
Integrative Multi-View Regression: Bridging Group-Sparse and 
Low-Rank Models

Gen Li,
Department of Biostatistics, Columbia University

Xiaokang Liu,
Department of Statistics, University of Connecticut, Storrs, CT

Kun Chen
Department of Statistics, University of Connecticut, Storrs, CT

Summary:

Multi-view data have been routinely collected in various fields of science and engineering. A 

general problem is to study the predictive association between multivariate responses and multi-

view predictor sets, all of which can be of high dimensionality. It is likely that only a few views 

are relevant to prediction, and the predictors within each relevant view contribute to the prediction 

collectively rather than sparsely. We cast this new problem under the familiar multivariate 

regression framework and propose an integrative reduced-rank regression (iRRR), where each 

view has its own low-rank coefficient matrix. As such, latent features are extracted from each view 

in a supervised fashion. For model estimation, we develop a convex composite nuclear norm 
penalization approach, which admits an efficient algorithm via alternating direction method of 

multipliers. Extensions to non-Gaussian and incomplete data are discussed. Theoretically, we 

derive non-asymptotic oracle bounds of iRRR under a restricted eigenvalue condition. Our results 

recover oracle bounds of several special cases of iRRR including Lasso, group Lasso and nuclear 

norm penalized regression. Therefore, iRRR seamlessly bridges group-sparse and low-rank 
methods and can achieve substantially faster convergence rate under realistic settings of multi-

view learning. Simulation studies and an application in the Longitudinal Studies of Aging further 

showcase the efficacy of the proposed methods.
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1. Introduction

Multi-view data, or measurements of several distinct yet interrelated sets of characteristics 

pertaining to the same set of subjects, have become increasingly common in various fields. 

In a human lung study, for example, segmental airway tree measurements from CT-scanned 

images, patient behavioral data from questionnaires, gene expressions data, together with 

multiple pulmonary function test results from spirometry, were all collected. Unveiling lung 

disease mechanisms then amounts to linking the microscopic lung airway structures, the 

genetic information, and the patient behaviors to the global measurements of lung functions 

(Chen et al., 2016). In an Internet network analysis, the popularity and influence of a web 

page are related to its layouts, images, texts, and hyperlinks as well as by the content of 

other web pages that link back to it. In Longitudinal Study of Aging (LSOA) (Stanziano et 

al., 2010), the interest is to predict current health conditions of patients using historical 

information of their living conditions, household structures, habits, activities, medical 

conditions, among others. The availability of such multi-view data has made tackling many 

fundamental problems possible through an integrative statistical learning paradigm, whose 

success owes to the utilization of information from various lenses and angles simultaneously.

The aforementioned problems can all be cast under a multivariate regression framework, in 

which both the responses and the predictors can be high dimensional, and in addition, the 

predictors admit some natural grouping structure. In this paper we investigate this simple yet 

general framework for achieving integrative learning. To formulate, suppose we observe 

Xk ∈ ℝ
n × pk for k = 1, … , K, each consisting of n copies of independent observations from 

a set of predictor/feature variables of dimension pk, and also we observe data on q response 

variables Y ∈ ℝn × q. Let X = X1, …, XK ∈ ℝn × p be the design matrix collecting all the 

predictor sets/groups, with p = ∑k = 1
K pk. Both p and q can be much larger than the sample 

size n. Consider the multivariate linear regression model,

Y = XB0 + E = ∑
k = 1

K
XkB0k + E, (1)

where B0 = B01
T , …, B0K

T T ∈ ℝp × q is the unknown regression coefficient matrix partitioned 

corresponding to the predictor groups, and E contains independent random errors with zero 

mean. For simplicity, we assume both the responses and the predictors are centered so there 

is no intercept term. The naive least squares estimation fails miserably in high dimensions as 

it leverages neither the response associations nor the grouping of the predictors.

In recent years, we have witnessed an exciting development in regularized estimation, which 

aims to recover certain parsimonious low dimensional signal from noisy high dimensional 

data. In the context of multivariate regression or multi-task learning (Caruana, 1997), many 

exploit the idea of sparse estimation (Rothman et al., 2010; Peng et al., 2010; Lee and Liu, 

2012; Li et al., 2015), in which information sharing can be achieved by assuming that all the 

responses are impacted by the same small subset of predictors. When the predictors 

themselves exhibit a group structure as in model (1), a group penalization approach, for 
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example, the convex group Lasso (grLasso) method (Yuan and Lin, 2006), can be readily 

applied to promote groupwise predictor selection. Such methods have shown to be effective 

in integrative analysis of high-throughput genomic studies (Ma et al., 2011; Liu et al., 2014); 

a comprehensive review of these methods is provided by Huang et al. (2012).

For multivariate learning, another class of methods, i.e., the reduced-rank methods 

(Anderson, 1951; Reinsel and Velu, 1998), has also been attractive, where a low-rank 

constraint on the parameter matrix directly translates to an interpretable latent factor 

formulation, and conveniently induces information sharing among the regression tasks. 

Bunea et al. (2011) cast the high-dimensional reduced-rank regression (RRR) as a non-

convex penalized regression problem with a rank penalty. Its convex counterpart is the 

nuclear norm penalized regression (NNP) (Yuan et al., 2007; Negahban and Wainwright, 

2011; Koltchinskii et al., 2011),

min
B ∈ ℝp × q

1
2n Y − XB

𝔽

2
+ λ B

⋆
, (2)

where ⋅
𝔽

 denotes the Frobenius norm, and the nuclear norm is defined as 

B ⋆ = ∑ j = 1
p ∧ qσ(B, j), with σ(·,j) denoting the jth largest singular value of the enclosed 

matrix. Other forms of singular value penalization were considered in, e.g., Mukherjee and 

Zhu (2011), Chen et al. (2013) and Zhou and Li (2014). In addition, some recent efforts 

further improve low-rank methods by incorporating error covariance modeling, such as 

envelope models (Cook et al., 2015), or by utilizing variable selection (Chen et al., 2012; 

Bunea et al., 2012; Chen and Huang, 2012; Su et al., 2016).

In essence, to best predict the multivariate response, sparse methods search for the most 

relevant subset or groups of predictors, while reduced-rank methods search for the most 

relevant subspace of the predictors. However, neither class of existing methods can fulfill the 

needs in the aforementioned multi-view problems. The predictors within each group/view 

may be strongly correlated, each individual variable may only have weak predictive power, 

and it is likely that only a few of the views are useful for prediction. Indeed, in the lung 

study, it is largely the collective effort of the sets of local airway features that drives the 

global lung functions (Chen et al., 2016). In the LSOA study, the predictor groups have 

distinct interpretations and thus warrant distinct dependence structures with the health 

outcomes.

In this paper, we propose an integrative multi-view reduced-rank regression (iRRR) model, 

where the integration is in terms of multi-view predictors. To be specific, under model (1), 

we assume each set of predictors has its own low-rank coefficient matrix. Figure 1 shows a 

conceptual diagram of our proposed method. Latent features or relevant subspaces are 

extracted from each predictor set Xk under the supervision of the multivariate response Y, 
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and the sets of latent variables/subspaces in turn jointly predict Y. The model setting strikes 

a balance between flexibility and parsimony, as it nicely bridges two seemingly quite 

different model classes: reduced-rank and group-sparse models. On the one hand, iRRR 

generalizes the two-set regressor model studied in Velu (1991) by allowing multiple sets of 

predictors, each of which can correspond to a low-rank coefficient matrix. On the other 

hand, iRRR subsumes group-sparse model setup by allowing the rank of B0k being 0, for 

any k = 1, … , K, i.e., the coefficient matrix of a predictor group could be entirely zero.

In Section 2, we develop a new convex optimization approach via composite nuclear norm 

penalization (cNNP) to conduct model estimation for iRRR, which ensures the scalability to 

large-scale applications. We devise an Alternating Direction Method of Multipliers 

(ADMM) algorithm to solve the optimization problem with convergence guarantee; 

extensions to non-Gaussian response, incomplete data, among others, are also considered, 

and all the details are reported in the Web Appendix A. In Section 3, we derive non-

asymptotic oracle bounds for the iRRR estimator, which subsume the results for several 

existing regularized estimation methods, and show that our proposed approach can achieve 

superior performance under realistic settings of multi-view learning. Comprehensive 

simulation studies are contained in Section 4, and a real data analysis of the LSOA example 

is contained in Section 5. In Section 6, we conclude with some discussions.

2. Integrative Multi-View Reduced-Rank Regression

2.1 Proposed Model

We consider the multivariate regression model in (1) to pursue integrative learning. Recall 

that in model (1), there are K views or groups of predictors denoted by X = (X1, … , XK), 

where Xk ∈ ℝ
n × pk and ∑k = 1

K pk = p. Correspondingly, the coefficient matrix B0 is 

partitioned into K parts as B0 = B01
T , …, B0K

T T
, where B0k ∈ ℝ

pk × q
. Denote r(·) as the rank 

of the enclosed matrix. By assuming each B0k is possibly of low rank or even a zero matrix, 

i.e., 0 ⩽ r0k ≪ pk ∧ q where r0k = r(B0k), for k = 1, … , K, we reach our proposed integrative 
multi-view reduced-rank regression (iRRR) model.

The groupwise low-rank structure in iRRR is distinct from a globally low-rank structure for 

B0 in standard RRR models. The low-rankness of B0ks does not necessarily imply that B0 is 

of low rank. Conversely, if B0 is of low rank, i.e., r0 = r(B0) ≪ p ∧ q, all we know is that the 

rank of each B0k is upper bounded by r0.

Nevertheless, we can first attempt an intuitive understanding of the potential parsimony of 

iRRR in multi-view settings. The numbers of free parameters in B0 (the naive degrees of 

freedom) for an iRRR model, a globally reduced-rank model and a group-sparse model are 

df1 = ∑k = 1
K pk + q − r0k, df2 = (p+q−r0) and df3 = ∑k = 1

K pkqI r0k ≠ 0 , respectively, where 

I(·) is an indicator function. For high-dimensional multi-view data, consider the scenario that 

only a few views/predictor groups impact the prediction in a collective way, i.e., r0ks are 

mostly zero, and each nonzero r0k could be much smaller than (pk ∧ q). Then df1 could be 

substantially smaller than both df2 and df3. For example, if r01 > 0 while r0k = 0 for any k > 
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1 (i.e., r0 = r01), we have df1 = (p1+q−r01)r01, df2 = (p+q−r01)r01 and df3 = p1q, respectively. 

Another example is when r0 = ∑k = 1
K r0k, e.g., B0ks in model (1) have distinct row spaces. 

Since ∑k = 1
K pk + q − r0k r0k ⩽ q + ∑k = 1

K pk − r0k ∑k = 1
K r0k = p + q − r0 r0, iRRR is 

more parsimonious than the globally reduced-rank model. The above observations will be 

rigorously justified in Section 3 through a non-asymptotic analysis.

2.2 Composite Nuclear Norm Penalization

To recover the desired view-specific low-rank structure in the iRRR model, we propose a 

convex optimization approach with composite nuclear norm penalization (cNNP),

B ∈ arg min
B ∈ ℝp × q

1
2n Y − XB

F

2
+ λ ∑

k = 1

K
wk Bk ⋆, (3)

where Bk ⋆ = ∑ j = 1
pk ∧ q

σ(Bk, j) is the nuclear norm of Bk, wks are some prespecified weights, 

and λ is a tuning parameter controlling the amount of regularization. The use of the weights 

is to adjust for the dimension and scale differences of Xks. We choose

wk = σ Xk, 1 q + r Xk /n, (4)

based on a concentration inequality of the largest singular value of a Gaussian matrix. This 

choice balances the penalization of different views and allows us to use only a single tuning 

parameter to achieve desired statistical performance; see Section 3 for details.

Through cNNP, the proposed approach can achieve view selection and view-specific 

subspace selection simultaneously, which shares the same spirit as the bi-level selection 

methods for univariate regression (Breheny and Huang, 2009; Huang et al., 2012; Chen et 

al., 2016). Moreover, iRRR seamlessly bridges group-sparse and low-rank methods as its 

special cases.

Case 1: nuclear norm penalized regression (NNP). When p1 = p and K = 1, (3) reduces to the 

NNP method as in (2), which learns a globally low-rank association structure.

Case 2: multi-task learning (MTL). When pk = 1 and p = K, (3) becomes a special case of 

MTL (Caruana, 1997), in which all the tasks are with the same set of features and the same 

set of samples. MTL achieves integrative learning by exploiting potential information 

sharing across the tasks, i.e., all the task models share the same sparsity pattern of the 

features.

Case 3: Lasso and grLasso. When q = 1, (3) becomes a grLasso method, as ‖Bk‖⋆ = ‖Bk‖2 

when Bk ∈ ℝ
pk. Further, when pk = 1 and p = K, (3) reduces to a Lasso regression.

Different loss functions can be adopted in (3) to handle various statistical learning problems. 

In particular, multivariate dichotomous outcomes are frequently encountered in practice. For 

example, in the LSOA example, the health outcomes are responses to a collection of 
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dichotomous questions. More generally, we extend iRRR to non-Gaussian responses by 

exploiting the generalized linear model (GLM) setup. Let Y = yi j ∈ ℝn × q be the response 

matrix consisting of n independent samples from q response variables. We assume each yij 

follows a distribution in the exponential family with probability density f(yij; θij, ϕj) = 

exp{(yijθij − b(θij))/(a(ϕj)) + c(yij; ϕj)}, where θijs are the natural parameters which 

collectively form Θ = θi j ∈ ℝn × q, ϕj is the dispersion parameter of the jth response, and 

a(·), b(·), c(·) are known functions determined by the response distribution. To streamline the 

idea, we focus on the natural exponential family distributions for which the dispersion 

parameter ϕj is known. For example, ϕj = 1 for Bernoulli or Poisson distributions. Without 

loss of generality, the canonical link g = (b′)−1 is applied, so that 𝔼 yi j = b′ θi j = g−1 θi j , 

where b′ is the derivative of b. The iRRR model can then be expressed as 

Θ = 1μ0
T + ∑k = 1

K XkB0k, where μ0 is an intercept vector, B0ks are possibly of low rank, and 

the remaining terms are the same as in model (1). An estimation criterion can then be 

formed by replacing the first term in (3) by the negative log-likelihood function.

The convex optimization of (3) has no closed-form solution in general, for which we 

propose an ADMM algorithm (Boyd et al., 2011). Due to space limit, all the details are 

presented in Web Appendix A; there we also provide details on handling incomplete data 

and binary responses as an example of the GLM setup, and on further extensions including 

the incorporation of ℓ2 regularization and adaptive estimation.

3. Theoretical Analysis

We investigate the theoretical properties of the proposed iRRR estimator from solving the 

convex cNNP problem. In particular, we derive its non-asymptotic performance bounds for 

estimation and prediction. Our general results recover performance bounds of several related 

methods, including Lasso, grLasso and NNP. We further show that iRRR is capable of 

substantially outperforming those methods under realistic settings of multi-view learning. 

All the proofs are provided in Web Appendix D.

We mainly consider the multi-view regression model in (1), i.e., Y = ∑k = 1
K XkB0k + E, and 

the iRRR estimator in (3) with the weights defined in (4), i.e.,

B ∈ arg min
B ∈ ℝp × q

1
2n Y − XB

F

2
+ λ ∑

k = 1

K
σ Xk, 1 q + r Xk Bk ⋆/n .

Define Z = XTX/n, and Zk = Xk
TXk /n, for k = 1, … , K. We scale the columns of X such that 

the diagonal elements of Z all equal to 1. Denote Λ(Z, l) as the lth largest eigenvalue of Z, 

so that Λ(Z, l) = σ(X, l)2/n.
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Theorem 1: Assume E has independent and identically distributed (i.i.d.) N(0, τ2) entries. 
Let λ = (1+θ)τ, with θ > 0 arbitrary. Then with probability at least 

1 − ∑k = 1
K exp −θ2 q + r Xk /2 , we have

XB − XB0 F
2 ⩽ XC − XB0 F

2 + 4λ ∑
k = 1

K
σ Xk, 1 q + r Xk Ck ⋆,

for any Ck ∈ ℝ
pk × q

, k = 1, … , K and C = C1
T, …, CK

T T
.

Theorem 1 shows that B balances the bias term XC − XB0 F
2 and the variance term 

4λ∑k = 1
K σ Xk, 1 q + r Xk Ck ⋆. An oracle inequality for B is then readily obtained for 

the low-dimensional scenario σ(X, p) > 0; see the corollary in Web Appendix D.

We now investigate the general high-dimensional scenario. Motivated by Lounici et al. 

(2011), Negahban and Wainwright (2011), Koltchinskii et al. (2011), among others, we 

impose a restricted eigenvalue condition (RE). We say that X satisfies RE condition over a 

restricted set 𝒞 r1, …, rK; δ ⊂ ℝp × q if there exists some constant κ(X) > 0 such that

1
2n XΔ

F
2

⩾ κ(X) Δ
F
2

,  for all Δ ∈ 𝒞 r1, …, rK; δ .

Here each rk is an integer satisfying 1 ⩽ rk ⩽ min(pk, q) and δ is a tolerance parameter. The 

technical details on the construction of the restricted set is provided in Web Appendix B.

Theorem 2: Assume that E has i.i.d. N(0, τ2) entries. Suppose X satisfies the RE condition 
with parameter κ(X) > 0 over the set 𝒞 r1, …, rK; δ . Let λ = 2(1 + θ)τ with θ > 0 arbitrary. 

Then with probability at least 1 − ∑k = 1
K exp −θ2 q + r Xk /2 ,

B − B0 𝔽
2 ≼ max δ2, τ2(1 + θ)2 ∑

k = 1

K Λ Zk, 1

κ(X)2
q + r Xk

2rk
n ,

τ

(1 + θ) ∑
k = 1

K Λ Zk, 1
κ(X)

q + r Xk ∑ j = rk + 1
mk σ B0k, j

n
.

On the right hand side of the above upper bound, the first term is from the tolerance 

parameter in the RE condition, which ensures that the condition can possibly hold when the 

true model is not exactly low-rank (Negahban and Wainwright, 2011), i.e., when 
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∑ j = rk + 1
mk σ B0k, j ≠ 0. The second term gives the estimation error of recovering the desired 

view-specific low-rank structure, and the third term gives the approximation error incurred 

due to approximating the true model with the view-specific low-rank structure. When the 

true model is exactly of low rank, i.e., r(B0k) = r0k, it suffices to take δ = 0 and the upper 

bound then yields the estimation error, i.e. τ2∑k = 1
K q + r Xk r0k /n,. This rate holds with 

high probability in the high-dimensional setting that q + r(Xk) → ∞. In the classical setting 

of n → ∞ with fixed q and r(Xk), by choosing θ ∝ logn, the rate becomes 

τ2log(n)∑k = 1
K r0k /n with probability approaching 1.

Intriguingly, the results in Theorem 2 can specialize into oracle inequalities of several 

existing regularized estimation methods, such as NNP, MTL and Lasso. This is because 

these models can all be viewed as special cases of iRRR. As such, iRRR seamlessly bridges 

group-sparse and low-rank methods and provides a unified theory of the two types of 

regularization. Several examples are provided in Web Appendix C.

To see the potential advantage of iRRR over NNP or MTL, we make some comparisons of 

their error rates based on Theorem 2. To convey the main message, consider the case where 

pk = p1, r Xk = rX1
 for k = 1, … , K, r0k = r01 for k = 1, … , s, and r0k = 0 for k = s + 1, … , 

K. The error rate is τ2sr01 q + rX1
/n, τ2r0(q + rX)/n, for iRRR and NNP, respectively, with 

high probability. As long as sr01 = O(r0), iRRR achieves a faster rate since rX1
⩽ rX always 

holds. For comparing iRRR and MTL, we get that with probability 1−p−1, iRRR achieves an 

error rate τ2 logp + q + rX1
sr01/n (by choosing θ = 4 log p/ q + rX1

) while MTL achieves 

τ2(log p + q + 1)sp1/n. The two rates agree with each other in the MTL setting when 

rX1
= r01 = p1 = 1, and the former rate can be much faster in the iRRR setting when, for 

example, r01 ≪ p1 and rX1
= O log p + q .

4. Simulation

4.1 Settings and Evaluation Metrics

We conduct simulation studies to demonstrate the efficacy of the proposed iRRR method. 

We consider two response types: Gaussian and binary. In Gaussian settings, we compare 

iRRR with the ordinary least squares (OLS), the ridge RRR (RRRR) (Mukherjee and Zhu, 

2011) (which contains RRR as a special case), and the adaptive NNP (aNNP) (which has 

been shown to be computationally efficient and can outperform NNP in Chen et al., 2013). 

For the settings in which the true coefficient matrix is sparse, we also include MTL 

(Caruana, 1997) (by treating each predictor as a group in iRRR), as well as Lasso 

(Tibshirani, 1996) and grLasso (Yuan and Lin, 2006) for each response variable separately 

(grLasso accounts for the grouping information in the multi-view predictors). In binary 

settings, we compare iRRR with the generalized RRR (gRRR) (She, 2013; Luo et al., 2018) 

Li et al. Page 8

Biometrics. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and the univariate penalized logistic regression (glmnet) with the elastic net penalty (Zou 

and Hastie, 2005).

For the Gaussian models, we consider a range of simulation settings. Setting 1 is the basic 

setting, where n = 500, K = 2, p1 = p2 = 50 (p = 100), and q = 100. We generate the rows of 

the design matrix X independently from a p-variate Gaussian distribution N(0, Σx) with Σx = 

Ip, followed by column centering. The error matrix E is filled with i.i.d. standard Gaussian 

random numbers. (We also consider correlated errors. The results are similar and contained 

in Web Appendix E.) Each coefficient matrix B0k has rank r0k = 10, which is generated as 

B0k = LkRk
T with the entries of Lk ∈ ℝ

pk × r0k and Rk ∈ ℝ
q × r0k both generated from N(0, 1). 

Consequently, B0 = B01
T , B02

T T
 has rank r0 = r01 + r02 = 20. The response matrix Y is then 

generated based on the model in (1). As such, there are more than 10,000 unknown 

parameters in this model, posing a challenging large-scale problem. Furthermore, we also 

consider incomplete responses, with 10%, 20%, 30% entries missing completely at random.

The other settings are variants of Setting 1:

• Setting 2 (multi-collinear): The predictors in the two views X1 and X2 are 

highly correlated. All the p = p1 + p2 predictors are generated jointly from a p-

variate Gaussian distribution Np(0, Σx), where Σx has diagonal elements 1 and 

off-diagonal 0.9.

• Setting 3 (globally low-rank): We set R1 = R2 when generating B01 and B02, so 

that the low rank structures in separate coefficient matrices also imply a globally 

low-rank structure. We consider three scenarios: r0 = r01 = r02 = 20, r0 = r01 = r02 

= 40, and r0 = 60, r01 = r02 = 50.

• Setting 4 (multi-set): We consider multiple views, K ∈ {3, 4, 5}. The additional 

design matrices and coefficient matrices are generated in the same way as in 

Setting 1.

• Setting 5 (sparse-view): We consider K = 3, where the last predictor set X3 is 

generated in the same way as in Setting 1 but is irrelevant to prediction, i.e., B03 

= 0.

For the binary models, we consider two settings: the basic setting (Setting 6) and the sparse-

view setting (Setting 7), which are similar to Setting 1 and Setting 5, respectively. The 

differences are that the sample size is set to n = 200, the intercept μ0 is set as a vector of 

random numbers from the uniform distribution on [−1, 1], and the entries of Y are drawn 

from Bernoulli distributions with their natural parameters given by Θ = 1μ0
T + ∑k = 1

K XkB0k.

In Settings 1–5, we use the MSPE to evaluate the performance of different methods,

MSPE B0, B = tr B0 − B TΣx B0 − B ,
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where tr(·) represents the trace of a matrix, B is the estimate of B0, and Σx is the covariance 

matrix of X. In Settings 6–7, we evaluate the average cross entropy between the true and 

estimated probabilities on an independently generated validation data set of size n = 500,

En μ0, B0, μ, B = − 1
n ∑

i = 1

n
∑

j = 1

q
pi j log pi j + 1 − pi j log 1 − pi j ,

where pij = exp(θij)/{1 + exp(θij)}, and pi j is its corresponding estimate.

For each simulation setting, we first generate an independent testing data set to select tuning 

parameters for different methods. Once selected, the tuning parameters are fixed in 

subsequent analyses. This unified approach alleviates inaccuracy in the empirical tuning 

parameter selection to ensure a fair comparison of different regularization methods. We have 

also tried 5-fold CV. The results are similar to those from the validation data tuning and thus 

omitted for brevity. In each setting, the experiment is replicated 100 times.

4.2 Results

Table 1 reports the results for Settings 1–4. In all the settings, the three regularized 

estimation methods always substantially outperform OLS, indicating the strength and 

necessity of dimension reduction. In Setting 1 (basic), iRRR provides the best prediction 

performance, followed by aNNP and RRRR. When the outcomes are incomplete, only iRRR 

is applicable. The mean and standard deviation of MSPE over 100 repetitions are 7.87 

(0.20), 8.64 (0.20), and 9.96 (0.24), when 10%, 20%, and 30% of the responses are missing, 

respectively. In Setting 2 (multi-collinear), iRRR is still the best. It is worth noting that 

owing to shrinkage estimation, RRRR slightly outperforms aNNP. In Setting 3 (globally 
low-rank), aNNP and RRRR can slightly outperform iRRR when r0 is much smaller than 

∑k = 1
K r0k. This can be explained by the fact that under this setting iRRR may be less 

parsimonious than the globally reduced-rank methods. To see this, when r0 is small and r0 = 

r01 = r02, we have that ∑k = 1
K pk + q − r0k r0k = p + K q − r0 r0 > p + q − r0 r0, i.e., iRRR 

yields a larger number of free parameters than RRR. Nevertheless, iRRR regains its 

superiority over the globally low-rank methods when r0 becomes large. We remark that in 

multi-view problems the scenario of r0 ≪ ∑k r0k rarely happens unless the relevant subspace 

from each view largely overlaps with each other. In Setting 4 (multi-set), we confirm that 

the advantage of iRRR becomes more obvious as the number of distinct view sets increases.

Figure 2 displays the results for Setting 5 (sparse-view). We find that the iRRR solution 

tuned based on predictive accuracy usually estimates the third coefficient matrix (which is a 

zero matrix in truth) as a nearly zero matrix and occasionally an exact zero matrix; in view 

of the construction of the cNNN penalty in iRRR, this “over-selection” property is 

analogous to that of Lasso or grLasso. Motivated by Zou (2006), we also experiment with an 

adaptive iRRR (denoted by iRRR-a) approach, where we first fit iRRR and then adjust the 

predefined weights by the inverse of the Frobenius norms of the estimated coefficient 

matrices. As a result, the iRRR-a approach achieves much improved view selection 

performance and even better prediction accuracy than iRRR. In contrast, MTL, Lasso and 
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grLasso have worse performance than the low-rank methods, because they fail to leverage 

information from the multivariate response and/or multi-view predictor structures.

The simulation results of Settings 6–7 for binary models are displayed in Figure 3. The 

results are similar as in the Gaussian models, i.e., the iRRR methods substantially 

outperform the competing sparse or low-rank methods in prediction.

We have also compared the computational time of different methods (on a standard desktop 

with Intel i5 3.3GHz CPU). For example, the average time (in seconds) under Setting 1 is 

0.68 (0.06), 0.07 (0.01) and 0.02 (0.00) for iRRR, aNNP and RRRR, respectively; under 

Setting 4 with K = 5 the average time becomes 0.96 (0.12), 0.09 (0.01) and 0.05 (0.01); 

under Setting 6 with binary responses, the average time is 1.71 (0.03), 0.98 (0.08) and 0.70 

(0.08) for iRRR, gRRR and glmnet. As expected, iRRR is more computationally expensive 

than the globally low-rank or sparse methods. However, in view of the scale of the problem, 

the computational cost for iRRR is still low and acceptable.

5. An Application in the Longitudinal Studies of Aging

The LSOA (Stanziano et al., 2010) was a collaborative effort of the National Center for 

Health Statistics and the National Institute on Aging. The study interviewed a large cohort of 

senior people (70 years of age and over) in 1997–1998 (WAVE II) and 1999–2000 (WAVE 

III), respectively, and measured their health conditions, living conditions, family situations, 

health service utilizations, among others. Here our objective is to examine the predictive 

relationship between health-related events in earlier years and health outcomes in later years, 

which can be formulated as a multivariate regression problem.

There are n = 3988 common subjects who participated in both WAVE II and WAVE III 

interviews. After data pre-processing (Luo et al., 2018), p = 294 health risk and behavior 

measurements in WAVE II are treated as predictors, and q = 41 health outcomes in WAVE 

III are treated as multivariate responses. The response variables are binary indicators, 

characterizing various cognitive, sensational, social, and life quality outcomes, among 

others. Over 20% of the response data entries are missing. The predictors are multi-view, 

including housing condition (X1 with p1 = 38), family structure/status (X2 with p2 = 60), 

daily activity (X3 with p3 = 40), prior medical condition (X4 with p4 = 114), and medical 

procedure since last interview (X5 with p5 = 40). We thus apply the proposed iRRR method 

to perform the regression analysis. As a comparison, we also implement gRRR (Luo et al., 

2018), and both classical and sparse logistic regression methods using the R package glmnet, 

denoted as glm and glmnet, respectively.

We use a random-splitting procedure to evaluate the performance of different methods. More 

specifically, each time we randomly select ntr = 3000 subjects as training samples and the 

remaining nte = 988 subjects as testing samples. For each method, we use 5-fold CV on the 

training samples to select tuning parameters, and apply the method to all the training data 

with the selected tuning parameters to yield its coefficient estimate. The performance of 

each method is measured by the average deviance between the observed true response values 

and the estimated probabilities, defined as

Li et al. Page 11

Biometrics. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



 Average Deviance  =
−2∑i = 1

nte ∑ j = 1
q yi j log pi j + 1 − yi j log 1 − pi j δi j

∑i = 1
nte ∑ j = 1

q δi j

,

where δij is an indicator of whether yij is observed. We also calculate the Area Under the 

Curve (AUC) of the Receiver Operating Characteristic (ROC) curve for each outcome 

variable. This procedure is repeated 100 times and the results are averaged.

In terms of the average deviance, iRRR and glmnet yield very similar results (with mean 

0.77 and standard deviation 0.01), and both substantially outperform gRRR (with mean 0.83 

and standard deviation 0.01) and glm (fails due to a few singular outcomes). The outsample 

AUCs for different response variables are shown in Figure 4. The response variables are 

sorted based on their missing rates from large (over 70%) to small (about 13%). Again, the 

performance of iRRR is comparable to that of glmnet. The iRRR tends to have a slight 

advantage over glmnet for responses with high missing rates. This could be due to the fact 

that iRRR can borrow information from other responses while the univariate glmnet cannot.

To understand the impact of different views on prediction, we produce heatmaps of the 

estimated coefficient matrices in Figure 5 (glm is omitted due to its poor performance). The 

estimates from iRRR and glmnet show quite similar patterns: it appears that the family 

structure/status group and the daily activity group have the most predictive power, and the 

variables within these two groups contribute to the prediction in a collective way. As for the 

other three views, iRRR yields heavily shrunk coefficient estimates, while glmnet yields 

very sparse estimates. These agreements partly explain the similarity of the two methods in 

their prediction performance. In contrast, the gRRR method tries to learn a globally low-

rank structure rather than a view-specific structure; consequently, it yields a less 

parsimonious solution with less competitive prediction performance. Therefore, our results 

indicate that generally knowing the family structure/status and daily activity measurements, 

the information on housing condition, prior medical conditions, and medical procedures do 

not provide much new contribution to the prediction of health outcomes on cognition, 

sensation, social behavior, life quality, among others.

6. Discussion

With multi-view predictor/feature sets, it is likely that some of the views are irrelevant to the 

prediction of the outcomes, and the features within a relevant view may be highly correlated 

and hence contribute to the prediction collectively rather than sparsely. When dealing with 

such problem, the two commonly used methodologies, i.e., sparse methods and low-rank 

methods, both have shortcomings. The joint extraction of latent features from each view in a 

supervised fashion offers a better solution; indeed, this is what iRRR strives to achieve.

There are many directions for future research. For conducting simultaneous view selection 

and within-view subspace selection, the proposed cNNP scheme can be extended to a 

general composite singular value penalization scheme, 
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λ∑k = 1
K wkρ𝒪 ∑ j = 1

pk ∧ q
ρℐ σ Bk, j ,where ρℐ is an inner penalty function for inducing 

sparsity among the singular values of each Bk, and ρ𝒪 is an outer penalty function for 

enforcing sparsity among the Bk matrices. For example, the family of bridge penalties 

(Huang et al., 2008) can be used in both inner and outer penalization. Incorporating sparse 

within-view variable selection to iRRR could also be fruitful; one way to achieve this is to 

use an additive penalty form of cNNP and grLasso. Moreover, it is possible to combine 

iRRR with a covariate-adjusted (inverse) covariance estimation method (Rothman et al., 

2010), to jointly estimate the mean and covariance structures. Another pressing problem is 

to generalize iRRR to handle heterogeneous data, as in practice data may be count-valued, 

interval-valued, or mixed of several types with substantial missing values (Luo et al., 2018). 

Computationally, the ADMM algorithm can be coupled with a Majorization-Minimization 

algorithm to handle these cases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
A diagram of integrative multi-view reduced-rank regression (iRRR). Latent features, i.e., 

XkUk, are learned from each view/predictor set under the supervision of Y.
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Figure 2: 
Simulation results for Setting 5 (sparse-view). OLS is omitted as its performance is much 

worse than the reported methods.
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Figure 3: 
Simulation results for Settings 6–7 with binary response variables.
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Figure 4: 
LSOA data analysis. The mean and standard deviation (error bar) of AUC for each response 

variable over 100 random-splitting procedures. The responses, from left to right, are ordered 

by missing rates from large to small.
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Figure 5: 
LSOA data analysis. The heat maps of the coefficient matrices estimated from different 

methods. The predictors fall into 5 groups, namely, housing condition, family status, daily 

activity, prior medical condition, and change in medical procedure since last interview, from 

top to bottom separated by horizontal black lines. For visualization purpose, we also sort the 

responses based on their grouping structure (e.g., cognition, sensation, social behavior, and 

life quality).
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Table 1:

Simulation results for Settings 1–4. The mean and standard deviation (in parenthesis) of MSPE over 100 

simulation runs are presented. In each setting, the best results are highlighted in boldface.

iRRR aNNP RRRR OLS

Setting 1 7.22 (0.17) 7.76 (0.22) 8.38 (0.24) 25.15 (0.36)

Setting 2 4.21 (0.10) 4.69 (0.11) 4.52 (0.11) 25.15 (0.36)

Setting 3

(r0 = 20) 10.13 (0.22) 7.81 (0.25) 8.25 (0.26) 25.16 (0.39)

(r0 = 40) 12.48 (0.19) 12.39 (0.22) 13.76 (0.26) 25.04 (0.37)

(r0 = 60) 13.62 (0.21) 14.66 (0.26) 15.66 (0.17) 25.11 (0.39)

Setting 4

(K = 3) 10.19 (0.21) 13.99 (0.32) 15.44 (0.31) 43.76 (0.59)

(K = 4) 13.04 (0.22) 19.99 (0.35) 19.68 (0.19) 68.00 (0.89)

(K = 5) 14.84 (0.25) 24.90 (0.32) 21.43 (0.21) 101.87 (1.38)
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