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Abstract

Background: Deep Learning opens up opportunities for routinely scanning large bodies of biomedical literature
and clinical narratives to represent the meaning of biomedical and clinical terms. However, the validation and
integration of this knowledge on a scale requires cross checking with ground truths (i.e. evidence-based resources)
that are unavailable in an actionable or computable form. In this paper we explore how to turn information about
diagnoses, prognoses, therapies and other clinical concepts into computable knowledge using free-text data about
human and animal health. We used a Semantic Deep Learning approach that combines the Semantic Web
technologies and Deep Learning to acquire and validate knowledge about 11 well-known medical conditions
mined from two sets of unstructured free-text data: 300 K PubMed Systematic Review articles (the PMSB dataset)
and 2.5 M veterinary clinical notes (the VetCN dataset). For each target condition we obtained 20 related clinical
concepts using two deep learning methods applied separately on the two datasets, resulting in 880 term pairs
(target term, candidate term). Each concept, represented by an n-gram, is mapped to UMLS using MetaMap; we
also developed a bespoke method for mapping short forms (e.g. abbreviations and acronyms). Existing ontologies
were used to formally represent associations. We also create ontological modules and illustrate how the extracted
knowledge can be queried. The evaluation was performed using the content within BMJ Best Practice.

Results: MetaMap achieves an F measure of 88% (precision 85%, recall 91%) when applied directly to the total of
613 unique candidate terms for the 880 term pairs. When the processing of short forms is included, MetaMap
achieves an F measure of 94% (precision 92%, recall 96%). Validation of the term pairs with BMJ Best Practice yields
precision between 98 and 99%.

Conclusions: The Semantic Deep Learning approach can transform neural embeddings built from unstructured free-
text data into reliable and reusable One Health knowledge using ontologies and content from BMJ Best Practice.
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Background
One Health is an approach to achieve better public
health outcomes by combining efforts from different dis-
ciplines and domains [1]. It entails the recognition that
the health of animals and the environment are essential
for human health, and – specifically – that human medi-
cine can benefit from veterinary medicine, as animals
develop many of the same diseases as humans do [2].
Zoonotic infections and anti-microbial resistance are ex-
amples that have received much of the attention re-
cently. A recent study by Stroud et al. [3] compiled
several examples of One Health cases where human
medicine can benefit from veterinary studies. However,
while both biomedical and clinical knowledge about hu-
man and animal health are growing, they remain isolated
silos. This paper investigates to what extent it is possible
to acquire One Health knowledge from the evidence-
based biomedical literature and veterinary clinical
narratives.
We focus on using Semantic Deep Learning (Sem-

Deep) [4, 5] – an emerging area combining the Semantic
Web resources and technologies and Deep Learning for
this task. Deep Learning is an area of machine learning
that applies neural networks to “learn representations of
data with multiple levels of abstraction” [6]. The Seman-
tic Web embodies standards and tools for publishing
and processing meta-data, with ontologies at its core.
This paper proposes the use of ontologies as a way of
specifying the meaning of semantically related terms de-
rived from neural language models obtained via Deep
Learning. We explore how to turn information about
diagnoses, prognoses, therapies, as well as other clinical/
healthcare entities into computable knowledge “integrat-
ing individual clinical expertise and best external evi-
dence” [7].
There are two main challenges to achieving actionable

or computable knowledge about human diseases or
syndromes:
Multiple evidence-based resources – such as BMJ Best

Practice [8], DynaMed Plus [9] or UptoDate [10] – are
consulted by clinicians on a daily basis to assist clinical
decision making at point-of-care. Healthcare profes-
sionals need to provide effective and safe patient care,
and this also implies complying with Clinical Practice
Guidelines (CPGs) like those provided by the UK Na-
tional Institute for Health and Care Excellence (NICE)
[11]. CPGs tend to be evidence-based and have been de-
fined as “systematically developed statements to assist
practitioners and patient decisions about appropriate
health care for specific circumstances” [12]. Typically,
evidence-based resources, such as the NICE CPGs or
BMJ Best Practice, consist of human-readable text that
is updated periodically and is intended only for expert-
to-expert communication. A fundamental obstacle for
achieving interoperability between evidence-based re-
sources is lack of “grounding” or “normalisation” [13],
i.e. the fact that biomedical/clinical terms appearing in
the NICE CPGs or BMJ Best Practice are not mapped to
specific terminological entries like the Unified Medical
Language System (UMLS) [14] Metathesaurus. Normal-
isation may help with periodic updates of evidence-
based resources from the biomedical literature, as
PubMed/MEDLINE articles are indexed with Medical
Subject Headings (MeSH) [15], which is included in the
UMLS Metathesaurus. Unfortunately, annotating bio-
medical articles with MeSH terms is difficult and expen-
sive [16] and normalisation of evidence-based resources
is not being carried out.
World-leading terminologies, such as the Systematized

Nomenclature of Medicine Clinical Terms (SNOMED
CT) [17], are included within the UMLS Metathesaurus
and provide multiple terms for expressing a biomedical
concept. However, SNOMED CT does not contain for-
mal or semi-formal descriptions that help understand
how a disease develops and which treatment approaches
can be considered. For example, medication statements
that state which drugs treat a disease or syndrome are
not included in SNOMED CT. Hence, even automatic
acquisition of a partial set of SNOMED CT concepts
relevant for a disease or syndrome (e.g. medications/
drugs and clinical findings) remains an unmet need.
This paper investigates whether a SemDeep approach

can help address both challenges. On the one hand, the
neural language models can be applied to PubMed Sys-
tematic Reviews [17], which is a large collection of
evidence-based articles (e.g. clinical trials, systematic re-
views, and CPGs) available in PubMed/MEDLINE. Vec-
tor representations of the terms (“word embeddings” or
“neural embeddings”) can be learnt from this unstruc-
tured text corpus, where semantically related terms will
end up close in the representational space. On the other
hand, if the terms that participate in the associations de-
rived from these distributional similarities are normal-
ised (i.e. terms with vector representations are mapped
to UMLS Metathesaurus concepts and SNOMED CT
concepts), that would allow: a) the expansion of the
knowledge that exists in SNOMED CT; and b) auto-
matic derivation of SNOMED CT subsets of semantic-
ally related concepts that can be reused and shared.
In this paper we focus on 11 well-known medical con-

ditions that affect both humans and animals: heart fail-
ure, asthma, epilepsy, glaucoma, chronic kidney disease,
osteoarthritis, anaemia, arthritis, diabetes mellitus,
hypertension, and obesity. We adhere to “comparative/
translational medicine” [18] and investigate the added
value of One Health by combining: a) the Systematic Re-
views Subset of PubMed, and b) a large set of veterinary
clinical narratives collected by the Small Animal
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Veterinary Surveillance Network (SAVSNET) [19]. We
rely on existing ontologies (lemon (Lexicon Model for
Ontologies) [20] and OBAN (Open Biomedical Associa-
tioNs) [21]) to formally represent associations (semantic-
ally related term pairs) derived from neural embeddings.
However, as Deep Learning algorithms have a “black-
box representation” [22], their wider acceptance and
adoption in the biomedical and clinical domain requires
confidence and trust. To build such confidence (through
transparency and interpretability), we use evidence-
based resources (namely BMJ Best Practice) to verify if
the associations (the semantic relatedness) captured by
neural embeddings are reliable for human medicine. We
note that clinicians consult multiple evidence-based re-
sources, so BMJ Best Practice cannot be taken as the
only gold standard that provides ground-truth. However,
in practical terms, when there is a lack of external evi-
dence from systematic research about the meaningful as-
sociation of two terms (e.g. a medical condition and a
treatment), the term pair should be considered as
unrelated.

Related work
Neural embeddings learnt from the biomedical litera-
ture or clinical narrative corpora have been widely
used from many tasks, but they pose a challenge
when measuring their quality. On the one hand, the
biomedical/clinical domain requires background
knowledge that makes crowd-worker evaluation (e.g.
users of Amazon Mechanical Turk) unsuitable. On
the other hand, there are no similarity and related-
ness benchmarks developed for well-known medical
conditions per se. Currently, there are four main
standard benchmarks that are specific to the medical/
clinical domain and suitable for a semantic similarity
and relatedness task: Caviedes and Cimino [23] with
10 medical term pairs; Pedersen et al. [24] with 30
medical term pairs; Pakhomov et al. [25] with 101
clinical term pairs; and Pakhomov et al. [26] with 724
medical term pairs (the last two available at [27]). In
total, these standard benchmarks provide less than 1
K term pairs. It should be noted that similarity and
relatedness benchmarks were used to evaluate trad-
itional distributional semantic models [28] – e.g. La-
tent Semantic Analysis (LSA) [29] or Latent Dirichlet
Allocation (LDA) [30]. Faruqui et al. [31] emphasise
that the lack of standard evaluation methods for
neural embeddings was the trigger to create new
benchmark datasets (e.g. Simlex-999 [32] and
SimVerb-3500 [33] that are outside of the biomedical/
clinical domain) and highlight that “the use of word
similarity tasks for evaluation of word vectors is not
sustainable and calls for further research on evalu-
ation methods”.
A common characteristic of biomedical/clinical docu-
ments is that “longer words and phrases are frequently
mapped onto a shorter form such as abbreviations or ac-
ronyms for efficiency of communication” [34]. For ex-
ample, “heart failure” (long form) can appear as “HF”
(short form). Another issue is that “the number of abbre-
viations and the average number of definitions per abbre-
viation” is ever growing [34]. For example, “HF” (short
form) can have multiple meanings, and therefore, refer
to multiple senses besides “heart failure”, such as “His-
panic female” or “high-fat” or “Hartree-Fock” or “hemo-
filtration”. Although short forms (abbreviations and
acronyms) are present in UMLS, several studies [35–37]
have shown UMLS to have shortcomings when mapping
short forms to long forms. Sense inventories have been
created such as SaRAD [38], ADAM [39], and more re-
cently Allie [40] – in May 2018, Allie contained 840 K of
short forms. These sense inventories and their algo-
rithms assume that the short and long form co-occur in
the biomedical literature, such as MEDLINE/PubMed
abstracts; however, they rarely co-occur in clinical
narratives [41, 42]. Sense inventories from clinical
documents are fewer in number than sense inventor-
ies from the biomedical literature and contain fewer
short forms. Wu et al. [43] highlight that “accurate
identification of clinical abbreviations is a challenging
task and advanced abbreviation recognition modules
are needed for existing clinical NLP systems”. Dealing
with short forms is therefore a challenge that requires
an approach to deal with terms appearing in both
biomedical and clinical documents.
The paper is organised as follows. In the next section,

we present a SemDeep approach that builds on our pre-
vious work [44–47]. We first introduce the datasets, and
then present the approach that deals with two NLP
tasks: a semantic similarity and relatedness task, and a
named-entity recognition (NER) task. As part of the
SemDeep pipeline, we show how to reuse existing ontol-
ogies to formally represent the associations derived from
neural embeddings in OWL. We also create ontological
modules with the SNOMED CT ontology and illustrate
how to query the extracted knowledge using the
SPARQL query language [48], which exploit the under-
lying ontological representations and can be executed
using Jena ARQ [49].

Materials and methods
Data
The PubMed Systematic Reviews dataset (the PMSB
dataset): we downloaded the MEDLINE/PubMed base-
line files for 2015 and up-to-date files through 8th June
2016. Applying the PubMed Systematic Reviews filter
[17], a subset of 301,201 PubMed publications published
between 2000 and 2016 was obtained. We extracted
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titles and available abstracts. We note that this dataset
was also used in our previous study on sepsis [46].
The SAVSNET dataset (the VetCN dataset): a col-

lection of 2,465,420 de-identified and non-empty vet-
erinary clinical narratives was obtained from
SAVSNET on 20th October 2017. SAVSNET is an
initiative by the British Small Animal Veterinary As-
sociation and the University of Liverpool that collects
free-text consultations notes across around 500 UK
veterinary premises in real-time.
We used the UMLS Metathesaurus with close to 3.7

M biomedical/clinical concepts with 203 sources con-
tributing to concept names (as of May 2018), including
SNOMED CT and the Veterinary Extension for
SNOMED CT (VetSCT) [50]. We used MetaMap 2016v2
(released September 2016) and the SNOMED CT ver-
sion released in January 2017 in OWL to maximise com-
patibility among versions. When using the UMLS
Terminology Services [14] to access the UMLS Metathe-
saurus online, we select the UMLS2016AB version. As
we cannot release a subset of the UMLS Metathesaurus
or SNOMED CT, to replicate the results obtained with
our method it is necessary to use the UMLS API [51]
and the OWL API [52].

SemDeep pipeline
Below we describe each step of the pipeline intended to
acquire and validate knowledge about medical condi-
tions from the unstructured text datasets.

Step 1: computing n-grams from unstructured text
We employed word2phrase within the word2vec soft-
ware package [53] to compute n-grams from the un-
structured text datasets (e.g. PMSB or VetCN). It
should be noted that text within consultation notes
(e.g. “today pain++”) contains a significant number of
misspellings, local abbreviations and short forms, and
lacks the grammatical correctness found within bio-
medical literature. After applying word2phrase, the
character “_” appears within tokens that co-occur re-
peatedly together (e.g. “heart_failure” is a bigram with
two tokens). Each n-gram has a frequency count. We
note that an n-gram captures words or tokens that
appear together in a textual corpus with a certain fre-
quency. Therefore, an n-gram can capture words and
phrases as well as combinations of tokens that may
not correspond exactly to meaningful unit when
looked in isolation phrase, e.g. “(COPD)_is_a”.

Step 2: creation of neural embeddings
We create neural embeddings with CBOW (Continuous
Bag-of-Words) and Skip-gram [54] using the word2vec
software. The input for CBOW and Skip-gram is the un-
structured text with n-grams, where the character “_”
typically denotes the presence of an n-gram of size
greater than one (e.g. a bigram or a trigram). The output
for CBOW and Skip-gram is typically: 1) a lexicon (i.e. a
list of n-grams) that is present in the unstructured text
and for which the vector representations have been
learnt; and 2) a binary file that contains neural embed-
dings, i.e. real-number representations for the terms in
the lexicon. When producing neural embeddings, there
are a small number of hyperparameters that need to be
tuned – we used the hyperparameters configuration de-
scribed in our previous work [55].

Step 3: obtaining term pairs for the semantic similarity and
relatedness task
Taking the vector for a specific target term (e.g. a disease
or syndrome) and applying the cosine similarity, a list of
top ranked terms (highest cosine values) can be obtained
from the created neural embeddings. These top ranked
terms are candidate terms, i.e. terms that need to be
judged as semantically similar or related to the target
term. Some authors agree that “semantic similarity rep-
resents a special case of semantic relatedness” [24]; Hill
et al. [32] interpret “relatedness” as “association”, where
the strongest similarity relation is synonymy; this inter-
pretation is applied in this study.
Target terms selection: to choose the target terms, we

first select the n-grams that pass the threshold of 1 K
frequency count and MetaMap has assigned them
UMLS Metathesaurus concepts with the Semantic
Type “T047|Disease or Syndrome”. The final selection
of target terms needs to be done manually as: a)
MetaMap may erroneously assign a UMLS Metathe-
saurus concept to an n-gram, particularly if the n-
gram is a short form such as “HF”; and b) the well-
known medical conditions selected as target terms
should be covered by BMJ Best Practice – the pre-
ferred gold standard in this study.
Number of top ranked candidate terms per target term:

to the best of our knowledge, no published study justifies
the number of terms selected with the highest cosine
value. Different studies used different numbers: from
three [56], ten [57, 58], 40 [59] to a range of numbers
(e.g. 5, 10, 20, 40, and 100) [60]. We limit the list of can-
didate terms to the 20 n-grams with the highest cosine
value.

Step 4: named entity recognition
Named Entity Recognition (NER) consists of “identifying
specific words or phrases (‘entities’) and categorizing
them” [61]. We use MetaMap to categorise the n-grams
into one or more of 133 broad categories (Semantic
Types) from the UMLS Metathesaurus. To determine if
MetaMap supplies a correct CUI for an n-gram, detailed
guidelines were developed that intend to favour
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compatibility with the SNOMED CT Compositional
Grammar [62]:

� Single Map (SM) – MetaMap provides a single CUI
that captures the full meaning of the n-gram. This
case corresponds to “Simple Expression” [62], i.e. a
single concept identifier. For example, the n-gram
“septic_shock” is mapped only to UMLS CUI =
C0036983.

� Multiple Maps (MM) – MetaMap provides
multiple CUIs that capture the meaning of the n-
gram, and one or more focus concepts may ap-
pear among the CUIs provided. This case may
also correspond to “Simple Expression” [62], al-
though it more often corresponds to “Expression
with Refinements” or “Multiple Focus Concepts”
[62]. Selection of focus concept(s) is guided by six
principles described in the Additional file 2.

� Incorrectly Mapped (IM) – MetaMap provides one
or more CUIs, however, none captures the meaning
of the n-gram. For example, the n-gram “HF” is not
mapped to “C0018801|Failure, Heart (Heart
failure)”.

� Not Mapped (NM) – MetaMap does not provide
any CUI. For example, the n-gram “HFpEF” is not
mapped to “C3889077|Heart failure with preserved
ejection fraction”.

Three domain experts (two biomedical terminologists
and a medical consultant) inspected the results of Meta-
Map considering the above-mentioned guidelines and
assigned to each candidate term (n-gram) one of the
above values {SM, MM, IM, NM}. Beside the candidate
term (n-gram), we also provide the target terms (n-
grams) in lower case to provide local context. When an
n-gram is incorrectly mapped or not mapped, a CUI for
the n-gram is manually assigned. On the one hand, the
guidelines presented aim to reduce the number of CUIs
assigned to each n-gram. On the other hand, the n-
grams are the result of statistical NLP and may contain
short forms, and therefore, decomposing the n-grams
into lexico-semantic units of meaning has proved de-
manding in our previous work [45–47] (even with years
of experience doing clinical coding). Hence, the three
domain experts worked together to identify the minimal
semantic constituents of the n-grams according to the
guidelines, i.e. determining systematically the focus
concept(s).

Dealing with short forms
We created a short form detector to identify n-grams
with or without one or more clinically meaningful short
forms. The detector is based on a hybrid approach: it
contains if-then-else heuristic rules and utilises two lists
of terms, i.e. a list of measurement units compiled from
three resources [63–65] and the rank frequency list of
the British National Corpus of written and spoken Eng-
lish [66] with 7726 words. The underlying assumption is
that a measurement unit can have one or more short
forms. For example, “mmHg” is a short form for the
long form “millimetre of mercury”.
Figure 1 depicts a flowchart outlining how the short

form detector that assigns one of the following labels to
an n-gram:

� “SF-U” when an n-gram contains a unit of measure-
ment. The n-gram is mapped to the UMLS
Metathesaurus concept “C1519795|Unit of
Measure”.

� “SF-NU” when an n-gram contains a number with a
unit of measurement. The n-gram is mapped to the
UMLS Metathesaurus concept
“C0242485|Measurement”.

� “SF” when an n-gram contains a short form token
that is not a measurement unit or a measurement
unit and a number.

� No label when an n-gram does not contain a short
form.

For those n-grams with a short form that is not a
measurement unit or a measurement unit and a number,
the domain experts manually utilised Allie as the pre-
ferred sense inventory, for expanding short forms into
long forms. The reasons for using Allie are: a) it contains
a much larger number of short forms than the UMLS
SPECIALIST Lexicon; b) it has long forms for a short
form ranked based on appearance frequency in
PubMed/MEDLINE abstracts; and c) for each long form
the research area and co-occurring abbreviations are
provided, thus aiding disambiguation.
The short form detector can make two errors, and the

domain experts will assign the following labels to an n-
gram:

� “SF-I” denotes that a short form identified in an n-
gram was assessed as not clinically meaningful, i.e.
“incorrect”.

� “SF-NF” denotes that a clinically meaningful short
form was not identified in an n-gram, i.e. “not
found”.

Experiment set-up and performance measures
We investigate the impact of the short forms on the per-
formance of MetaMap via two experiments:

� Experiment 1 (EXP1): we expose the candidate
terms directly to MetaMap, i.e. the lists with the 20
top-ranked n-grams (i.e. the 20 n-grams with the



Fig. 1 Flowchart of the short form detector introduced – a diagrammatic representation outlining how the short form detector assigns the labels
{SF-U, SF-NU, SF}. If no label is assigned, this means that the n-gram has no clinically meaningful short form(s)
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highest cosine value) are taken as input for
MetaMap.

� Experiment 2 (EXP2): we expose firstly the
candidate terms (n-grams) to the short form
detector described above, and for those n-grams
with one or more short forms, we expand each
short form into the corresponding long form by
utilising Allie. Once the short forms are replaced
with the long forms, we take the modified/ex-
panded candidate terms (n-grams) as input for
MetaMap.

For both experiments, we assume that the candidate
terms are biomedical or clinical terms, and thus, there
should be no True Negatives (TNs). We use the con-
ventional evaluation measures of Precision, Recall,
and F measure [67] to calculate the MetaMap per-
formance. As Pratt and Yetisgen-Yildiz [68], we have
weaker MetaMap precision and recall where exact
matches (typically Single Map) and partial matches
(typically Multiple Maps) are equally counted, i.e. SM
and MM are considered as True Positives (TPs). An
Incorrectly Mapped (IM) is interpreted as False Posi-
tive (FP). A Not Mapped (NM) is interpreted as a
False Negative (FN). Hence, we calculate precision as
TP/(TP + FP) [67] and recall as TP/(TP + FN) [67]. To
calculate F measure, we use equal weighting of
precision and recall, calculating F measure as (2 x
Precision x Recall)/(Recall + Precision) [67]. We com-
pute precision, recall, and F measure for each well-
known medical condition under study (i.e. target
term), and then, average each evaluation measure over
all to obtain an overall measure of performance (a.k.a.
macro-averaging) [67]. We also report micro-
averaging, i.e. making a single contingency table for
all data [67] – all lists of the 20 n-grams with highest
cosine value that are the input to MetaMap.
Following Smucker et al. [69], we measure statistical

significance of the difference in the mean average
precision, recall, and F measure to judge if there is a
statistically significant improvement in performance
for EXP2 (short form detection and expansion into
long form before applying MetaMap to the unique
candidate terms) when compared with the perform-
ance for EXP1 (applying MetaMap to the unique can-
didate terms). We use the Student’s paired t-test [70]
as implemented in scikit-learn [71] to compare per-
formance of EXP1 and EXP2.
All unique candidate terms (n-grams) are exposed to the

short form detector. We also compute precision, recall,
and F measure for the short form detector considering all
candidate terms (micro-averaging) and the capability of
the short form detector to identify n-grams with or with-
out one or more clinically meaningful short forms.
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Step 5: validation of the term pairs mapped to UMLS
Metathesaurus concept pairs using BMJ best practice
This step validates the candidate terms obtained in Step
3 for the semantic similarity and relatedness task using
BMJ Best Practice, which covers prevention, diagnosis,
treatment and prognosis for well-known medical condi-
tions. It contains “top down” knowledge manually ex-
tracted by medical experts and is based both on the
latest clinical practice guidelines and underlying research
evidence. Hence, BMJ Best Practice can be considered
an evidence-based gold standard, supporting frontline
clinicians.
The validation involves four domain experts. The three

experts from the previous step (two terminologists and a
medical consultant) together validate the concept pairs
considering BMJ Best Practice and external resources
(whenever necessary). A health informatician – who
works with the content of BMJ Best Practice – contrib-
utes to the final stages of validation of the concept pairs
and (additionally) provides feedback to the editors of
BMJ Best Practice. To avoid bias, the domain experts
validate the concept pairs without knowing: a) the data-
set from which the concept pairs were derived; and b)
the neural language models applied to the dataset. To
avoid further hints about the underlying dataset, the tar-
get terms (n-grams) are presented in lower case.
The outcome of this step is a set of 3-tuples (target

concept, candidate concept, validation label). The target
and candidate concepts are UMLS Metathesaurus con-
cepts representing the focus concept(s) of the n-grams
for the term pairs (target term, candidate term). The val-
idation label indicates how the matching between a can-
didate concept and a term from BMJ Best Practice is
performed and reflects the amount of domain knowledge
required to perform such a match. We distinguish six
cases when matching a candidate concept name from
the UMLS Metathesaurus to a term appearing in BMJ
Best Practice:

1. Itself – a candidate term may have as its focus
concept(s) the same UMLS Metathesaurus concept
as the target term (i.e. the well-known medical con-
dition), and therefore, they will not be matched to
terms appearing in BMJ Best Practice. This case de-
notes synonymy (i.e. the strongest similarity
relation).

2. Relatedness by exact/approximate match –
candidate concept names as they appear in the
UMLS Metathesaurus may match exactly or
approximately terms appearing in BMJ Best
Practice, where the biomedical/clinical meaning is
the same. This typically denotes a similarity relation
between the candidate concept and the BMJ term.
This case can be interpreted as “normalising” BMJ
Best Practice terms. For example, “pyrexic”
(adjective) when used to refer to patients with
“pyrexia” (noun) can be interpreted as “pyrexia”.
From a linguistic point of view, “pyrexic” is a
morphological variant of “pyrexia”, and thus, this is
an example of an approximate match where the
biomedical/clinical meaning is the same. Some
“implicit knowledge” may be needed for this case.

3. Relatedness by inexact match (hypernym/hyponym)
or (hyponym/hypernym) – candidate concept names
as they appear in the UMLS Metathesaurus may
have is-a relations with the terms appearing in BMJ
Best Practice or vice versa. An is-a relation is also
similar to a hypernym/hyponym relation or general-
isation/specialisation relation and it denotes a simi-
larity relationship. For example, “bacterial sepsis” is-
a type of “sepsis”, where “bacterial sepsis” is the
hyponym (specialisation) and “sepsis” is the hyper-
nym (generalisation). Hypernym/hyponym relations
can be used to build semantic taxonomies (a.k.a.
hierarchies). Some “implicit knowledge” may be
needed for this case.

4. Relatedness by inexact match (background
knowledge) – candidate concept names as they
appear in the UMLS Metathesaurus may have
similarity (similar meaning or is-a relations) or re-
latedness (association) relations with the terms
appearing in BMJ Best Practice, although the rela-
tions are not obvious for someone lacking biomed-
ical/clinical knowledge. To make the “implicit
knowledge” explicit, one or more excerpts of exter-
nal evidence from systematic research or termino-
logical resources are provided. This case may apply
transitivity, i.e. “if A is related to B and B is related
to C, then A is related to C”. Therefore, by making
known one or more terms (call them B) it is feasible
to make transparent how a UMLS Metathesaurus
concept A related to a term C appearing in BMJ
Best Practice. In other words, by making B known,
and how A and C relate to B, implicit knowledge
becomes “explicit”.

5. Unrelated: not clinically meaningful – An n-gram
can capture combinations of words or tokens that
can be mapped to a focus UMLS Metathesaurus
concept(s), although it may not be interpreted per
se as clinically meaningful in connection with a
given medical condition. For example, “guided” is a
unigram for which alternative UMLS Metathe-
saurus concepts are available to represent multiple
meanings or senses: “C0181090|Guide (Professional
guide)”; “C0302614|Guide (Guide device)”; and
“C1706050|Guide (Guide Device Component)”.
However, for “sepsis”, any sense for the n-gram
“guided” per se is not clinically meaningful.



Fig. 2 Overview of the extended version of the lemon core ontology (called here the lemonEXT) used for this study
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6. Unrelated: excluded – candidate concept names as
they appear in the UMLS Metathesaurus may not
have up-to-date clinically meaningful association
(relatedness) relations with the terms appearing in
BMJ Best Practice, even if there is implicit know-
ledge that can justify the association. A typical ex-
ample of this case are treatments or therapies that
became known as ineffective or have adverse effects.
For example: “The only novel anti-sepsis agent to
successfully complete a phase 3 sepsis trial, human
recombinant activated protein C, was recently taken
off the market after a follow up placebo-controlled
trial (PROWESS SHOCK) failed to replicate the re-
sults of the initial registration trial (PROWESS) per-
formed 10 yr earlier.” [72]

The process of assigning the six validation labels intro-
duced above is iterative. A focus concept for a candidate
term and a term from BMJ Best Practice may have been
allocated the “Relatedness by Inexact match (background
knowledge)” label to indicate that one or more excerpts
of external evidence from systematic research or ter-
minological resources are needed to establish “related-
ness”. However, a closer inspection of the “implicit
knowledge” that has become explicit may change the
label into: “Relatedness by exact/approximate match”, or
“Relatedness by Inexact match (hypernym/hyponym) or
(hyponym/hypernym)”, or “Unrelated: Excluded”. The
cases under the “Relatedness by Inexact match (back-
ground knowledge)” label may be further refined, for ex-
ample, by considering the relationship between cause
and effect.
The six validation labels introduced can be used for

calculating precision by considering: a) the last two “un-
related” labels representing False Positives (FPs); and b)
the “itself” and the labels starting with “Relatedness by”
representing True Positives (TPs).
Step 6: formal representation of the knowledge acquired
and validated
We use OWL-DL to formally represent concept names,
concept expressions, and terminological axioms. Figures
2 and 3 overview the two core ontologies that will be
populated, i.e. the extended lemon core ontology (called
here the lemonEXT) [73] and the modified OBAN core
ontology (called here the OBANmod) [74]. Both core
ontologies reused the USTG (UMLS Semantic Types
and Groups) core ontology in OWL-DL that we created
programmatically and utilised in [45, 46]. The USTG
core ontology represents in OWL the information publi-
cally available at [75].
The USTG core ontology represents formally the

UMLS Semantic Types and Groups as well as the part-
whole relations among them by reusing the OWL object
properties “part_of” (obo:BFO_0000050) and “has_part”
(obo:BFO_0000051) from the Basic Formal Ontology
(BFO) [76]. The USTG core ontology also contains the
UMLS Metathesaurus concept, an OWL class we cre-
ated that can have as a subclass any Metathesaurus con-
cept from the UMLS. A new addition to the USTG core
ontology is the OWL annotation property “hasDbXre-
fInSCT” to create annotation assertion axioms that act
as cross-reference between the UMLS Metathesaurus
and SNOMED CT. The annotation property “hasDbXre-
fInSCT” is a sub-annotation property of the annotation
property “database_cross_reference” (oboInOwl:hasDbX-
ref) from the oboInOwl meta-model [77]. The USTG
core ontology has a total of 593 axioms (class count:
151; individual count: 0) and its Description Logic (DL)
expressivity is ALEI.
Table 1 shows the axiom patterns in Manchester

OWL Syntax [78] for populating programmatically the
main OWL Classes of lemonEXT and OBANmod core
ontologies. In this study, a pattern (a.k.a. axiom pattern)
can represent a set of OWL axioms.



Fig. 3 Overview of the modified version of the OBAN core ontology (called here the OBANmod) used for this study
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The extended lemon core ontology (lemonEXT)
In Fig. 2, the concept “Lexical Topic” represents the tar-
get term (i.e. an n-gram corresponding to a given med-
ical condition); the concept “Lexicon” represents the
lexicon, i.e. a list of the 20 top-ranked terms (n-grams
with the highest cosine value for the target term) ob-
tained with CBOW and Skip-gram; and the concept
“Lexical Entry” represents an n-gram in the lexicon. We
reuse two concepts from MeSH: “D064886|Data Set”
and “D016571|Neural Networks (Computer)”. The latter
is a MeSH heading that has the entry term “Neural Net-
work Models”, which is the term that appears in Fig. 2.
The two MeSH concepts are represented as OWL clas-
ses and they are connected with the lemon concept
“Lexicon” by reusing the OWL object property “corre-
lated with” (obo:RO_0002610) from the Relations Ontol-
ogy (RO) [79] .
As depicted in Fig. 2, the concept “Lexical entry” from

lemon is connected to the UMLS Metathesaurus con-
cept from the USTG core ontology with the OWL object
property “denotes” from the Ontology Lexicon (Ontolex)
ontology [80]. We made the OWL Class “Lexical sense”
from lemon a superclass of the OWL Class UMLS Se-
mantic Type from the USTG core ontology. As one or
more UMLS Metathesaurus concept(s) is the focus
concept(s) for each n-gram, one or more UMLS
Metathesaurus concept(s) from the UTSG ontology cap-
tures the senses or meanings of a lexical entry. Taking
into account the UMLS Semantic Type(s) assigned to
each UMLS Metathesaurus concept, it is possible to
categorised the n-grams based on the OWL class de-
scriptions within the USTG ontology – e.g.
“C0036983|Septic Shock” is a subclass of “T046|Patho-
logic Function” – and therefore, we follow the “seman-
tics by reference” principle from [81] that says: “the
expressivity and the granularity at which the meaning of
words can be expressed depend on the meaning distinc-
tions made in the ontology”.
The lemonEXT core ontology has a total of 643 ax-

ioms (class count: 158; individual count: 0) and its DL
expressivity is ALEI. Once the lemonEXT is populated,
it is possible to create SPARQL SELECT queries retriev-
ing for each target term (i.e. n-gram) the candidate con-
cepts, i.e. the UMLS Metathesaurus concepts that are
the focus concepts of candidate terms (n-grams). We
built three queries (see the Additional file 4 for details)
that retrieve candidate concepts based on few UMLS Se-
mantic Types and a UMLS Semantic Group. The UMLS
Semantic Types and Group chosen intend to bring for-
ward candidate concepts related to the diagnoses and
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management of a given medical condition (i.e. the target
term):

� The UMLS Semantic Types “T059|Laboratory
Procedure”; “T060|Diagnostic Procedure”; and
“T061|Therapeutic or Preventive Procedure”. These
are the three subtypes of the UMLS Semantic Type
“T058|Health Care Activity” [82]. We call the query
q1 and it utilises these four UMLS Semantic Types.

� The UMLS Semantic Types “T034|Laboratory or
Test Result”; and “T184|Sign or Symptom”. These
are the two subtypes of the UMLS Semantic Type
“T033|Finding” [82]. We call the query q2 and it
utilises these three UMLS Semantic Types.

� The UMLS Semantic Group “Chemicals & Drugs”
(a.k.a. CHEM) that contains UMLS Semantic Types
that are chemicals taking into account their
structural and functional perspective [82]. Some of
the UMLS Metathesaurus concepts belonging to
CHEM are typically drug treatments (medications).
We call the query q3 and it utilises the Semantic
Group CHEM.

The modified version of the OBAN core ontology
(OBANmod)
An OBAN association relates biomedical entities (e.g. X,
Y) “without enforcing directionality on the link” [21] (i.e.
“X is associated with Y” or “Y is associated with X”) and
separating the association between entities from its prov-
enance [21]. Although we can safely state that there is a
clinically meaningful association for the term pair (heart
failure, pulmonary edema) it does not mean that all pa-
tients with “heart failure” will also have “pulmonary
edema”. Instead, we should interpret the term pair (heart
failure, pulmonary edema) as a “sometimes true” associ-
ation relationship [21] that can be represented in OWL
as an OBAN association.
Figure 3 presents a modified version of the OBAN

core ontology for this study considering:

1. The OBAN association is between two UMLS
Metathesaurus concepts represented as OWL
Classes as in [21], and we also use punning. It
should be noted that OWL 2 DL relaxes the
separation between classes and individuals.

2. The validations labels introduced in Step 5 are
represented as OWL Classes that have as super-
classes OWL Classes from the Evidence and
Conclusion Ontology (ECO) [83] (release of 2018-
04-06). A total of five OWL Classes from ECO have
been reused as well as the subclass axioms for them
in the ECO.

3. The provenance that validates the “sometimes true”
association relationship is BMJ Best Practice. To
represent a document from BMJ Best Practice, we
first reuse the OWL Class “Document” from the
Bibliographic Ontology Specification ontology
(BIBO) [84], and then, create a new subclass with
the name “BMJ Best Practice document”. Therefore,
“BMJ Best Practice for chronic congestive heart
failure” [85] will be an OWL instance of the OWL
Class “BMJ Best Practice document”.

4. Excerpts from biomedical or clinical resources are
needed for this study, such as: 1) the term(s)
appearing in BMJ Practice that are key when
validating the concept pairs; or 2) additional
information that make the “implicit knowledge”
explicit, such as excerpts from the scientific
literature (e.g. PubMed articles or MedlinePlus [86]
Webpages) or from terminologies like SNOMED
CT [62]. To represent an excerpt, we reuse the
OWL Class “Excerpt” from the BIBO. In the BIBO,
an “Excerpt” is part of a “Document”. We create the
annotation property “excerpt_text” to store terms
from BMJ Best Practice or lines of text that are
considered pertinent when making the “implicit
knowledge” explicit. Therefore, in this study, every
OBAN association will have at least one instance of
the OWL Class “Excerpt”, i.e. BMJ term(s) that are
key to validate the focus concept pairs for the term
pairs.

5. The replacement and modification of OWL data
properties from OBAN to better fit the current
study: a) the OWL data property
“date_creation_association” where we store the
month and year when the association was validated;
b) the OWL data property “source_date_issued”
where we store the last update of BMJ Best Practice
document used to validate the association; and c)
relax the xsd:dateTime declarations from OBAN as
sometimes it proves difficult to trace the
publication date for a PubMed paper or the release
day for a terminological resource.

The OBANmod core ontology has a total of 779 axioms
(class count: 181; individual count: 6) and its DL expres-
sivity is ALEHI (D). Once the OBANmod is populated, it
is possible to refine the SPARQL queries q1 to q3 into
q1V to q3V (see the Additional file 4 for details), where
the candidate concepts (i.e. UMLS Metathesaurus con-
cepts that are the focus concepts for the candidate terms)
should have an up-to-date clinically meaningful associ-
ation to the target concepts (the selected diseases or syn-
dromes) according to BMJ Best Practice (i.e. human
medicine), and thus, the UMLS Metathesaurus concept
pairs should have the validation labels introduced in Step
5 starting with “Relatedness by” or the validation label
“Itself”.
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Extracting locality-based modules
Our aim is the extraction of locality-based modules from
the SNOMED CT ontology that are: 1) much smaller in
size (i.e. number of axioms) than the SNOMED CT
ontology; 2) as specific as possible for a given medical
condition while being logically sound according to
OWL-DL; and 3) can be reused and shared among
organisations.
We extract a locality-based module (a.k.a. upper mod-

ule) [87] per target term using as signature all the
SNOMED CT concept identifiers mapped to UMLS CUI
pairs validated with BMJ Best Practice content. We use
the reasoner FaCT++ [88] for the method ModuleType
BOT in the OWL API [52] as we did in [47]. A DL rea-
soner, like FaCT++, can calculate inferred information
(e.g. inferred subsumption hierarchy) from the asserted
information, i.e. the axioms within an ontology. A
locality-based module contains at least all the (entailed)
super-classes of an OWL class included in the signature
[87] as well as all axioms relevant to the meaning of the
OWL Classes in the signature. A SNOMED CT concept
may have one or more attribute-value pairs [62], where
the value of the pair is typically another SNOMED CT
concept. Attribute-value pairs are considered relevant to
the meaning of a SNOMED CT concept.
A locality-based module keeps the SNOMED CT top-

level hierarchies for the OWL Class extracted, which is
expected by the clinicians, and is likely to be smaller
than the SNOMED CT ontology. The SNOMED CT
ontology corresponding to the January 2017 release con-
tains a total of 1.5 M axioms (Class count: 325 K; indi-
vidual count: 0; Object property count: 80; SubClassOf
axioms count: 246 K; and EquivalentClasses axioms
count: 79 K) and its DL expressivity is ALER.
Multiple SPARQL queries can be built seeking to

gain insights into diseases and syndromes of signifi-
cance for both human medical and veterinary health-
care, i.e. One Health knowledge. For this study, the
SPARQL SELECT queries q1V to q3V presented in
Step 6 intend to retrieve reliable knowledge for hu-
man medicine (UMLS CUI pairs validated with BMJ
Best Practice content) about the diagnosis and man-
agement of well-known medical conditions that affect
humans and animals. We created the SPARQL SE-
LECT queries q1VU to q3VU (see the Additional file
4 for details) that combine the results of the queries
q1V to q3V over each dataset VetCN and PMSB.
Hence, we report the number of UMLS Metathe-
saurus concepts pairs with up-to-date clinically mean-
ingful associations for human medicine, although the
source data can be from veterinary medicine (i.e. the
SAVSNET veterinary clinical narratives) or from hu-
man medical science (i.e. the PubMed Systematic
Reviews).
The results of the queries q1VU to q3VU as well as
the results of the queries q1V to q3V are quantitative.
Hence, we can quantify to what extent One Health can
provide added value when compared with a conventional
approach that will keep both datasets VetCN and PMSB
separated for being part of either veterinary medicine or
medical science.
A UMLS Metathesaurus concept can be mapped to

none, one or more than one SNOMED CT concepts.
We created the SPARQL SELECT query q1VM to
q3VM (see the Additional file 4 for details) to retrieve
from the OBANmod those UMLS CUI pairs validated
with BMJ Best Practice content, where the candidate
concept is mapped to at least one SNOMED CT con-
cept. Using the OBANmod and the asserted information
within each locality-based module as the default graph,
we created the SPARQL SELECT query q1VS to q1VS
(see the Additional file 4 for details) that retrieves those
SNOMED CT concept pairs (OWL Classes) mapped to
UMLS CUI pairs validated with BMJ Best Practice con-
tent. For these SNOMED CT pairs, it is possible to go
beyond the knowledge captured in the OBAN “some-
times true” association relationships.
Each locality-based module created for a well-known

medical condition contains asserted as well as inferred
knowledge that can expand/enrich the results from the
queries q1VS to q3VS by exploiting the transitive clos-
ure of rdfs:subClassOf for the SNOMED CT concepts in
OWL. The SPARQL SELECT queries q1VR to q3VR
(see the Additional file 4 for details) use as the default
graph the inferred model obtained with the DL reasoner
FaCT++ for each locality-based module. The queries
q1VR to q3VR retrieve the OWL Classes that are
asserted and inferred descendants of the those
SNOMED CT concepts that are mapped to candidate
concepts of the SNOMED CT pairs retrieved from the
SPARQL SELECT queries q1VS to q3VS.

Results
We start by illustrating and reporting the results ob-
tained for each step of the SemDeep pipeline using the
PMSB and VetCN datasets. Next, we combine the re-
sults from the SemDeep pipeline to investigate to what
extent the One Health approach can provide added
value.

A SemDeep pipeline
Step 1: computing n-grams from unstructured text
As in our previous work [44–47], we employ word2-
phrase to obtain n-grams and we preserve numbers and
punctuation marks including parenthesis as they appear
in the unstructured text. However, the original text of
the PMSB dataset is not converted to lower case as in
[44–47]. The PMSB dataset contains 447M terms
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(words and tokens as they appear in the text), and after
obtaining the n-grams, this number reduces significantly
to 46M. This means that a high number of tokens/
words appear to be repeatedly collocated.
The original text of the VetCN dataset was converted to

lower case before computing n-grams as many examples
were found within the unstructured text of indiscriminate
alternation between lowercase and uppercase. The VetCN
dataset contains 149M terms (words and tokens as they
appear in the text), and after obtaining the n-grams, this
reduces to 103M. A plausible reason for the modest nu-
meric reduction is presence of spelling variations and/or
errors for the same term. To confirm this hypothesis, we
utilise a probabilistic spelling corrector [89] that provides
alternative spellings for a word or token appearing within
a corpus; the hypothesis was confirmed. For example, the
term “vomiting” appears in VetCN with more than 50
spelling variations such as “vomiteting” or “vomittimng”
or “vomirtting” or “vomikting” (to mention just a few),
which can be considered spelling errors. Furthermore, by
close inspection of the unstructured text, it can be ob-
served that short forms like “v” are used instead of the
long form “vomiting”.

Step 2: creation of neural embeddings
We use the word2vec implementations for CBOW and
Skip-gram and apply the same hyperparameter configur-
ation as our previous study [55]. To compute the neural
embeddings, we use a Dell PowerEdge R430 with 100GB
RAM and 32 virtual CPUs Intel Xeon E5–2690 v4 at 2.6
GHz. With this, creating the neural embeddings with
Table 2 The target terms for PMSB and VetCN datasets

Target terms for this study and their concept identifiers in UMLS and SNOME

UMLS CUI SNOMED CT identifier VetCN dataset
n-gram (frequency count)

C0018801 84,114,007 heart_failure (1292)

C0004096 195,967,001 asthma (1194)

C0014544 84,757,009 epilepsy (1164)

C0017601 23,986,001 glaucoma (1657)

C1561643 709,044,004 ckd (2698)

C0029408 396,275,006 osteoarthritis (1765)

C0002871 271,737,000 anaemia (1414)

C0003864 3,723,001 arthritis (8276)

C0011849 73,211,009 diabetes (3660)

C0020538 38,341,003 hypertension (1132)

C0028754 414,916,001 obesity (1763)

The last column contains the names and references of BMJ Best Practice document
methods). The first column contains the UMLS CUI mapped to a target term (n-gram
identifier mapped to the UMLS CUI with the aid of the UMLS API. The third column
frequency counts in the corpus appear within brackets. The fourth column shows th
All target terms (i.e. n-grams) are identical for both datasets except one. The well-kn
has the n-gram “CKD” (i.e. a short form with all the characters in upper case) in the
in these two target terms “CKD” and “ckd” happens as in Step 1, VetCN corpus is tr
PMSB takes 17 min for Skip-gram and 2min for CBOW;
for VetCN, creating the neural embeddings takes 29 min
for Skip-gram and 2min for CBOW.
For both PMSB and VetCN, we obtained a list of

terms (n-grams) with a frequency count greater than 5
and with vector representations of real numbers. For
PMSB, 423 K terms have vector representations; for
VetCN, 488 K terms have vector representations.

Step 3: obtaining term pairs for the semantic similarity and
relatedness task
Table 2 shows the target terms that are the subject for
this study, i.e. 11 n-grams with the same UMLS CUI
corresponding to the medical conditions – UMLS Se-
mantic Type “T047|Disease or Syndrome” – that appear
in both PMSB and VetCN with a frequency count
greater than 1 K. For each target term in Table 2, it was
feasible to find a document in BMJ Best Practice (last
column in Table 2) about the medical condition.
We limit the list of the candidate terms (n-grams) to

the 20 top-ranked terms. As there are 11 chosen medical
conditions (i.e. target terms), the Additional file 1 con-
tains 880 term pairs (target term, candidate term): the
worksheet “VetCN” with the 440 term pairs using
CBOW and Skip-gram with VetCN; and the worksheet
“PMSB” with the 440 term pairs using CBOW and Skip-
gram with PMSB.
By visual inspection of the Additional file 1, we ob-

serve that the cosine values are systematically higher for
the candidate terms obtained from the neural embed-
dings created with Skip-gram than the cosine values for
D CT BMJ Best Practice document

PMSB dataset
n-gram (frequency count)

heart_failure (4615) Chronic congestive heart failure

asthma (8891) Asthma in adults

epilepsy (3521) Generalised seizure

glaucoma (1635) Open-angle glaucoma

CKD (1550) Chronic kidney disease

osteoarthritis (1991) Osteoarthritis

anaemia (1154) Assessment of anaemia

arthritis (1023) Rheumatoid arthritis

diabetes (12846) Type 2 diabetes in adults

hypertension (8365) Essential hypertension

obesity (10030) Obesity in adults

s used for validation in Step 5 (see details within the section Materials and
) with the aid of MetaMap. The second column shows the SNOMED CT
displays the target terms from the VetCN dataset, i.e. the n-grams with their
e target terms from PMSB dataset with the same format of the third column.
own medical condition “chronic kidney disease” with UMLS CUI = “C1561643”
PMSB dataset; while in VetCN dataset it has the n-gram “ckd”. The difference
ansformed to lower case while PMSB corpus is not
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CBOW. Hence, CBOW learns the vectors quicker than
Skip-gram (as reported in Step2), although the vectors
obtained for the 20 top-ranked candidate terms are less
similar to the target term (lower cosine value) for
CBOW than for Skip-gram.

Step 4: named entity recognition (NER) task
The NER task can be interpreted as a grounding or nor-
malisation to unveil the semantic meaning of the n-
grams, and thus, provide more detail on the extent of se-
mantic overlap between the candidate terms obtained
from both datasets. Considering the guidelines intro-
duced in Step 4 (section Materials and methods), UMLS
CUIs are assigned to the n-grams to represent the focus
concepts corresponding to all 613 unique candidate
terms for the 880 term pairs.
Table 3 shows only 20 n-grams that are the only com-

mon candidate terms among the 880 term pairs. From
Table 3, there is at least one candidate term for all the
11 well-known medical conditions (target terms) that is
common to both datasets.
The columns I, J, and K from both worksheets

“VetCN” and “PMSB” from the Additional file 1 have
values if the candidate term (n-gram) contains a short
form correctly or incorrectly identified by the short form
detector. The column I will have the values {SF, SF-U,
SF-NU} if a clinically meaningful short form has been
correctly identified and the values {SF-I, SF-NF} if the
short form detector has made an error. For example,
“US” is a short form for the long form “United States”,
Table 3 The 20 n-grams that are the only common candidate terms a

The character ‘|’ that appears in the first column separates the different neural lang
candidate term has the same focus concept, i.e. same UMLS CUI
which per se is not clinically meaningful. Typical exam-
ples of the “SF-NF “error are short forms with four char-
acters or more appearing in n-grams from VetCN. For
example, “echo” is the abbreviation (i.e. short form) for
the long form “echocardiography”. Table 4 has the
micro-averaging precision, recall, and F measure for the
short form detector.
Tables 5 and 6 show the performance of MetaMap in

experiments 1 and 2 for the candidate terms (n-grams)
obtained for each target term from the neural embeddings
created with CBOW and Skip-gram. To retrace the Meta-
Map output, the domain experts’ assessment, and the per-
formance calculations, the Additional file 1 contains:

� The worksheet “SF to LF” – it has the 63 long forms
for 80 short forms (including variants of the short
forms) within the candidate terms (n-grams) for the
VetCN and PMSB datasets.

� Within both worksheets “VetCN” and “PMSB” – the
column G has the UMLS CUIs for the focus
concepts of the candidate terms (n-grams). The
labels (i.e. {SM, MM, IM, NM}) assigned in EXP-1
by the domain experts to MetaMap output appear
within the column H and the labels assigned in
EXP-2 by the domain experts to MetaMap output
appear in column L.

� The worksheet “MetaMap performance” – it
contains the number of TP, FP, and FN obtained
and used to calculate precision, recall, and F
measure for MetaMap in EXP-1 and EXP-2.
mong the 880 term pairs from both VetCN and PMSB datasets

uage models. The grey background indicates that the target term and the



Table 4 Performance of the short form detector with VetCN and PMSB datasets

Data
set

Unique
candidate
terms
(n-grams)

SF-
U +
SF-
NU
+
SF

SF-
I

SF-
NF

n-grams
with no
clinically
meaningful
short forms

Detect n-grams with one or more clinically mean-
ingful short forms

Detect n-grams with no clinically meaningful
short forms

P R F P R F

VetCN 300 57 1 14 228 98.28 80.28 88.37 94.21 99.56 96.82

PMSB 333 75 2 0 256 97.40 100 98.68 100 99.22 99.61

97.78 90.41 93.95 97.07 99.36 98.20

To assess the capability of the short form detector to identify candidate terms (n-grams) with one or more clinically meaningful short forms: the value of the
column “SF-U + SF-NU + SF” is interpreted as TP; the value of the column “SF-I” is interpreted as FP; and the value of the column “SF-NF” is interpreted as FN. To
assess the capability of the short form detector to identify candidate terms (n-grams) with no clinically meaningful short forms: the value of the column “n-grams
with no clinically meaningful short forms” is interpreted as TP; the value of the column “SF-I” is interpreted as FN; and the value of the column “SF-NF” is
interpreted as FP. The last row shows the micro-averaging values taking into account the total of 613 unique candidate terms (n-grams) for the 880 term pairs.
Abbreviations: P = precision; R = recall; and F = F measure
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The last row of Tables 5 and 6 shows the macro-
averaging precision, recall and F measure. Taking the
613 unique candidate terms for the 880 term pairs, the
micro-averaging precision of MetaMap is 84.68% for
EXP-1 and 92.41% for EXP-2; the micro-averaging recall
of MetaMap is 91.44% for EXP-1 and 96.48% for EXP-2;
hence, the micro-averaging F measure of MetaMap is
87.93% in EXP-1 and 94.40% in EXP-2.
The macro-averaging and the micro-averaging values

for precision, recall, and F measure are consistently
higher in EXP-2 than in EXP-1. However, when examin-
ing the performance of MetaMap in Tables 5 and 6, two
exceptions are noticeable (two rows in Table 6 with a
grey background) where a drop in performance for EXP-
2 can be observed:
Table 5 MetaMap performance for the candidate terms from VetCN dat

Target term
(n-gram)

Candidate terms (20 top-ranked n-grams) from CBOW neural em
beddings for a target term

MetaMap Experiment 1 MetaMap Experiment 2

P R F P R F

anaemia 84.21 94.12 88.89 95.00 100.00 97.44

arthritis 93.33 73.68 82.35 100.00 75.00 85.71

asthma 100.00 90.00 94.74 100.00 95.00 97.44

ckd 68.75 73.33 70.97 100.00 95.00 97.44

diabetes 76.47 81.25 78.79 100.00 90.00 94.74

epilepsy 100.00 90.00 94.74 100.00 95.00 97.44

glaucoma 87.50 77.78 82.35 94.74 94.74 94.74

heart_failure 73.68 93.33 82.35 95.00 100.00 97.44

hypertension 71.43 62.50 66.67 100.00 95.00 97.44

obesity 75.00 100.00 85.71 85.00 100.00 91.89

osteoarthritis 94.74 94.74 94.74 100.00 95.00 97.44

84.10 84.61 83.85 97.25 94.07 95.38

The table shows the performance of MetaMap in Experiment 1 (applying MetaMap to
expansion into long form before applying MetaMap to the candidate terms) for each
terms are a list of the 20 top-ranked terms (highest cosine value) obtained from the c
target term. The last row shows the average of each evaluation measure over all 11 m
(a.k.a. macro-averaging). Abbreviations: P = precision; R = recall; and F = F measure
1. The target term “anaemia” has precision and F
measure higher in EXP-1 than in EXP-2. Both n-
grams “g/dL” and “g/dl” can be mapped by Meta-
Map in EXP-1 to the UMLS Metathesaurus concept
“C0439267|Gram per Deciliter”, which is more spe-
cific than the UMLS Metathesaurus concept
“C1519795|Unit of Measure”. The UMLS CUI =
C1519795 is automatically assigned by the short
form detector in EXP-2.

2. The target term “arthritis” has precision and F
measure higher in EXP-1 than in EXP-2. The n-
gram “Cox-2_inhibitors” is mapped by MetaMap in
EXP-1 to the UMLS Metathesaurus concept
“C1257954|Cyclooxygenase 2 Inhibitors”. As “Cox-
2” is the short form for the long form
aset

- Candidate terms (20 top-ranked n-grams) from Skip-gram neural
embeddings for a target term

MetaMap Experiment 1 MetaMap Experiment 2

P R F P R F

94.74 94.74 94.74 95.00 100.00 97.44

94.44 89.47 91.89 100.00 90.00 94.74

89.47 94.44 91.89 100.00 100.00 100.00

62.50 71.43 66.67 100.00 100.00 100.00

88.89 88.89 88.89 94.74 94.74 94.74

100.00 90.00 94.74 100.00 95.00 97.44

93.33 73.68 82.35 94.74 94.74 94.74

84.21 94.12 88.89 100.00 100.00 100.00

72.22 86.67 78.79 100.00 100.00 100.00

84.21 94.12 88.89 89.47 94.44 91.89

85.00 100.00 91.89 85.00 100.00 91.89

86.27 88.87 87.24 96.27 97.17 96.63

the candidate terms) and Experiment 2 (short form detection and
target term (n-gram for a well-known medical condition). The candidate
reated neural embeddings with CBOW or Skip-gram taking the vector for a
edical conditions under study to get an overall measure of performance



Table 6 MetaMap performance for the candidate terms from PMSB dataset

Target term (n-gram) Candidate terms (20 top-ranked n-grams) from
CBOW neural embeddings for a target term

Candidate terms (20 top-ranked n-grams) from Skip-gram neural
embeddings for a target term

MetaMap Experiment 1 MetaMap Experiment 2 MetaMap Experiment 1 MetaMap Experiment 2

P R F P R F P R F P R F

anaemia 90.00 100.00 94.74 85.00 100.00 91.89 84.21 94.12 88.89 94.74 94.74 94.74

arthritis 88.89 88.89 88.89 89.47 94.44 91.89 100.00 100.00 100.00 95.00 100.00 97.44

asthma 76.47 81.25 78.79 72.22 86.67 78.79 63.16 92.31 75.00 68.42 92.86 78.79

CKD 100.00 100.00 100.00 100.00 100.00 100.00 90.00 100.00 94.74 90.00 100.00 94.74

diabetes 63.16 92.31 75.00 68.42 92.86 78.79 75.00 100.00 85.71 80.00 100.00 88.89

epilepsy 85.00 100.00 91.89 95.00 100.00 97.44 90.00 100.00 94.74 95.00 100.00 97.44

glaucoma 90.00 100.00 94.74 100.00 100.00 100.00 84.21 94.12 88.89 100.00 100.00 100.00

heart_failure 85.00 100.00 91.89 90.00 100.00 94.74 73.68 93.33 82.35 90.00 100.00 94.74

hypertension 95.00 100.00 97.44 100.00 100.00 100.00 84.21 94.12 88.89 95.00 100.00 97.44

obesity 100.00 95.00 97.44 100.00 100.00 100.00 94.74 94.74 94.74 95.00 100.00 97.44

osteoarthritis 90.00 100.00 94.74 100.00 100.00 100.00 90.00 100.00 94.74 100.00 100.00 100.00

87.59 96.13 91.41 90.92 97.63 93.96 84.47 96.61 89.88 91.20 98.87 94.70

The table shows the performance of MetaMap in Experiment 1 (applying MetaMap to the candidate terms) and Experiment 2 (short form detection and
expansion into long form before applying MetaMap to the candidate terms) for each target term (n-gram for a well-known medical condition). The candidate
terms are a list of the 20 top-ranked terms (highest cosine value) obtained from the created neural embeddings with CBOW or Skip-gram taking the vector for a
target term. The last row shows the average of each evaluation measure over all 11 medical conditions under study to get an overall measure of performance
(a.k.a. macro-averaging). Abbreviations: P = precision; R = recall; and F = F measure
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“cycloxygenase-2”, the n-gram “Cox-2_inhibitors”
was expanded into “cycloxygenase-2_inhibitors” for
EXP-2. However, MetaMap in EXP-2 did not map
the expanded n-gram to the UMLS CUI =
C1257954.

Following Smucker et al. [69], we apply the Student’s
paired t-test [70] taking the values from Tables 5 and 6
for EXP-1 and EXP-2 to measure the statistical signifi-
cance of the difference in the mean average precision,
recall, and F measure. We obtain the following p-values:
0.0001046 for precision, 0.001077 for recall, and
0.00001191 for F measure. As the p-values obtained with
the Student’s paired t-test are significantly small, we re-
ject that “the difference in averages could be due to
chance” [67].
The outcome of this step is a set of 342 unique UMLS

Metathesaurus concept pairs (target concept, candidate
concept) that represent the focus concept pairs for the
880 n-gram pairs (target term, candidate term). The next
step will determine if there is a clinically meaningful as-
sociation for each UMLS Metathesaurus concept pair.

Step 5: validation of the term pairs mapped to UMLS
Metathesaurus concept pairs using BMJ best practice
The Additional file 3 contains the 3-tuples (target con-
cept, candidate concept, validation label) for the VetCN
dataset (worksheet “VetCN”) and the PMSB dataset
(worksheet “PMSB”). Among the 35 unique UMLS
Metathesaurus concept pairs that are common to both
datasets, there are 10 concept pairs with the validation
label “`Itself”, i.e. one per chosen medical condition (tar-
get term) with the only exception being “chronic kidney
disease” (i.e. ckd). Table 7 displays the 25 unique UMLS
Metathesaurus concept pairs common to both datasets
and with validation labels different than “itself”.
The last column of Table 7 shows the UMLS Metathe-

saurus concept name representing the focus concepts
for the candidate term. This column does not appear in
the Additional file 3 as this information can be obtained
with the UMLS API. The UMLS API can typically re-
trieve alternative names for a UMLS Metathesaurus con-
cept in different terminologies, and thus, the Additional
file 3 just provides the terminologies’ identifiers (e.g.
MeSH: D000068256) instead of the textual excerpts
from terminological resources.
Table 8 displays the 11 UMLS Metathesaurus concept

pairs that were identified by the domain experts as unre-
lated as they do not have an up-to-date clinically mean-
ingful association. These 11 UMLS Metathesaurus
concept pairs correspond to only five of the total of
11 medical conditions (i.e. target term) that are the
subject of this study. For eight UMLS Metathesaurus
concept pairs, the candidate concept could not be
interpreted per se as clinically meaningful in connec-
tion with the medical condition, and thus, they have
assigned the label “Unrelated: not clinically meaning-
ful”. For three UMLS Metathesaurus concept pairs,
which corresponds to the medical condition epilepsy
and glaucoma, the validation label “Unrelated:



Table 7 The 25 unique UMLS Metathesaurus concept pairs that are common to both VetCN and PMSB datasets and have validation
labels different to “itself”

The validation label from the third column denotes the relatedness of BMJ Best Practice term (the column previous to the last) to the UMLS Metathesaurus
concept representing the focus concept for the candidate term (the last column). The rows with grey background correspond to UMLS Metathesaurus concept
pairs that are retrieved by the SPARQL queries q1VU, or q2VU, or q3VU (see the cells with grey background in Table 11 for details)
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Table 8 The 11 UMLS Metathesaurus concept pairs identified by the domain experts as unrelated, as they do not have an up-to-
date clinically meaningful association for human medicine.

The rows with grey background correspond to UMLS Metathesaurus concept pairs that are retrieved for some of the SPARQL queries q1 to q3 (see the cells with
grey background in Table 9 for details)
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excluded” was assigned and the rationale behind is
the following:

� UMLS Metathesaurus concept pair
(C0014544|Epilepsy, C0071754|potassium bromide):
in medicine “potassium bromide” is no longer a
suitable treatment for epilepsy due to side effects
[90] (see correspond excerpt in evalBMJ.xls).

� UMLS Metathesaurus concept pair
(C0014544|Epilepsy, C3886490|Pexion): the active
substance of pexion is imepitoin, which is a type of
partial benzodiazepine site agonists. In medicine
“benzodiazepine” is no longer a suitable treatment
for epilepsy due to adverse effects [91] (see
corresponding excerpt in evalBMJ.xls).

� UMLS Metathesaurus concept pair
(C0017601|Glaucoma, C0014392|Enucleation
procedure): As “malignant melanomas of the ciliary
body” does not appear either explicitly or implicitly
in BMJ Best Practice for open-angle glaucoma [92],
which is the medical condition for which the “enu-
cleation procedure” is recommended [93], the con-
cept pair is judged as unrelated. As “enucleation of
glaucomatous eyes” does appear in veterinary litera-
ture, another excerpt was added to capture this fact.
For further details, see corresponding excerpts in
evalBMJ.xls.

As the above-mentioned three UMLS Metathesaurus
concept pairs are up-to-date clinically meaningful associ-
ations in veterinary healthcare, they denote differences
between human and veterinary healthcare.
The Additional file 3 contains a total of 342 unique
3-tuples considering both the VetCN and PMSB data-
sets, of which only 11 have UMLS Metathesaurus
concept pairs that are considered as unrelated. The
UMLS Metathesaurus concept pairs in Table 8 are
considered False Positives (FP), and likewise the term
pairs that have them as focus concepts. All other
UMLS Metathesaurus concept pairs not included in
Table 8 are considered as True Positives (TP), and
likewise the term pairs that have them as focus con-
cepts. Hence, it is feasible to calculate precision and
estimate the performance of CBOW and Skip-gram
for the semantic similarity and relatedness task using
the 880 term pairs:

� For VetCN, precision is 98.18% for both CBOW and
Skip-gram.

� For PMSB, the precision is 98.64% for CBOW and
99.09% for Skip-gram.

The BMJ health informatician considered it worthy to
report to BMJ Best Practice editors that:

1. Some concept pairs do not have candidate concepts
that are easily found within BMJ Best Practice for
the medical condition. Hence, external evidence
from systematic research was needed to validate
them, and thus, the concept pairs have assigned the
validation label “Relatedness by Inexact match
(background knowledge)” instead of the expected
label “Relatedness by exact/approximate match”.
For example, for the concept pair



Arguello-Casteleiro et al. Journal of Biomedical Semantics 2019, 10(Suppl 1):22 Page 19 of 28
(C0004096|Asthma, C0006277|Bronchitis),
bronchitis is not mentioned as a differential
diagnosis in BMJ Best Practice for asthma, although
BMJ Best Practice for acute bronchitis has asthma
as a differential. Another example is the concept
pair (C0004096|Asthma, C0232602|Retching),
where retching does not currently appear along
with coughing in the description of symptoms
within BMJ Best Practice for asthma.

2. Some concept pairs have candidate concepts that
may enhance the current content of BMJ Best
Practice for the medical condition. For example, for
the concept pair (C0017601|Glaucoma,
C0020581|Hyphema), where hyphema appears as a
common postoperative complication in patients
with glaucoma that had trabeculotomy (a.k.a.
glaucoma filter surgery). This concept pair has the
validation label “Relatedness by Inexact match
(background knowledge)” and can be interpreted as
an example of transitivity: glaucoma has
trabeculotomy as a surgical procedure, and
trabeculotomy has hyphema as a common
complication. Only by making “trabeculotomy”
explicit does the relatedness for the concept pair
(glaucoma, hyphema) become transparent. It should
be noted that the relationship between
“trabeculotomy” from BMJ and
“C0020581|Hyphema” is a cause-effect relationship.

Step 6: formal representation of the knowledge acquired
and validated
The third column of Table 1 shows OWL individuals for
the main OWL Classes of the lemonEXT and OBAN-
mod created programmatically applying the axiom pat-
terns from the second column in Table 1. We use the
reasoner FaCT++ to check that – once populated – the
lemonEXT and OBANmod ontologies are consistent (i.e.
no unsatisfiable classes).
Once the lemonEXT core ontology is populated with

the term pairs (target term, candidate term) from
VetCN, including their focus concepts from the UMLS
Metathesaurus, it contains a total of 3477 axioms (class
count: 324; individual count: 502) and its DL expressivity
is ALEI. Once the lemonEXT is populated with the term
pairs from PMSB, including their focus concepts, it con-
tains a total of 3702 axioms (class count: 338; individual
count: 549) and its DL expressivity is ALEI.
Once the OBANmod core ontology is populated with

the 192 unique 3-tuples from VetCN, it contains a total of
5893 axioms (class count: 347; individual count: 842) and
its DL expressivity is ALEHI(D). Once the OBANmod is
populated with the 185 unique 3-tuples from PMSB, it
contains a total of 5545 axioms (class count: 361; individ-
ual count: 781) and its DL expressivity is ALEHI(D).
To illustrate the population of both the lemonEXT
and OBANmod core ontologies, Fig. 4 takes as an ex-
ample the term pair (glaucoma, hyphaema) from the
neural embeddings created with CBOW using VetCN
dataset. This term pair corresponds to the 3-tuple
(C0017601|Glaucoma, C0020581|Hyphema, “Relatedness
by Inexact match (background knowledge)”), and Fig. 4
displays how this 3-tuple is represented as a “sometimes
true” association relationship in OWL with evidence-
based provenance. The top of Fig. 4 shows the candidate
term (i.e. an n-gram represented as a lexical entry from
the lemonEXT) with a UMLS Metathesaurus concept as
the focus concept with CUI = C0020581, which corre-
sponds to the SNOMED CT concept with identifier = 75,
229,002.
Table 9 contains the number of UMLS Metathesaurus

concept pairs retrieved from executing: a) the SPARQL
SELECT queries q1 to q3 over the lemonEXT populated
for each dataset VetCN and PMSB separately; and b) the
SPARQL SELECT queries q1V to q3V over the OBAN-
mod populated for each dataset VetCN and PMSB
separately.

Extracting locality-based modules with SNOMED CT and
enabling one health queries
The worksheet “signatures” within the Additional file 3
contains the ontological signature (i.e. list of SNOMED
CT identifiers) for each of the 11 medical conditions
that are the subject of this study. We use the Module-
Type BOT from the OWL API to create upper modules
(a.k.a. locality-based modules). With a MacBook Pro
Retina with 2.8 GHz Intel Core i7 and 16GB of RAM
memory, the average time to create a locality-based
module is 8 h.
All the locality-based modules created have a DL ex-

pressivity ALER, i.e. the same as the SNOMED CT
ontology. Table 10 shows the details for each locality-
based module extracted. From Table 10 it is easy to ob-
serve many axioms for the locality-based module ex-
tracted for diabetes mellitus. Although the guidelines
introduced in Step 4 intend to avoid selection of focus
concepts for the candidate terms that are too general for
the medical condition (see the Additional file 2 for
details), due to gaps in the terminological resources
within the UMLS Metathesaurus, it may be that the
focus concepts for some candidate terms (n-grams) are
too broad in the biomedical or clinical meaning. Indeed,
this is the case for diabetes mellitus. The UMLS
Metathesaurus concept pair (C0011849|Diabetes Mellitus,
C0012634|Disease) has the focus concepts for the term
pair (“diabetes”, “concurrent_diseases”), which was ob-
tained with Skip-gram using VetCN. As the UMLS
Metathesaurus concept “C0012634|Disease” was selected
as the focus concept for the candidate term (n-gram)



Fig. 4 Exemplifying the population of both the lemonEXT and OBANmod core ontologies – the figure illustrates how the 3-tuple
(C0017601|Glaucoma, C0020581|Hyphema, “Relatedness by Inexact match (background knowledge)”) is represented as a modified version of the
OBAN association. This 3-tuple has two bibo:excerpts: 1) the term “trabeculotomy” from BMJ Best Practice for open-angle glaucoma; and 2) few
lines of text from the PubMed article with identifier PMID = 29,035,912. The top of the figure shows the lexical entry from the lemonEXT ontology
corresponding to the focus concept C0020581|Hyphema
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“concurrent_diseases”, the SNOMED CT concept
“64572001| Disease (disorder)” that maps the UMLS
CUI = C0012634 is included in the ontological signature
for diabetes mellitus. It should be noted that in the January
2017 version of SNOMED CT in OWL, the OWL Class
for “64,572,001| Disease (disorder)” has 1810 OWL Classes
as asserted descendants and 72,253 OWL Classes as
asserted as well as inferred descendants using the reasoner
FaCT++. Furthermore, one or more attribute-value pairs
in an asserted or inferred descendant will trigger extrac-
tion of all axioms contributing the descendant’s meaning.
Table 11 contains the results of executing the “One

Health” queries proposed for this study. The worksheet
“q One Health” within the Additional file 3 contains the
number of UMLS CUI pairs validated with BMJ Best
Practice content (i.e. human medicine) for each of the
27 UMLS Semantic Types that participates in the
SPARQL SELECT query q1VU or q2VU or q3VU.
According to Table 11:

1. The SPARQL SELECT queries q1VU to q3VU
obtain equal or more UMLS CUI pairs validated
with BMJ Best Practice content (i.e. human
medicine) than the queries q1V to q3V over VetCN
and PMSB separately (Table 9). Hence, the higher
number of up-to-date clinically meaningful associa-
tions for human medicine demonstrates that a “One
Health” approach can provide added value by com-
bining the UMLS CUI pairs (number of associa-
tions) from veterinary medicine (i.e. the SAVSNET



Table 9 Results of the SPARQL SELECT queries performed over the lemonEXT ontology and the OBANmod ontology – The table shows
the number of UMLS Metathesaurus concept pairs (target, candidate) retrieved for the SPARQL SELECT queries q1 to q3 as well as
q1V to q3V

The SPARQL SELECT queries appear within the Additional file 4 and the description of the queries appear within the Step 6 of the section Materials and methods.
Each UMLS Metathesaurus concept pair represents the focus concepts of the term pair (target term, candidate term). The difference in the number of results
between the query qi and the query qiV, with i = {1,2,3}, indicates that there are UMLS Metathesaurus concept pairs that have not passed the evaluation with BMJ
Best Practice, and thus, the query qi (see cells with grey background) has a higher number of results than the query qiV
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veterinary clinical narratives) and from human
medical science (i.e. the PubMed Systematic Re-
views). The cells with a grey background indicate
the existence of common UMLS CUI pairs in both
datasets VetCN and PMSB.

2. The query q2VU obtains UMLS CUI pairs validated
with BMJ Best Practice content (i.e. human
medicine) for all 11 target terms (i.e. the chosen
medical conditions). By looking at worksheet “q One
Health” within the Additional file 3 and examining
the number of UMLS CUI pairs obtained for the
UMLS Semantic Type “T033|Finding” alone, we can
safely state that our SemDeep approach has captured
“sometimes true” association relationships between
each well-known medical condition and its clinical
findings. Hence, “One Health” knowledge useful for
the diagnosis of each of the 11 well-known medical
conditions has been obtained.

3. By combining the results of the queries q1VU and
q3VU, it may be possible to obtain the UMLS CUI
pairs validated with BMJ Best Practice content (i.e.
human medicine) for the management of each well-
known medical condition. We looked at worksheet
“q One Health” within the Additional file 3 and ex-
amined the number of UMLS CUI pairs obtained
for: a) the UMLS Semantic Type “T061|Therapeutic
or Preventive Procedure” (included in query q1VU);
and b) the UMLS Semantic Type “T121|Pharmaco-
logic Substance”, which belongs to the UMLS Se-
mantic Group CHEM (included in query q3VU).
Taking into account the number of UMLS CUI
pairs for both UMLS Semantic Types, we can safely
state that our SemDeep approach has captured
“sometimes true” association relationships useful for
the management of each medical condition with the
only exception of obesity. According to BMJ Best
Practice for obesity in adults [94], the first line of
treatment for obesity is diet. There are candidate
terms (n-grams) from VetCN dataset that have as
focus concept the UMLS Metathesaurus
“C0012155|Diet”, which has the UMLS Semantic
Type “T168|Food”, and therefore, outside of the 27
UMLS Semantic Types involved in the SPARQL
SELECT queries q1VU to q3VU. For some n-grams
containing the token “diet” MetaMap provided also
the UMLS Metathesaurus concept “C0012159|Diet
(Diet therapy) “that has the UMLS Semantic Type
“T058|Health Care Activity”, and thus, within the
scope of query q1VU. The UMLS Metathesaurus
concept “C0419178|Dietary regime”, which has the
UMLS Semantic Type “T061|Therapeutic or Pre-
ventive Procedure “was not provided by MetaMap
for any n-gram with the token “diet” or “diets”. Tak-
ing into account the two UMLS CUIs provided by
MetaMap, the UMLS CUI = C0012155 was chosen
instead of the UMLS CUI = C0012159 following the
guidelines introduced in Step 4 of Materials and
Method as the UMLS CUI = C0012155 is broader
in meaning and it is mapped to SNOMED CT.
Hence, after a closer inspection, as the UMLS CUI
pair (C0028754|Obesity, C0012155|Diet) has passed
the validation with the BMJ Best Practice content,
we can safely state that our SemDeep approach has
captured “sometimes true” association relationships
useful for the management of each of the 11 well-
known medical conditions including obesity.



Table 10 Locality-based modules extracted from the SNOMED CT ontology for the 11 well-known medical conditions

Target term
(n-gram)
lower case

Number of SNOMED CT concept
identifiers for the signature

Total number
of axioms

Number of
OWL Classes

Number of OWL
object properties

Number of
SubClassOf
axioms

Number of
EquivalentClass
axioms

anaemia 34 105,205 22,227 46 7092 15,134

arthritis 33 74,398 16,180 31 7470 8709

asthma 37 97,647 20,804 39 7611 13,192

ckd 19 51,890 10,929 40 3899 7029

diabetes 29 463,437 100,119 44 49,818 50,300

epilepsy 19 10,072 2085 23 1055 1029

glaucoma 39 101,997 21,278 44 11,047 10,230

heart_failure 37 68,006 14,634 44 5490 9143

hypertension 31 152,283 32,270 48 16,425 15,844

obesity 28 90,224 18,994 40 12,376 6617

osteoarthritis 38 73,496 15,903 37 8922 6980

The second column just reports the total number of SNOMED CT identifiers for the ontological signature. The worksheet “signatures” within the Additional file 3
contains the list of SNOMED CT identifiers (as signature) for each target term. From the third to the last column ontology metrics information for the locality-
based module created per target term is provided. The last two columns indicate the number of descriptions and definitions extracted from the SNOMED CT
ontology for each locality-based module, respectively
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4. Looking at the results of the queries q1VS to q1VS
and taking into account that the UMLS CUI pair
(C0028754|Obesity, C0012155|Diet) is mapped to
SNOMED CT, it seems reasonable to conclude that
SNOMED CT concepts useful for the diagnosis/
management of the 11 medical conditions have
ble 11 Results of the “One Health” queries performed that intend to a
anagement of well-known medical conditions – The SPARQL SELECT q
the queries appear within the subsection “Extracting locality-based
the section Materials and methods

ch query qiVU, with i = {1,2,3}, is the union of the results obtained for the query qiV
tails). The cells with grey background indicate that there are common UMLS Metath
tal number of results for the query qiVU is lower that the summation of the results o
ckground in Table 7 for details of the common UMLS Metathesaurus concept pairs
etathesaurus concept, the number of results for the query qiVM is equal to or lower
LECT query qiVR, with i = {1,2,3}, retrieves the asserted and inferred descendants (wi
the SNOMED CT pairs retrieved from the SPARQL SELECT query qiVS
been obtained. Hence, SemDeep can acquire “One
Health” knowledge from veterinary medicine
(VetCN) and medical sciences (PMSB) that can be
reused and shared among organisations, i.e. there
are sets of SNOMED CT concepts relevant for the
diagnosis/management of each of the 11 well-
cquire validated knowledge about the diagnosis and
ueries appear within the Additional file 4 and the description
modules with SNOMED CT and enabling One Health queries”

over VetCN dataset and the query qiV over PMSB dataset (see Table 9 for
esaurus concept pairs in both VetCN and PMSB datasets, and therefore, the
btained for the query qiV in each dataset (see the rows with grey
retrieved). As more than one SNOMED CT concept can map one UMLS
than the number of results for the query qiVS, with i = {1,2,3}. Each SPARQL
th FaCT++) of those SNOMED CT concepts mapped to candidate concepts
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known medical conditions (i.e. diseases or syn-
dromes) under study.

5. Looking at the results of the queries q1VR to q1VR,
we can safely state that there are asserted and
inferred descendants for some of the SNOMED CT
concepts relevant for the diagnosis/management of
the 11 diseases that affect humans and animals.
Hence, the knowledge within the locality-based
modules extracted from the SNOMED CT ontology
for each well-known medical condition can be used
to enrich/expand the sets of SNOMED CT concepts
mapped to the UMLS CUI pairs validated with BMJ
Best Practice content (i.e. human medicine).

Discussion
Semantic Deep Learning can be used to generate em-
beddings of nodes that contain both implicit and ex-
plicit information within biological knowledge graphs
[95]. A knowledge graph is a “graph-based representa-
tion of entities in the world and their interrelations”
[95]. In previous work, Jauhar et al. [96] adapted a
neural language model (e.g. Skip-gram) to generate
ontologically grounded sense vectors by adding latent
variables representing senses and assuming a fixed
ontology [96]. Other work combines both text cor-
pora and ontologies, for example by requiring that
the neural embeddings of two terms are similar if the
two terms have a semantic relationship in the ontol-
ogy [97]; this is complementary to retrofitting vectors
(i.e. post-processing) to an ontology [96].
The work here transforms neural embeddings of n-

grams into an augmented biomedical dataset of normal-
ised and interlinked UMLS Metathesaurus concepts by
reusing existing ontologies (i.e. lemon, OBAN, and
SNOMED CT) that provide the foundation to acquire
reusable One Health knowledge about well-known dis-
eases in humans and animals. The approach is an exter-
nal intervention in which neural embeddings are not
modified but enhanced.
Associating vector representations to terms is the

foundation of both classical distributional representa-
tions (e.g. LSA and LDA) and distributed representations
(i.e. neural embeddings). Despite differences between
these approaches (see [98] for details) a shared common
problem is that most vector-space models represent a
term with one vector, and thus, they do not capture
homonymy and polysemy that require multiple vector
representations per term [99]. In this study, assigning
one or more focus concepts from UMLS Metathesaurus
to neural embeddings of n-grams – where each UMLS
Metathesaurus concept can have one or more senses (i.e.
UMLS Semantic Types) – can be interpreted as a way to
restore the homonymy and polysemy inherent in bio-
medical/clinical terms.
Inclusion of related terms is critical when querying
PubMed or clinical narratives with the aim to help
health professionals answer questions about patient care.
Pakhomov et al. [25] acknowledge that when querying
clinical narratives for a medical condition such as “heart
failure” often requires additional terms, such as “pul-
monary edema” or “shortness of breath”, i.e. related
terms that, without being synonyms to the underlying
medical condition, denote different aspects of the same
underlying medical condition. Similarly, the use of re-
lated terms in PubMed searches – either in the form of
text words or MeSH terms – has been acknowledged as
key to develop successful literature searches that yield
meaningful results [100]. For example, to answer the fo-
cused clinical question “in patients with sepsis (popula-
tion), does treatment with steroids (intervention) compared
with no steroids (comparison) alter mortality (outcome)?”
[101], the related term “septic shock” or “severe sepsis”
can be used instead of the term “sepsis”. Indeed, a
PubMed search for systematic reviews of “severe sepsis”
and “steroids” identified fewer useful articles than the
more general search for “sepsis” and “steroids” [101]. It
should be noted that a) narrowing a PubMed search to
fewer useful articles is critical for retrieving a quantity of
articles that is manageable; and b) the Cochrane Hand-
book for Systematic Reviews of Interventions [102] estab-
lished PICO (Participants, Interventions, Comparisons
and Outcomes) as the basis to prepare and maintain
Cochrane systematic reviews, which lay the foundations
for evidence-based medicine. PICO is typically applied
when formulating focused clinical question as above.
Term pairs like (“heart failure”, “pulmonary edema”)

or (“severe sepsis”, “steroids”) do not appear among the
main four similarity and relatedness benchmarks [27]
that are specific to the medical/clinical domain. Further-
more, in total there are fewer than 1 K term pairs in
these benchmarks, whilst the 2018AA Metathesaurus re-
lease contains 3.67M concepts and 14M unique concept
names [103]. McInnes et al. [104] developed the UMLS-
Similarity that exploits both hierarchical and non-
hierarchical information in the UMLS Metathesaurus
(i.e. the MRREL table). UMLS-Similarity has two limita-
tions. On the one hand, if the underlying terminologies
in the UMLS Metathesaurus (e.g. SNOMED CT or
MeSH) do not have pairwise relations, such as (“heart
failure”, “pulmonary edema”), they will not be included
in the MRREL table. On the other hand, the semantic
similarity measures included within UMLS-Similarity
provide at most a numeric value indicating the related-
ness of two UMLS CUIs with no further information.
For example, using the UMLS-Similarity Web Interface
[105] with the CUI pair (C0018801, C0034063) corre-
sponding to the term pair (“heart failure”, “pulmonary
edema”), we obtain:
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� “The relatedness of Heart failure, NOS (C0018801)
and Pulmonary edema, NOS (C0034063) using
Adapted Lesk (lesk) is 4134”; for further information
about the Lesk measure see [106].

� “The relatedness of Heart failure, NOS (C0018801)
and Pulmonary edema, NOS (C0034063) using
Vector Measure (vector) is 0.753”; for further
information about vector measure see [106].

This paper uses evidence-based resources as a mechan-
ism to validate the similarity and relatedness of term pairs
such as (“heart failure”, “pulmonary edema”) while provid-
ing one or more textual excerpts of external evidence
from systematic research or terminological resources. The
focus concept pair (C0018801|Heart failure, C0034063|
Pulmonary Edema) appears in the Additional file 1 within
the worksheet “VetCN” and has the validation label “Re-
latedness by exact/approximate match” as the term “pul-
monary oedema” appears within BMJ Best Practice for
chronic congestive heart failure [85], and thus, there is
current best evidence of “pulmonary edema” being clinic-
ally related to “heart failure” (see details in the Background
section). An advantage of our proposal is providing
evidence-based provenance for the association (semantic
relatedness) where the evidence-based source is available
for the clinicians to consult.
The validation with content from BMJ Best Practice

is limited to only one document per medical condi-
tion. For example, for the “asthma” medical condition,
BMJ Best Practice for “asthma in adults” [107] was
chosen. However, if content of BMJ Best Practice for
asthma was more broadly taken, for example includ-
ing “asthma in children” [108], more 3-tuples (target
concept, candidate concept, validation label) would
have the validation label “Relatedness by exact/ap-
proximate match”. Currently, the validation label “Re-
latedness by exact/approximate match” appears in: a)
206 of the total of 342 unique 3-tuples; b) 95 of the
total 192 unique 3-tuples for VetCN; and c) 133 of
the total 185 unique 3-tuples for PMSB. So overall,
60% of the 342 unique 3-tuples are “grounding” or
“normalising” terms within the 11 documents of BMJ
Best Practice. This percentage increases to 72% for
the 3-tuples from the PMSB dataset, and drops to
49% for the 3-tuples from the VetCN dataset. As BMJ
Best Practice documents need frequent updates from
the literature, it is worth noticing the contribution to
normalisation made from the PMSB dataset.
It has been acknowledged that “MetaMap’s greatest

weakness is its reduced accuracy in the presence of ambi-
guity” [109]. This is particularly so when short forms ap-
pear within the n-grams. This study implements a new
short form detector, which deals with n-grams from
both biomedical/clinical documents, and has
demonstrated how precision, recall, and F measure of
MetaMap can be improved if short form detection and
expansion into long form is performed before applying
MetaMap to n-grams (EXP-2). The difference in Meta-
Map performance between EXP-1 and EXP-2 is aligned
with several studies [35–37] that have shown shortcom-
ings of UMLS when dealing with short forms.
The assessment of MetaMap output has required close

collaboration amongst three domain experts due to the
large volume of MetaMap output [109]. In this study,
MetaMap produced 2627 possible UMLS CUIs for the
set of 613 n-grams. Another difficulty is a noticeable
lack of mappings from MetaMap, such as:

� The n-gram “(HFpEF)” is a candidate term for the
target term “heart_failure” from the neural embed-
dings created with Skip-gram using PMSB.
“(HFpEF)” can be expanded into “(heart failure with
preserved ejection fraction)” with Allie. Although
the UMLS Metathesaurus concept “C3889077|Heart
failure with preserved ejection fraction” exists in the
UMLS releases of 2016, MetaMap could not do the
mapping.

� The n-gram “macrovascular_disease” is a candidate
term for the target term “diabetes” from the neural
embeddings created with Skip-gram using PMSB.
Although the UMLS Metathesaurus concept
“C2609253|Macrovascular disease” exists in the
UMLS releases of 2016, MetaMap could not do the
mapping.

The column I of the worksheet “VetCN” in the Add-
itional file 1 shows the value “WS” when there is a spell-
ing error. For example, the candidate term “artritis” in
row 292 and the candidate term “athritis” in row 321 are
incorrect spellings of the term “arthritis”. Candidate
terms with wrong spellings are typically not recognised
by MetaMap; this is an area for further work.
Aronson and Lang [109] note “MetaMap’s inability to

perform in real-time situations”. Although this study
presents detailed guidelines to decide if a UMLS CUI is
a suitable focus concept for an n-gram, it is difficult to
envision such guidelines working in real-time without
human experts in the loop. Indeed, the SemDeep pipe-
line presented, whilst delivering promising results for
both VetCN and PMSB, is time-consuming and labour-
intensive from the domain experts perspective, e.g. four
domain experts were needed to validate concept pairs
with content from BMJ Best Practice and external re-
sources (when necessary).
This study corroborates the observation made by

Pakhomov et al. [60] that word embeddings from the
biomedical literature have a performance alike to word
embeddings from clinical notes for a semantic similarity



Arguello-Casteleiro et al. Journal of Biomedical Semantics 2019, 10(Suppl 1):22 Page 25 of 28
and relatedness task. There are two main differences be-
tween Pakhomov et al. [60] study and this study:

1. Pakhomov et al. [60] examined only the terms
within the medical benchmark dataset [27], which
contains 724 single-word pairs. Using single-word
terms is a severe limitation as “most medical terms
consist of more than one word” [60].

2. This study has created neural embeddings from
veterinary clinical notes instead of human clinical
notes. Hence, this study demonstrated
quantitatively the advantages of using a One
Health approach instead of keeping the
conventional division between veterinary
medicine and medical science.

SNOMED CT is the world-leading clinical terminology. In
UK, the National Health Service (NHS) has chosen
SNOMED CT as the single terminology for the direct man-
agement of patient’s care across all care settings in England
[110]. A fundamental reason for uptaking a standardised ter-
minology is enabling interoperability [111]. The proposed
ontological representation supports:

� Storage of precoordinated SNOMED CT
expressions, i.e. UMLS Metathesaurus concepts
mapped to SNOMED CT concepts. Hence, this
study supports the implementation level 1 (the
second level of the three proposed, i.e. 0 to 2) of the
SNOMED CT expression storage [112].

� Crafting subsets of SNOMED CT: we also have
proposed a step-by-step methodology for SNOMED
CT subset development, which has been acknowl-
edged as an unmet need for implementing
SNOMED CT in clinical settings [111]. Worldwide,
there are three SNOMED CT datasets available to
download through the UMLS [14]. In the UK, NHS
has developed 80 SNOMED CT human-readable
subsets [113]. None of the SNOMED CT datasets
mentioned were developed for a well-known medical
condition. For example, there is a NHS human-
readable subset of SNOMED CT for “Ophthalmol-
ogy” although not for glaucoma, and likewise, there
is a NHS subset for “Respiratory medicine” although
not for asthma.

� Building One Health SPARQL SELECT queries that
successfully retrieved medical knowledge (validated
with BMJ Best Practice content) about the diagnosis
and management of the 11 well-known medical condi-
tions that affect humans and animals. These One
Health queries exploit knowledge within the locality-
based modules extracted from the SNOMED CT
ontology and outside of SNOMED CT, i.e. within the
OBAN “sometimes true” association relationships.
Conclusions
In this paper we demonstrated how a Semantic Deep
Learning approach can transform neural embeddings of
n-grams created from the unstructured text of 300 K
PubMed Systematic Reviews (medical science) and 2.5M
veterinary clinical narratives (veterinary medicine) into
augmented clinically meaningful biomedical datasets of
normalised and interlinked concepts. This study applies
the Semantic Web technologies and reuses existing on-
tologies to 1) encapsulate One Health knowledge about
11 well-known diseases in human and animals that is
formal and computable (e.g. allowing a wide range of
queries); and 2) separate a “sometimes true” association
relationship between two biomedical concepts and its
evidence-based provenance (i.e. BMJ Best Practice con-
tent). The main benefit of the Semantic Deep Learning
approach proposed is in obtaining reliable and usable
One Health knowledge (e.g. knowledge useful for public
health) that enhances the world-leading clinical termin-
ology SNOMED CT.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13326-019-0212-6.

Additional file 1. This file contains 880 term pairs (target term,
candidate term) obtained from the two datasets for 11 medical
conditions: the worksheet “VetCN” with the 440 term pairs using CBOW
and Skip-gram with the VetCN dataset; and the worksheet “PMSB” with
the 440 term pairs using CBOW and Skip-gram with the PMSB dataset.
Within the worksheet “VetCN” and “PMSB” appear the UMLS CUIs
assigned to the candidate terms (n-grams). The worksheet “SF to LF” has
the 63 long forms for 80 short forms (including variants of the short
forms) within the candidate terms (n-grams). The worksheet “MetaMap
performance” contains the number of TP, FP, and FN obtained and used
to calculate precision, recall, and F measure for MetaMap in Experiment 1
(EXP-1) and Experiment 2 (EXP-2).

Additional file 2. This file contains the guidelines developed for “Step 4:
Named entity recognition task”. The file also contains the section
“Avoiding pitfalls from the SemDeep pipeline when extracting locality-
based modules with SNOMED CT”.

Additional file 3. This file shows the results of the evaluation of UMLS
CUI pairs with BMJ Best Practice content (i.e. human medicine), i.e. the
file contains the 3-tuples (target concept, candidate concept, validation
label) for the VetCN dataset (worksheet “VetCN”) and the PMSB dataset
(worksheet “PMSB”). The worksheet “signatures” has the ontological
signature (i.e. a list of SNOMED CT identifiers) for each of the 11 medical
conditions that are the subject of this study. The worksheet “q One
Health” shows the number of UMLS CUI pairs validated with BMJ Best
Practice content (i.e. human medicine) for each of the 27 UMLS Semantic
Types that participates in the SPARQL SELECT query q1VU or q2VU or
q3VU (i.e. One Health queries from Table 11).

Additional file 4. This file contains the SPARQL SELECT queries; their
results appear in Tables 9 and 11.
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modules); CBOW: Continuous Bag-of-Words. A neural language model;
CHEM: Semantic group “Chemicals & Drugs”; COPD: Chronic Obstructive
Pulmonary Disease; CPG: Clinical Practice Guideline; CPU: Central Processing
Unit; CUI: Concept Unique Identifier; DL: Description Logic; DynaMed: it
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paper “EXP” it is a shortened form of “experiment”; FaCT++: it is a tableaux-
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FP: False Positive; HF: Heart failure; HFpEF: Heart failure with a preserved
ejection fraction; IM: within the paper “IM” it is a shortened form of
“Incorrectly Mapped”; LDA: Latent Dirichlet Allocation; lemonEXT: within the
paper “lemonEXT” it is a shortened form of “extended lemon ontology”;
LF: within the paper “LF” it is a shortened form of “long form”; LSA: Latent
Semantic Analysis; MEDLINE: a bibliographic database of life sciences and
biomedical information; MedlinePlus: a United States of America (USA)
National Institutes of Health’s Web site; MeSH: Medical Subject Headings. It is
a hierarchically-organized terminology; MetaMap: a tool for recognising
UMLS concepts in text; MM: within the paper “MM” it is a shortened form of
“Multiple Maps”; MRREL: Related Concepts (File = MRREL.RRF) part of the
UMLS (Unified Medical Language System) Metathesaurus; NER: Named-entity
recognition; NHS: National Health Service; NICE: the National Institute for
Health and Care Excellence; NLP: Natural Language Processing; NM: within
the paper “NM” it is a shortened form of “Not Mapped”; NOS: Not Otherwise
Specified (or NOS) is a subcategory in systems of disease/ disorder
classification; OBAN: Open Biomedical AssociatioNs; OBANmod: within the
paper “OBANmod” it is a shortened form of “modified OBAN ontology”;
oboInOwl: a meta-model mapping Open Biomedical Ontologies (abbreviated
OBO; formerly Open Biological Ontologies) to OWL; Ontolex: Ontology
Lexicon ontology; OWL: the Web Ontology Language; PICO: Participants,
Interventions, Comparisons and Outcomes; PMSB: within the paper “PMSB”
dataset it is a shortened form of “300K PubMed Systematic Review” dataset;
PROWESS / PROWESS- SHOCK: randomized clinical trial; PubMed: a free
search engine accessing primarily the MEDLINE database; RAM: Random
Access Memory; RDF: Resource Description Framework (RDF) format;
RO: Relation Ontology; SaRAD: a simple and robust abbreviation dictionary;
SAVSNET: Small Animal Veterinary Surveillance Network; SemDeep: Semantic
Deep Learning; SF: within the paper “SF” it is a shortened form of “short
form”; SF-I: within the paper “SF-I” it is a shortened form of “short form
identified incorrectly”; SF-NF: within the paper “SF-NF” it is a shortened form
of “not identified” (i.e. “not found”); Simlex-999 / SimVerb-3500: a benchmark
dataset; Skip-gram: a neural language model; SM: within the paper “SM” it is
a shortened form of “Single Map”; SNOMED CT: Systematized Nomenclature
of Medicine - Clinical Terms. It is a hierarchically-organized terminology;
SPARQL: a query language for RDF; TN: True Negative; TP: True Positive;
UMLS: Unified Medical Language System; UMLS2016AB: the 2016AB UMLS
Metathesaurus release; US / USA: United States of America; USTG: within the
paper “USTG” it is a shortened form of “UMLS Semantic Types and Groups”;
VetCN: within the paper “VetCN” dataset it is a shortened form of “2.5M
veterinary clinical narratives” dataset; VetSCT: the Veterinary Extension for
SNOMED CT
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