, the number of reads supporting the variant in the germline

data had to beR8 and the VAF < 1%. A variant having more than

2 mapping quality zero reads was considered a false positive and

removed from the analysis.
Using SNPs for Sample Mismatch or Swaps
All tumor regions and the corresponding germline sample from a

single individual should show a highly similar SNP profile to

confirm that the sample is not mixed up or contaminated. The

VAF of 24 SNPs identified by Pengelly et al.41 were used and

checked in each tumor sample and compared to confirm that no

sample swaps had occurred.
Mutation Validation
In order to determine the accuracy of the somatic variant calls,

further target capture sequencing using SureSelect DNA Design

at a median depth of 3,2003 (2,2623–4,3553) was performed to

validate the variants (Table S2). The sequencing library was pre-

pared by random fragmentation of the DNA, followed by 50 and
30 adaptor ligation. To generate the clusters, the library was loaded

into flow cell where fragments were captured on a lawn of surface-

bound oligos complementary to the library adapters. Each frag-

ment was then amplified into distinct, clonal clusters through

bridge amplification and the templates were ready for sequencing.

Sequencing data were converted into fastq format for down-

stream analysis as described above. All the filters, as above, were

applied with the exception of R5 reads supporting the variant

call and the tumor VAF of at least 1%. If discrepancies in the start

position, end position or length of the indel were seen across mul-

tiple tumor regions, the longest predicted indel and themaximum

sequence values were taken. Variants absent in any of the tissues of

a sample were manually checked to see whether these are present

at a very low VAF and uncalled by the algorithm. These were

manually added with the VAF filter of at least 1%.
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Figure 1. Overview of the Demographic and Clinical Characteristics of the 79 PTC Cohort
(A) Thyroid glandwith tumor. Multiple PTC tumor sections were sequenced, to analyze somaticmutations and copy number alterations,
supporting the assessment of intratumor heterogeneity. The type of evolution was determined by phylogenetic reconstruction. Stars
indicate mutations, where blue color is clonal mutations and red is subclonal mutations.
(B) Demographic and clinical characteristics of the 79 individuals including tumor stage, age, and relapse status.
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Gene Copy Number Profiling, Cancer Cell Fraction, and

Genome Doubling
FACETS v.0.5.1342 was used to determine copy number alter-

ations (CNAs), purity (Figures S1 and S2), and regions of loss of

heterozygosity (LOH), while outputs generated by MuTect and

VarScan were utilized to calculate mean allelic frequency (MAF).

CNA and SNV data were inputted into ABSOLUTE v.1.0.643 to

define the integer copy number and cancer cell fractions

(CCFs). CNAs were further defined as gains, losses, amplifications,

and deletions, in relation to the average ploidy of all tissues from

a given individual using the copy number for each segment from

facets.

Gene-level amplifications and deletions were called by mean

gene copy number R23 ploidy þ 1 copy or %23 ploidy � 1

copy, respectively. To examine intratumor heterogeneity (ITH) of

amplified and deleted genes, amplifications and deletions were

classified across all tumor regions of each sample. If all the regions

of a tumor showed a copy number gain of ploidyþ1 copy or a copy

number loss of ploidy �1 copy, the gene was classified as clonally

amplified or clonally deleted, respectively. The gene was classified

as subclonally amplified or deleted if any of the tumor regions in

an individual revealed no gain or loss or if clonally amplified

and deleted events overlapped with mirrored subclonal allelic

imbalance.44

Genome-wide copy number gains and losses were defined by

dividing the copy number data of each sample by the sample

mean ploidy. ITH for chromosomal arm gains and losses were ob-

tained by requiring at least one region of a tumor to show at least

98% gain or loss. Arm gain or loss was termed clonal if the same

chromosomal arm showed at least 75% gain or loss across all re-

maining tumor regions. For subclonal arm gain or loss, at least

one region should show less than 75% chromosomal arm gain

or loss or if a chromosomal arm was subjected to mirrored subclo-

nal allelic imbalance.

For clonality, a mutation with a probability of >50% or the

lower bound of the 95% confidence interval of its CCF >90%

was classified as clonal and subclonal otherwise.45 Genome

doubling was calculated based on the mean ploidy of the sample.

If the mean ploidy reported by FACETS was greater than 3, the

sample was termed to have undergone genome doubling.46
Driver Mutation Classification
Non-silent variants were classified based on a list of potential

driver cancer genes (n ¼ 745). The driver gene list includes the

genes in the COSMIC cancer gene census (v.87), genes identified

in TCGA with q < 0.05 and previous large-scale studies.36,47–51

Any variant present in these genes underwent classification based

on the following criteria. If the gene was classified as tumor sup-

pressor by COSMIC and the variant was found to be deleterious

(stop-gain or predicted deleterious in two of the three computa-

tional tools—Sift, PolyPhen, and MutationTaster), the specific

variant was classified as a driver. If the gene was classified as tumor

oncogene and an exact variant was found R3 times in COSMIC,

the variant was classed as a driver mutation.44
Detection of Mirrored Subclonal Allelic Imbalance
The samples with copy number segments showing allelic imbal-

ance in at least one region, the B-allele fraction (BAF), was calcu-

lated for all the heterozygous SNPs as the ratio of the minor allele

to the total allele count. If a given copy number event is shared be-

tween different regions of a tumor, theminor allelemust always be
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from the same parental allele across these tumor regions. By

analyzing all the heterozygous SNPs across different regions of a

tumor, it is possible to determine whether the minor allele is

different between regions, demonstrating two independent copy

number events. Thus, mirrored subclonal allelic imbalance discov-

ery involves comparing the BAF of the same heterozygous SNPs

across multiple tumor regions and check whether the BAF values

always follow the same distribution or whether their positions

(i.e., high and low frequency) are reversed (mirrored). Mirrored

subclonal allelic imbalance can only be detected for the samples

having allelic imbalance present in at least two tissues. Mirrored

subclonal allelic imbalance arm gain or loss was called when two

different parental alleles were affected in at least 75% of a chromo-

some arm in at least two tumor regions.44
Subclonal Mutations Driven by Copy Number Loss
In the identification of subclonal mutations, driven by copy

number loss, the method has been followed as described previ-

ously.44 Briefly, mutations have been investigated to identify

those whose absence or low CCF values may have driven by

copy number loss. Any SNV, residing in genomic segments of

copy number heterogeneity across tumor regions, were identified

for each tumor, with minor and major aberrations of copy num-

ber considered separately. Mutations were grouped into non-

contiguous genomic segments with consistent copy number

states within tumor regions for each chromosome. In order to

restrict analysis to the mutations lost in at least one tumor region,

the median CCF value of each SNV group were determined and

considered only those SNV groups where the median CCF value

was %0.25 in at least one tumor region. It has then been evalu-

ated whether copy number loss coincided with lower levels of

CCF by utilizing one-sided Wilcoxon test or a one-sided Co-

chrane Armitage trend test if more than two copy number states

were present across tumor regions. Regression analysis was also

implemented to ensure that the lower CCF value was driven by

copy number and not tumor region by including both copy num-

ber and region in the regression model. The entire cluster was

classified as copy number driven if more than 85% of mutations

within a given cluster were determined to be driven by copy

number. In order to avoid overestimating copy number driven

losses of mutations, only losses occurring in %75% of tumor re-

gions were considered.44
Phylogenetic Trees
Phylogenetic trees were constructed using the algorithm imple-

mented in the tool LICHeE.52 LICHeE reconstructs cancer cell

lineages using somatic variants frommultiple related tumors of in-

dividual cancer cases, estimating heterogeneity in each cancer

sample. For a set of high depth somatic variants, it uses the pres-

ence patterns of the variants across multiple tumors and their

variant allele frequency (VAFs) or cancer cell fractions (CCFs) as

lineage markers by relying on the perfect phylogeny model.52

This model describes that mutations do not recur independently

in different cells; hence, cells sharing the same mutation must

have inherited it from a common ancestral cell. LICHeE divides so-

matic variants into clones based on their presence in each sample,

so that each clone carries the mutations that are present in the

same subset of samples. To separate subclone clusters, the muta-

tions of each resulting clone are further clustered based on their

CCFs, so that mutations with similar CCFs acrossmultiple samples

are clustered together.
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Mutational Signature Analysis
Mutational signatures were predicted using the deconstructSigs

package in R.53 Mutational signatures were estimated for both

clonal and subclonal mutations separately. Considering the lower

mutational burden in PTC, the mutational signature analysis was

only applied if at least 10 mutations were present in a sample.54

The signatures were compared to 21 published mutational signa-

tures reported in different cancer types.55 Knowing not all muta-

tions could be classified based on previously identified signatures

using deconstructSigs, a small proportion of mutations were clas-

sified as ‘‘other.’’

dN/dS Analysis
Maximum-likelihood method implemented in dNdScv R package

was used to estimate dN/dS values for missense (umis) and

nonsense (unon) mutations exome-wide as well as for the cancer

genes.56 The method estimates the background mutation rate

of each gene by combining local and global information (varia-

tion of the mutation rate across genes) and controlling for the

sequence composition of the gene and mutational signatures.

The substitution models provided in the package were used

and maximum-likelihood estimates for umis and unon were

obtained.

Analysis of Pathways
Prospective pathways associated with subclonal mutations were

identified using Ingenuity Pathway Analysis by analyzing genes

with subclonal mutations.

Tissue Microarray (TMA) Construction
TMA construction was performed from 1,231 formalin-fixed,

paraffin-embedded PTC specimens as described earlier.57 Briefly,

tissue cylinders with a diameter of 0.6 mm were punched from

representative tumor regions of each donor tissue block and

brought into recipient paraffin block using a modified semiauto-

matic robotic precision instrument (Beecher Instruments). Two

cores of papillary carcinoma of the thyroid were arrayed from

each case.

Immunohistochemistry
Tissue microarray slides were processed and stained manually as

described previously.58 Primary antibody against HIF-1a (1:100

dilution, pH 6.0, Novus Biologicals) was used. The localization of

HIF-1a was heterogeneous with predominant localization seen

in the nucleus; however, low cytoplasmic localization was also

noted. HIF-1a scoring was done as described previously.59 Briefly,

the proportion of positively stained cells was calculated as a per-

centage for each core and the scores were averaged across two tis-

sue cores from the same tumor to yield a single percent staining

score representing each cancer case. For the purpose of statistical

analysis, the scores were dichotomized based on the median

proportion level of 20%. Cases showing proportion of more

than 20% were classified as increased localization and those with

%20% as decreased localization.

Statistical Analysis
All statistical analyses were executed on IBM SPSS Statistics (v.21).

Mann-Whitney U test, chi-square test, or Fisher’s exact test were

utilized to compare continuous and categorical variables, where

relevant. Spearman’s rank correlation tests were used to determine

associations. The Kaplan-Meier method based on the median
The American
fraction of either subclonal mutation or subclonal copy number

variant (CNV), was used to perform survival analyses, with

p values determined by Mantel-Cox log-rank test. For all the

statistical tests performed, p < 0.05 was considered statistically

significant.
Results

Intratumor Heterogeneity in PTC

Natural selection and tumor evolution can be propelled by

the genetic diversity within tumors. To understand the in-

tratumor heterogeneity, we performed multiregion WES

on 257 tumors from 79 PTC-affected individuals. We cate-

gorized somatic mutations (single-nucleotide variants

[SNVs] and small insertions and deletions [indels]) and

copy number variants (CNVs) as clonal (ubiquitous pres-

ence in all tumor cells) or subclonal (partially present in

all tumor cells) (Figure 1, Tables S3 and S4). Since clonality

is based on CCF of the mutation which in turn depends on

mutation variant allele frequency (VAF), a good concor-

dance was observed between CCF and VAF (Figures S3

and S4).

Intratumor heterogeneity was evidenced by a median of

41% (range 5% to 88.6%) and 50% (range 0% to 100%) of

mutations and CNVs, respectively, being subclonal

(Figure 2). The number of subclonal CNVs ranged from 1

to 133, with the percentage of genome affected ranging

from 0% to 8% (Figure 2). Importantly, 40% of the subclo-

nal mutations would have appeared clonal had multire-

gion WES not been applied, which suggests a degree of

selection within individual tumor regions (Figure S5).

Despite generally low mutation rates in PTC, signifi-

cantly more mutations were identified through multire-

gion WES (median 22; range 3 to 114), than using single

sample analysis (median 17; range 0 to 57; p ¼ 0.001;

Mann-Whitney U test). Subclonal mutations were signifi-

cantly higher in PTC relapse cases (p ¼ 0.005, Table S6)

with 76.5% of PTC relapse cases being categorized as ‘‘sub-

clonally high (>41%, the cohort median)’’ compared to

40.3% of non-relapse cases. Further significant association

was also seen between cases with high burden of subclonal

mutations (>41%, the cohort median) and clinically

aggressive parameters such as distant metastasis (p ¼
0.014, Table S6). PTC cases with high burden of subclonal

mutations also had an increased risk for relapse or death

than those with lower proportions (hazard ratio 3.5, 95%

confidence interval [CI], 1.4 to 9.2; p ¼ 0.010) (Figure 3A

and Table S6). The median time until relapse or death

was 26months. This finding remained significant inmulti-

variate analysis, after adjustment for age, gender, extra-

thyroidal extension, and tumor size and stage (hazard ratio

3.62; CI: 1.10 to 11.97, p ¼ 0.035) (Table S5). HIF-1 alpha

overexpression showed a trend with the cases harboring

a high burden of subclonal mutations (p¼ 0.076) (Figure 4

and Table S6).

Clonal and subclonal CNVs were compared to evaluate

intratumor heterogeneity in copy number variation. We
Journal of Human Genetics 105, 959–973, November 7, 2019 963



Figure 2. Genetic Heterogeneity of Tumors from PTC-Affected Subjects
The total number of coding and noncoding mutations (top) and copy-number variants (bottom) detected in each tumor region, accord-
ing to relapse, type of tissue (R, relapsed tissue; p, primary tissue), tumor stage, age, number of tissues, and HIF-1a immunohistochemical
staining (IHC), with proportions of clonal and subclonal somatic variants. Grey areas correspond with a lack of mutations/copy number
variants.
found more subclonal CNVs compared to clonal, with a

median of 100% (0 to 100) found to be subclonal (p <

0.001; Mann-Whitney U test). Furthermore, late-occur-

ring CNVs tended to be deletions, with 100% (17 to

100) of all losses identified as subclonal compared to

50% (9 to 100) of gains (p ¼ 0.053; Mann-Whitney

U-test). Clonal CNVs were found to be larger than sub-

clonal CNVs, with a median of 82.4 Mbp (0 to 249)
964 The American Journal of Human Genetics 105, 959–973, Novem
versus 8.1 Mbp (0 to 242; p < 0.001; Mann-Whitney U

test). However, the proportion of subclonal CNVs was

found to have no prognostic effect (Figure 3B). We also

analyzed the burden of subclonal mutations and

copy number variations between the histological vari-

ants of PTC (classical variant, follicular variant, and

tall cell variant), but observed no statistically significant

differences.
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Figure 3. Disease-free Survival
The percentages of individuals who were
disease free over a 60 month period accord-
ing to whether they had a high proportion
(above the median) or low proportion
(below the median) of subclonal mutations
(A) or of subclonal copy number variations
(B). Individuals with a high proportion of
subclonal mutations were at a significantly
higher risk of relapse than those with a
low proportion (p ¼ 0.010), whereas there
was no significant association between the
proportion of subclonal copy number aber-
rations and disease-free survival (p¼ 0.082).
Evolutionary History and Tumor Clonal Architecture in

PTC

Intratumor heterogeneity can reveal the evolutionary his-

tory of mutations chronologically accumulated in a tu-

mor.15 Unlike clonal mutations, subclonal mutations are

only partially present in all tumor cells and their preva-

lence in different cancer cells can be used to infer subclo-

nal hierarchy in the tumor phylogeny. Clustering

mutations and inferring their phylogenies according to

their cellular prevalence, we mapped the evolutionary

process of each PTC tumor.52 On the tumor phylogenetic

tree, each cluster represents a node, displaying present

clones/subclones in the tumor population or clones/sub-

clones having existed over the course of its evolutionary

history (Figure S3).

As patterns of tumor evolution can be defined spatially,

through multi-region sampling, and temporally, through

multiple time-point sampling,24,25 we deciphered PTC tu-

mor evolution spatially in 79 primary tumors and tempo-

rally in 6 primary-relapse tissue pairs.

Our primary PTC evolutionary trees suggested two pat-

terns of evolution. Most cases—54/79 (68%)—followed a

linear evolution pattern, where successive clones overgrew

or were in the process of overgrowing their ancestral

clones, while the remaining cases—25/79 (32%)—fol-

lowed a branched pattern, with divergence of subclones

from a common ancestor clone, leading to the coexistence

of subclones sharing only partial sets of mutations.

Comprising a single clone each that was shared in all pri-

mary regions, 24 of the 54 tumors showed a linear pattern

of evolution with passive accumulation of mutations and

driver events seemingly without clonal expansion, and

where further subclones may have been too small to

discriminate (Figure S3). Therefore, if sampled at a further

time point, eventual clonal expansions may lead to further

diversification, either continuing a linear path or produc-

ing divergent subclones.33 The time at which subclones

evolve can vary in different tumor types,34 but this needs

to be further studied in PTC.

To further consolidate the types of evolutionary patterns

observed, we took advantage of the multiple longitudinal

relapsed tumor samples acquired from six case subjects

by comparing their evolution with their corresponding

primary to study the spatial dynamics of their evolution

(Figure 5).
The American
Two case subjects (733 and 930), each with only a single

clone shared among all primary and relapse tissue regions,

showed no clonal expansion over time. Remarkably, the

set of mutations remained unchanged between the two

time points, despite ablation and radioiodine therapy be-

tween the two time points. We do note, however, that

some mutations showed a decline in CCF post-treatment.

Both individuals were young females, one 13 years old

(733) and the other (930) 33 years old, where both pre-

sented with classical PTC variant and stage one tumor.

Consistent with young adult and pediatric PTC case sub-

jects,54,60 case 733 had very few mutations (seven in total,

including one BRAF mutation).

Two case subjects (696 and 962) showed linear evolution,

where case subject 962 showed successive expansion of

clones and acquisition of driver events (MUC4 [MIM:

158372], CTNND2 [MIM: 604275], IL7R [MIM: 146661],

and LIFR [MIM: 151443] amplifications) despite treatment,

whereas many clones obtained early in tumor evolution re-

mained resistant. In contrast, case subject 696 showed

exceptional sensitivity to the treatment given, as most pri-

mary subclones had been ablated, with some resistant mu-

tations remaining in themain ancestral clone. More shared

mutations were observed between primary and relapse tu-

mors in case subjects displaying linear patterns of evolution.

Two case subjects (429 and 1002) demonstrated a

branching clonal evolution pattern, where case subject

1002 initially showed linear evolution in the correspond-

ing primary tissues, but later diverged in parallel, with

some relapse tumor regions further expanding from previ-

ous primary subclones and others diverging from the main

ancestral clone. Lower CCFs in some relapse regions

showed some sensitivity to treatment. Case subject 429

had more extensive branching early in the tumor develop-

ment, only further expanding by a single clone of six mu-

tations post-treatment. Some clones were seen to grow

further in the relapse tissues, while the majority that had

sufficiently grown in the primary remained resistant in

the relapsed tissues. Interestingly, this case had the short-

est time to relapse (10 months), higher stage (II), presented

a more aggressive tall cell variant, and had metastatic

disease.

Newly formed clones in relapse tissues are likely to either

contain de novo mutations acquired during the growth of

the relapse or were not sampled in the primary tumor
Journal of Human Genetics 105, 959–973, November 7, 2019 965



Figure 4. Immunohistochemical Staining
for HIF-1a in PTC
Increased localization (843 case subjects) (A)
and decreased localization (388 case
subjects) (B). 203/0.70 objective on an
Olympus BX 51 microscope (Olympus
America Inc.) with inset showing a 403/
0.85 aperture magnified view of the same.
blocks. Clusters showing either lower CCFs in the primary

tumor but a higher CCF in their relapse counterpart or

consistently high CCFs in both the primary tumor and

relapse counterpart might contain important radioiodine-

resistant mutations. These include mutations in driver

genes such as FAT1 (MIM: 600976), in addition to other

genes such as RABGEF1 (MIM: 609700), FMN2 (MIM:

606373), SMG5 (MIM: 610962), KCNK17 (MIM: 607370),

PDGFRB (MIM: 173410), NFIB (MIM: 600728), and

MCM4 (MIM: 602638) (Figure S3). Although branched evo-

lution was observed in our PTC cohort, no evidence of par-

allel branched evolution, where there is a convergence of

somatic events in distinct branches on the same gene,

was identified in either primary or relapse tissues.

A total of 188 mutation clusters with a median of 2 per

tumor (range 1 to 9) were identified in our PTC cohort,

with more than half (52%) of tumor regions found to carry

subclones from only a single branch of the phylogenetic

tree. Furthermore, 89% of branched subclone clusters

could have inaccurately appeared as clonal, without the

use of spatially distinct multi-sampling approaches. This

revealed the limitations of single diagnostic biopsy samples

for the accurate assessment of intratumor heterogeneity,

particularly in tumors with branched evolutionary

patterns. Although linear evolution patterns generally

imply limited intratumor heterogeneity, where single bi-

opsy samples can represent the entire tumor, simplifying

diagnostic assays, incomplete clonal expansions in linear

evolution also produce intratumor heterogeneity, indi-

cating the need formulti-sampling approaches in diagnosis

and for informing the appropriate treatment options.35

Differential Selection during Evolution

Exploring the ongoing selection during PTC evolution can

help in identifying evolutionary constraints, eventually
966 The American Journal of Human Genetics 105, 959–973, November 7, 2019
dictating the evolutionary routes of

this tumor. Due to the lack of parallel

evolution, we sought to estimate posi-

tive selection at the mutation level

via a dN/dS ratio, which parallels sub-

stitution rates at nonsynonymous sites

to those at synonymous sites, thus ac-

counting for the trinucleotide context

of each mutation and determining

the enrichment of protein-altering

mutations compared to the back-

ground mutation rate.61 Positive selec-

tion (dN/dS,>1) was observed, when
considering all exonic missense mutations (Figure S6 and

Table S7). However, upon temporal dissection, significant

positive selection was observed only in clonal mutations.

Without temporal dissection, non-relapse case subjects

also showed positive selection in both exonic missense

and nonsense clonal mutations with depletion of missense

and nonsense subclonal mutations, suggesting mutations

may be shaped by positive selection in early but not late

stages of PTC, with particularly strong positive selection

seen early in relapse PTC.

Causes of Intratumor Heterogeneity in PTC Mutational

Process

QA Alternating mutational stresses over tumor history

result in varying subclones and patterns of trinucleotide

signatures.62 It is particularly important to understand

the effect of these mutational processes that shape PTC tu-

mor evolution, given the association we found between

subclonal mutation burden and shorter relapse-free

survival (Spearman’s rank correlation rho ¼ 0.369, p ¼
0.013), potentially informing clinical strategies to limit tu-

mor adaptation.

Published mutational signatures55 were used to analyze

clonal and subclonal mutations, to determine the muta-

tional processes contributing to intratumor heterogeneity.

However, due to limited number of mutations (< 10), only

57% (45/79) and 61% (48/79) primary PTC cases were as-

signedmutational signatures for clonal and subclonalmuta-

tions, respectively. In addition, only 28% (33/79) of primary

tumors and additional two (cases 429 and 962) matching

relapse tissues, harboring sufficient mutations for clonal

and subclonal pairs, could be assessed for mutational signa-

ture enrichment in clonal and/or subclonal mutations by

allocating the contribution of individual mutational signa-

tures over molecular time to each tumor (Figures S7–S9).



Figure 5. Evolution of Relapsed PTC
Tumor evolution of relapsed PTC based on cell fractions at different time points (time to relapse is in months). Nested view of all clusters
together over time (A) and clonal trajectory view (B) depicting the history of individual clusters over time. Different colors represent
separate clusters in a sample. Driver genes (in red) are centered in each cluster.
We identified several signatures within the tested

tumors, of which the most prominent were signature 1A

(21/33, 64%), involving the endogenous spontaneous
The American
deamination of methylated cytosines correlating with

the individual’s age at the time of cancer diagnosis;

signature 3 (16/33, 48%), associated with failure of DNA
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double-strand break-repair by homologous recombination;

signature 11 (16/33, 48%), associated with DNA alkylating

agent temozolomide treatment; and signature 15 (17/33,

52%), which is one of the four signatures related to defec-

tive mismatch repair (MMR).

The age-related signatures 1A and/or 1B, dominated by C

to T mutations at CpG loci, were consistently seen in most

cases (27/33, 82%). Unlike increased clonal mutation

burden, which was significantly correlated with the num-

ber of mutations assigned to signature 1B (Spearman’s

rank correlation, rho ¼ 0.338, p ¼ 0.023), subclonal muta-

tion burden was significantly correlated with signature 1A

(Spearman’s rank correlation, rho ¼ 0.381, p ¼ 0.008).

Interestingly, we noticed a relatively consistent contri-

bution of MMR deficiency signatures (6, 15, 20 and 21)

across clonal and subclonal mutations (25/33, 76%),

four of which were primary cases with relapse showing

continued dominant contribution over time. One partic-

ular relapse case (429) showed further increased subclonal

contribution, 35% to 42%, from primary to relapse

(Figure S8). Furthermore, only signature 20 was signifi-

cantly more enriched in clonal, compared to subclonal

mutations (Wilcoxon’s paired sign-rank test, p ¼ 0.043).

However, unlike previous reports, tumors showing MMR

deficiency signatures completely lacked loss-of-function

mutations in MMR genes, MLH1 (MIM: 120436), MSH2

(MIM: 609309) and MSH6 (MIM: 600678), as seen in

more aggressive forms of thyroid cancer.3 However these

tumors showed a trend toward more small insertions and

deletions (<3 bp) compared to the tumors without MMR

deficiency signatures (p ¼ 0.070; Mann-Whitney U test)

which is the proposed etiology of these signatures. Simi-

larly, APOBEC (a family of cytidine deaminase enzymes

involved in messenger RNA editing) signatures (2 and 13)

also showed relatively consistent contribution (14/33,

42%) – where a single case with relapse (1156) showed

prominent increase in subclonal mutation contribution,

from 18% in clonal to 81% in subclonal (Figure S8).

Remarkably, signature 13 was significantly correlated

with increased clonal mutational burden (Spearman’s

rank correlation, rho ¼ 0.369, p ¼ 0.013), albeit in a small

number of samples (3/45, 7%; Figure S9). Collectively, to

investigate whether these observations are significant for

relapse cases, a larger study is required.

There were also significant inverse correlations between

the subclonal mutation burden and the number of muta-

tions assigned to signature 5 (Spearman’s rank correlation,

rho ¼ �0.317, p ¼ 0.028) and 14 (Spearman’s rank correla-

tion, rho ¼ �0.322, p ¼ 0.026), although the etiologies of

these signatures have not been elucidated (Figure S9).

Furthermore, samples carrying subclonal driver muta-

tions were enriched for signature 4, related to tobacco

smoking (p ¼ 0.022).

Interpreting these temporal differences should be

considered with caution, owing to the low number of mu-

tations in some of these tumors. Nonetheless, the overall

data indicates various mutational processes might have
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important roles in subclonal diversification during PTC

evolution.

Clonal and Subclonal Driver Alterations and Timing of

Genomic Events

Only a small portion of somatic mutations are cancer

drivers that confer clonal fitness and are positively selected

over the course of tumor evolution.63,64 Determining

whether cancer driver events occur early or late can suggest

whether they have a role in tumor initiation or tumor

maintenance. Also, determining clonality of these driver

eventsmight help in identifying potential therapeutic stra-

tegies. We identified 94 driver events (range in primary

PTC, 1 to 5; range in relapsed PTC, 1 to 6). Of these events

34 were found to be subclonal (range in primary PTC 1 to

3; range in relapse 1 to 4) and 60 to be clonal (range in Pri-

mary PTC, 1 to 3; range in relapse PTC, 1 to 2) (Figure 6).

Again, significantly more driver alterations were identified

with the use of multiple region WES than with single sam-

ple analysis (p ¼ 0.027).

Mutations in MAP kinase genes (BRAF, NRAS [MIM:

164790], HRAS [MIM: 190020]) and TP53 (MIM: 191170)

were predominantly clonal in both primary and relapse

PTC tumors, which suggests their involvement in tumor

initiation rather than maintenance or progression. On

the other hand, we have identified genes that were en-

riched for subclonal alterations such as CDKN2C (MIM:

603369), FANCF (MIM: 613897), MUTYH (MIM: 604933),

EP300 (MIM: 602700), PIK3CA (MIM: 171834), along

with ZNF and MUC4 amplifications (Figure 6). Relevant

to our finding of significant association between subclonal

mutations and the disease-free survival, we found enrich-

ment for subclonal driver events in relapse PTC (64%

versus 30%, p ¼ 0.030) (Figure 6).

Although we found no evidence of convergence when

analyzing subclonalmutations at the individual gene level,

we searched for potential convergence at the pathway

level, to investigate whether the subclonal genes were asso-

ciated with specific biological pathways. Pathway analysis

of the mutations that appeared to be subclonal revealed

enrichment for genes associated with the HIF-1a signaling

pathway (p ¼ 0.001) using ingenuity pathway analysis

(IPA) (Table S8). To further explore the prognostic value

of HIF-1a in PTC, we screened the protein localization of

HIF-1a in > 1000 PTC (inclusive of our 79 cases) using tis-

sue microarray. Interestingly, PTC tumors that showed

increased localization of HIF-1a protein tended to be clus-

tered in older age individuals (p < 0.001) and were signif-

icantly associated with higher stage (p < 0.001), as well

as extra-thyroidal extension (p¼ 0.027). Most importantly,

localization of HIF-1a was strongly correlated with adverse

prognosis (p ¼ 0.037) (Table S9). However, on multivariate

analysis, the disease-free survival was not significant after

adjusting for age, gender, extra-thyroidal extension and

stage of tumor (p ¼ 0.104, HR ¼ 1.29, 95% CI ¼ 0.95–

1.81). We have further analyzed the pathways involved

in different histological variants of PTC, (classical variant,
ber 7, 2019



Figure 6. Heterogeneity of Driver Mutations in PTC
Driver alterations detected for each tumor. All genes containing driver alterations across the cohort are included. The color represents the
clonal status (blue, clonal; red, subclonal). Number of driver alterations identified across tumors (top) and the barplots to the right are
proportion of variants found as clonal/subclonal in relapsed tissue (R), primary relapse (P; green), and primary non-relapse (P; pink) tis-
sues for each gene, along with total count of driver alterations. Pie charts represent the overall proportion of subclonal driver events per
category. Treatment intervals are in days, from diagnosis to surgical intervention.
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follicular variant and tall cell variant), via their subclonal

mutations. The HIF1a Signaling pathway was significantly

seen in tall cell variant. Conversely, no related significant

pathways were observed for the other two variants of PTC.
Chromosomal Instability and Genomic Doubling

Although we did not observe any association between sub-

clonal CNVs and clinical parameters in the tumors

analyzed, we explored the relation of copy number intratu-

mor heterogeneity and the underlying forces of chromo-

somal aberrations in tumor regions. By identifying

germline heterozygous single nucleotide polymorphisms

(SNPs) in tumors, we can conclude whether the gain or

loss of parental alleles in distinct parallel subclones has

ensued mirrored subclonal allelic imbalance. However,

no such event was observed in our PTC cohort.

Furthermore, we explored the effects of chromosomal

instability, by the loss of genomic segments harboring

clonal mutations, on mutational heterogeneity. Interest-

ingly, none of the subclonal mutations were found subclo-

nal as a result of copy number loss events, suggesting there

is no role of chromosomal instability on mutational

heterogeneity.

In addition, whole-genome doubling events were

observed in twocase subjects (1036 and1183),where events

were shared in 2/3 tumor regions in both cases. All clonal

mutationswere present at ploidyR 2 in both cases, suggest-

ing mutational burden occurred before genome doubling.

In one case subclonal mutations were also present at ploidy

R 2, which indicates two independent genome doubling

events. The fact that we had little evidence of WGD in

PTC, is consistent with previous reports21 and is expected,

given their oncogene-driven but otherwise quiet genome.

In summary, chromosomal instability seems to play no

role in driving PTC genome evolution.
Discussion

Although most PTC driver mutations are clonal, a portion

occurs subclonally. This pattern of PTC clonality has clear

clinical utility, since we found that individuals with high

subclonal mutations have a significantly higher rate

of relapse. Our findings, therefore, have potential implica-

tions on individualizingprognosis for individualswithPTC.

Key aspects of tumor evolution have been revealed

using multiregion sequencing in different solid tu-

mors.13,23,25,29,30 We pursued this approach in a large

cohort of PTC case subjects with relapse to understand

spatial and temporal aspects of tumor evolution and the

population characteristics of their subclonal evolution.

Our study provides an overview of PTC evolution by

demonstrating that intratumor heterogeneity is relatively

common. Consistent with previous expectations,18

neutral evolution was not observed in PTC; instead,

Darwinian-based linear and branched evolution was seen

across the cohort. Specifically, we have identified intratu-
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mor heterogeneity of somatic mutations in multiple re-

gions (n ¼ 257) from 79 PTC tumors and demonstrated

that 23.1% of the somatic mutations were not identified

in all regions of the tumor. Our data also confirm the pre-

viously known role of MAP Kinase genes in PTC tumori-

genesis especially in tumor initiation since most of these

driver genes, including BRAF, NRAS, HRAS, as well as

TP53 were almost exclusively clonal (Figure 6).

Although TCGA study on PTC sampled a single site from

each tumor, we compared the driver genes to see their pres-

ence in TCGA study.49 A good concordance was observed

in the frequency of genes in our study verses TCGA

(NRAS [10.12% versus 8.47%], HRAS [5.01% versus

3.49%], TP53 [2.53% versus 0.74%], CDKN2C [1.26%

versus 0.24%], FANCF [1.26% versus 0.24%], NF1 [MIM:

613113] [1.26% versus 0.49%], PIK3CA [1.26% versus

0.49%], TSHR [MIM: 603372] [1.26% versus 0.49%]) except

BRAF which was higher in TCGA (50.63% versus 59.35%).

The slight higher range in our cohort might be due to the

chance of getting more mutations in multi region

sequencing as described in this study. In our previous land-

scaping study on PTC, a concordance to TCGA was

observed for BRAF mutation (59.41% versus 59.35%).35

No mutations in EIF1AX (MIM: 300186), RBM10 (MIM:

300080), PPM1D (MIM: 605100), CHEK2 (MIM: 604373),

and a low frequency of TERT (MIM: 187270) promoter mu-

tations (6.3%) were observed in this study. The absence of

these mutations might be due to the ethnicity of the

cohort population as reported previously65 and low fre-

quency of TERT due to the selected cohort of early stage

as we have previously shown TERT promoter mutations

to be associated with advanced tumors.66 A high frequency

of RECQL5 (MIM: 603781) splice site recurrent mutation

(16.4% case subjects) and three frameshift mutations in

ZNF717 (MIM: 618405) (30.4% case subjects) were

observed in the cohort, but these genes were not associated

with any clinico-pathological characteristics. The RECQL5

splice site mutation (c.1586�1>GT) is an insertion of GT

nucleotides but there are two GT repeats after the insertion

keeping the sequence same up to c.1586�5, so it might not

play any role in splicing. The ZNF717mutations have been

previously reported by Molenaar et al. and others67 with

no clinical associations reported.

In our cohort, 29% of PTC tumors carried subclonal

driver alterations, with a portion of subclonal driver muta-

tions seemingly clonal in a single region but absent or sub-

clonal in other regions. These data reiterate the limitations

of single biopsy sampling, while underlining the impor-

tance of multi-region WES to address these limitations in

the detection of clonal and subclonal events for potential

drug targeting and improved clinical characterization of

PTC tumors. Furthermore, as per our association between

elevated subclonal mutations and shorter relapse-free

survival, individuals with early-stage PTC and a high sub-

clonal burden may signify a high-risk group that could

benefit from close observation and early treatment. Our

data have also shown further significant association
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between increased clinical aggressiveness, due to distant

metastasis and relapse, and genetic evolution in PTC and

may eventually help in the selection of therapeutic strate-

gies to prevent the expansion of these subclones.

Advances in cancer biology have highlighted the HIF-1a

pathway as a critical survival pathway, which can be regu-

lated at various levels, such as translation, transcriptional

activation, and degradation. Studies have shown an altered

HIF-1a pathway can lead to the downstream upregulation

of proteins promoting angiogenesis and anerobic meta-

bolism among other survival pathways (Figure S10). We

extended our knowledge of the survival effect of HIF-1a

pathway by identifying a significant correlation with

increased subclonal mutation burden. The apparent

involvement of this important pathway as a result of

increased subclonal mutational burden potentially makes

it an attractive target for therapeutic intervention and pre-

vention of tumor relapse, especially since there are many

drugs that can inhibit this pathway.

Conclusion

Overall, our studyhighlights the importance of usingmulti-

region WES of primary and relapsed PTC tumors to discern

the patterns of PTC progression and relapse. More impor-

tantly, our study underscores the importance of evolu-

tionary development as the engine driving cancer relapse.

This knowledge will pave the road to develop therapeutic

strategies that can target not only specific gene alterations

but also the trajectory landscape of these alterations.
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