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Introduction
Osteoarthritis (OA) (i.e. degenerative joint disease) is the 
most common joint disease, with knee OA having a prev-
alence of 10%–13%.1 Articular cartilage (AC) changes are 
seen early in the pathogenesis of degenerative joint disease. 
Changes in the internal cartilage structure are among the 
first signs of OA; typically occurring before changes in 
cartilage thickness.2 The structure of AC is based on its 
two main compartments: cellular and extracellular matrix. 
The cellular compartment is composed by the cells respon-
sible for the generation and preservation of extracellular 
matrix, the chondrocytes, which represent up to the 10% of 
the whole volume of normal AC. The extracellular matrix 
(ECM) compartment is mainly composed of water (up to 
70%) and macromolecules, primarily collagen and proteo-
glycans (PGs)/GAGs (Figure 1).

Clinically, AC is evaluated either indirectly using radio-
graphs or tomographically using MRI, computed tomog-
raphy or ultrasound.3,4 Among these techniques, MRI has 
the highest sensitivity and specificity to detect AC damage 
and changes in tissue characteristics. Owing to its excelling 
soft tissue contrast, of the introduction of MRI represented 
a significant advance in the evaluation of AC allowing for 
more accurate morphologic characterization. Traditional 
morphologic MRI techniques have been widely used clin-
ically for quantitative assessment of AC thickness, and can 
accurately detect focal or diffuse changes in cartilage shape 
as well as changes in its normal signal intensity.5 Changes in 
AC MR signal intensity on morphological sequences such 
as two-dimensional or three-dimensional T2-weighted 
sequences are interpreted as early signs of cartilage degen-
eration, typically occurring prior to changes in thickness.6 
These signal changes can range from very subtle findings to 
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ABSTRACT

MRI of articular cartilage (AC) integrity has potential to become a biomarker for osteoarthritis progression. Traditional 
MRI sequences evaluate AC morphology, allowing for the measurement of thickness and its change over time. In the 
last two decades, more advanced, dedicated MRI cartilage sequences have been developed aiming to assess AC matrix 
composition non-invasively and detect early changes in cartilage not captured on morphological sequences. T2-map-
ping and T1ρ sequences can be used to estimate the relaxation times of water inside the AC. These sequences have 
been introduced into clinical protocols and show promising results for cartilage assessment. Extracelullar matrix can 
also be assessed using diffusion-weighted imaging and diffusion tensor imaging as the movement of water is limited 
by the presence of extracellular matrix in AC. Specific techniques for glycosaminoglycans (GAG) evaluation, such as 
delayed gadolinium enhanced MRI of cartilage or Chemical Exchange Saturation Transfer imaging of GAG, as well as 
sodium imaging have also shown utility in the detection of AC damage. This manuscript provides an educational update 
on the physical principles behind advanced AC MRI techniques as well as a comprehensive review of the strengths and 
weaknesses of each approach. Current clinical applications and potential future applications of these techniques are 
also discussed.
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deeper lesions that extended to the subchondral bone. Changes in 
signal intensity have been correlated with the degree of cartilage 
damage with chondromalacia severity staged using semi-quan-
titative scales.7 However, morphological MRI sequences lack 
specificity regarding the underlying pathophysiological changes 
in AC structure and composition. In most cases, modifications 
in the cartilage microstructure precede changes in cartilage 
thickness or signal intensity on morphological MRI sequences. 
There is a rising interest in the application of a newer MRI tech-
niques to assess cartilage composition and structure.8–10 These 

techniques aim to reveal molecular changes to the cartilage ECM 
composition. With these techniques, focal or diffuse decreases 
in the collagen or PGs concentration can be assess allowing for 
an earlier evaluation of cartilage damage or pathology than with 
morphological MRI techniques.11 The detection of early changes 
in cartilage composition is critical to identify individuals at risk 
of OA progression who can benefit from specific treatment.

The pathophysiological assessment of cartilage structure using 
MRI techniques can be considered as the next step in comprehen-
sive functional tissue characterization. Toward this aim, several 
MRI sequences have been developed for visualizing differences 
in the ECM of normal and abnormal AC. These techniques 
are based on specific physical or biological differences between 
normal and abnormal AC that can be assessed or enhanced by 
using specific technical adjustments to the MRI sequence focused 
on the different components of the ECM.12,13 These MRI tech-
niques include T2-mapping, T1ρ, diffusion-weighted imaging 
(DWI), diffusion tensor imaging (DTI), delayed gadolinium-en-
hanced MRI cartilage (dGEMRIC), glycosaminoglycan chem-
ical exchange saturation techniques (gagCEST), and sodium 
imaging.11,14 The main characteristics of these techniques are 
summarized in Table 1 and Figure 2.

In this manuscript, we review of these advanced MRI sequences 
for AC assessment focusing on how each technique evaluates 
the components of the ECM. In addition, we provide a brief 
discussion of the current state-of-the-art and clinical use of these 
techniques.

MRI approaches for functional MRI 
cartilage evaluation
T2-mapping
Physical principle
T2-mapping was one of the first quantitative techniques applied 
to AC evaluation. Sequences for T2 measurement acquire 
multiple images with varying TE, typically ranging from the 
lowest values that MRI system allows (~10 ms) to up to over 100 
ms.15,16 A turbo spin echo (TSE) sequence is typically employed. 
The interaction of ECM, especially collagen fibers, with water 
protons results in a shortening of T2 relaxation time. Thus, T2 
relaxation time depends on the amount of water protons within 
the cartilage as well as the integrity of ECM, which is mainly 

Figure 1.  AC scheme. The classical layer-based structure of 
AC has three main zones. The deep zone is characterized by a 
dominance of collagen fibers that are oriented perpendicular 
to the surface of AC. Cellular components of AC are commonly 
identified at this zone, mainly fibroblasts and chondrocytes. 
The transitional zone usually shows a higher concentration of 
proteoglycans and glycosaminoglycans that are mixed with 
randomly orientated collagen fibers and fewer chondrocytes. 
The superficial zone characteristically shows a predominant 
orientation of collagen fiber parallel to AC surface in con-
tact with synovial fluid. The line between the deep zona and 
subchondral bone is called tidemark zone where calcified car-
tilage can be identified. AC, articular cartilage; GAGs, glycos-
aminoglycans; PG, proteoglycan.

Table 1.  Summary of the main functional MRI techniques for cartilage assessment

ECM target Gadolinium Exam time Clinical use
T2-mapping Collagen No ++ ++++

T1ρ PGs No +++ +

dGEMRIC GAGs/PGs Yes ++++ ++

DWI/DTI Collagen No ++ +

gagCEST GAGs No +++ +

Sodium imaging GAGs No +++ +/-

DTI, diffusion tensor imaging; DWI, diffusion-weighted imaging; ECM, extracellular matrix; PGs, proteoglycans; dGEMRIC, delayed gadolinium 
enhanced MRI of cartilage; gagCEST, glycosaminoglycan chemical exchange saturation transfer.
Symbols range from (-) short exam time/limited clinical use to (+) large exam time/extended clinical use.
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reflected by collagen fiber density. A direct correlation between 
T2 values and water content and an inverse correlation with 
collagen concentration within AC has been shown.17 Although 
color T2 maps can be directly visualized for qualitative interpre-
tations, there are dedicated software packages available to extract 
the quantitative information; some of these packages permit 
semi-automated segmentation of the region of interest.Supple-
mentary Video 1 .

Ex vivo/in vivo validation
Several studies have demonstrated that collagenase-degraded 
cartilage samples have a higher T2 value than healthy cartilage 
due to the loss of normal ECM composition and loss of collagen 
integrity and concentration.18,19 The disruption of the matrix 
decreases the collagen concentration and increases the overall 
water content within AC; both factors contribute to higher T2 
relaxation times.19 While T2-mapping is influenced by loss of all 
ECM, including GAGs (and PGs), most of studies have demon-
strated a greater specificity for collagen fiber assessment.

T2 values are less reliable in the deep and calcified cartilage 
layers, which in most cases are only evaluated by using ultra-
short TE approaches.20,21 In addition, there is some spatial vari-
ation with superficial layers of AC having higher T2 relaxation 
times than deeper layers.18 T2 values may also be affected by 
the magic angle effect, which may introduce regional variation 
based collagen fiber orientation and can make longitudinal 
comparisons challenging.22 T2-mapping studies do not require 
high magnetic fields and thus can performed at 1.5 and 3 T. An 
additional benefit is that T2-mapping does not require adminis-
tration of exogenous contrast agents.

Clinical value
T2 mapping has been applied for evaluation of OA with prom-
ising results. Focal or diffuse areas of increased T2 relaxation 
times have been identified in patients with OA even prior to 
changes on morphological sequences Figure  3. Moreover, a 
positive correlation between T2 values and cartilage damage 
has been demonstrated. As T2-mapping is less sensitive to PGs 

Figure 2.  Summary techniques. Each functional technique is able to assess, in dominant manner, the integrity or depletion of a 
specific component of ECM. Thus, the relationship between collagen fiber concentration and T2 relaxation time is inverse, as well 
as the relationship between ADC values and collagen fibers. PGs and GAGs concentration have a positive correlation with the T1 
relaxation times after gadolinium injection in dGEMRIC model as well as a positive lineal correlation with the percentage of gag-
CEST asymmetry and sodium concentration. T1 relaxation time in T1rho acquisition has inverse correlation with PGs concentration. 
ADC, apparent diffusion coefficient; dGEMRIC, delayedgadolinium enhanced MRI of cartilage; ECM, extracellular matrix; GAG, 
glycosaminoglycan; gagCEST, Chemical ExchangeSaturation Transfer imaging of GAG; PGs, proteoglycans.

Figure 3.  T2-mapping cartilage assessment. A 32-year-old female runner with knee pain. (a) A focal area of signal intensity 
increase is identified (arrow) at trochlea on morphological axial FFE T2W sequence. (b) T2-mapping confirms a focal defect of 
signal with severe increase of T2 relaxation times at trochlear sulcus as well as early cartilage damage changes at superficial car-
tilage layer (white arrow), which not clearly seen on morphological sequence. FFE, fast field echo; T2W, T2 weighted.

http://birpublications.org/bjr
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concentration, it can provide complementary information to 
other techniques such as dGEMRIC, sodium imaging or T1ρ 
mapping that are mainly affected by the loss of GAGs/PGs. 
T2-mapping has also been used for follow up after knee carti-
lage repair surgery. These studies have shown decreased T2 
relaxation times of repair tissue after microfracture compared 
to healthy cartilage, likely owing to its more fibrocartilaginous 
construct.23 However, on longer term follow-up in patient 
treated with microfracture, T2 relaxation values in the carti-
lage repair zone tend to normalize with respect to the rest 
of cartilage.24 Other repair approaches such as chondrocyte 
grafts, tend to form hyaline-like cartilage showing T2 relax-
ation values similar to healthy AC (Figure 4).25

T1ρ
Physical principle
T1ρ imaging assesses the relaxation of spin under the influ-
ence of a constant radiofrequency (RF) pulse that is set just 
when the magnetization is tipped into the transverse plane. The 
role of this RF pulse is to spin-lock the magnetization. T1ρ is 
the constant that reflects the spin-lattice relaxation time in the 
rotating frame after application of the RF spin-lock pulse as there 
is a relationship between T1ρ and the interchange of energy 
between water molecules and macro-molecules.26,27 Several 
studies have demonstrated that T1ρ values depend on the proton 
exchange with amide and hydroxyl groups present on the PGs/
GAGs side-chains.28,29 Thus, the slow interaction of water mole-
cules and ECM can be accurately assessed in a way similar to 
the interaction of water molecules and collagen in T2-mapping 
sequences.17 This technique does not require gadolinium-based 
contrast agents (GBCAs). However, T1ρ mapping does require 
an MRI system able to create a specific RF pulse for achieve a 
proper spin-locking. The time required for T1ρ acquistition is 
considerably longer than for T2-mapping (Supplementary Video 
210,30,Figure 5a and b).

Ex vivo/in vivo validation
The evaluation of T1ρ imaging using ex vivo models allows for 
the assessment of variations in PGs concentration in AC. The use 
of trypsin enzymes for PGs degradation in bovine articular spec-
imens demonstrated that the T1ρ approach was more sensitive 
for detection of changes in PGs concentration than conventional 
T1 or T2 weighted images.31 After collagenases administration, 
these studies did not reveal significant sensitivity of T1ρ for 

collagen depletion assessment within AC.32,33 Ex vivo human 
specimens have demonstrated similar results showing that the 
dominant contribution to T1ρ AC imaging is from PGs degrada-
tion rather than collagen degradation.34

Figure 4.  Treatment monitoring. A 46-year-old male with knee pain. (a) First study was performed on January 2018 whereas 
a focal area of increase of T2 relaxation values was identified at lateral aspect of articular surface of patella (white arrow) on 
T2-mapping sequences consistent with chondromalacia. Patient undergone surgery (chondrocyte graft) and a new MRI was per-
formed on March 2019. (b) This new study shows decrease of T2 values at surgical area (white arrow) which suggest presence of 
new hyaline cartilage.

Figure 5.  Examples of MRI parameter acquisition on a 
54-year-old subject with knee OA (KL Grade 1). (a) T1ρ map 
of cartilage acquired with a spin lock frequency of 500 Hz and 
spin lock times of 10, 20, 40, 60 ms. Background image corre-
sponds to 10 ms. (b) T2 parameter map of cartilage acquired 
with a multiecho turbo spin echo sequence (TEs from 10 to 
100 ms). (c, d) Diffusion tensor imaging of the knee (RAISED 
pulse sequence). Diffusion images are acquired with a b-value 
of 300 s/mm2 and a TE of 35 ms. MD (c) and FA (d) overlaid 
over the b0-image. FA, fractional anisotropy; MD, mean dif-
fusivity; OA, osteoarthritis; RAISED, radial imaging spin echo 
diffusion; TE, echo time.

http://birpublications.org/bjr
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Clinical value
T1ρ is able to detect changes in the composition of ECM related 
to PGs concentration as occurs in osteoarthritis. T1ρ values are 
higher in healthy volunteers. In the early stages of the OA, T1ρ 
is more accurate than T2-mapping.35 Moreover, T1ρ values are 
able to discriminate between intermediate and advanced carti-
lage degeneration. However, since T2-mapping and T1ρ eval-
uate two different relaxation mechanisms within cartilage, the 
information provided should be considered complementary, not 
exclusionary.36 T1ρ has also been applied for assessment of early 
cartilage degeneration in patients with meniscal lesions. The 
loss of PGs in the femoral condyles in these patients correlates 
with increase of T1ρ values.28 Patient with anterior cruciate liga-
ment injuries, even years after reconstruction, may also show 
changes in AC composition that can be accurately assessed by 
T1ρ.37,38 T1ρ has been measured in conjunction with synovial 
fluid biomarkers such as GAGs concentration in order to eval-
uate, in a non-invasive manner, the characteristics and integrity 
of ECM. These studies show a negative correlation between T1ρ 
relaxation times and GAGs concentration in both cartilage and 
synovial fluid.27,36

Physical principle
dGEMRIC is a non-invasive functional technique to study 
cartilage GAGs content in vivo. The dGEMRIC technique uses 
the negatively charged contrast agent gadolinium-diethylene 
triamine pentaacetic acid (Gd-DTPA2-).39 GBCAs can be admin-
istrated either intra-articularly or intravenously. However, the 
intravenous injection (usually with double dose) is preferred 
over the intra-articular injection as there is low risk of septic 
arthritis and the higher rate of gadolinium penetration (from 
both articular surface and subchondral bone).40 After intrave-
nous injection and systemic circulation, Gd-DTPA2- distributes 
within cartilage in a manner inversely related to the negatively 
charged GAGs content. Gd-DTPA2- shortens the T1 relaxation 
time of cartilage. In addition, the need for exogenous contrast 
agent administration, the dGEMRIC technique has other draw-
backs. A delay of over 60 min after gadolinium administration is 
mandatory to ensure its filtration through the synovial membrane 
into synovial fluid and its diffusion into the cartilage. Moreover, 
a specific MRI sequence with multiple inversion times (TIs) has 
to be acquired for a proper quantification of the T1 shortening of 
the cartilage in a manner similar to the T1-mapping technique. 
An intermediate approach is a semi-quantitative assessment by 
acquiring heavily weighted T1 sequences that allow the radiolo-
gist to evaluate the presence or absence of gadolinium uptake at 
AC Figure 6. Long T1 relaxation time values are found in healthy 
cartilage whereas short T1 relaxation times values are found 
in degenerated cartilage due to the high amount of infiltrated 
Gd-DTPA2- (Supplementary Video 3).

Ex vivo/in vivo validation
The dGEMRIC approach has been tested using in vitro and ex 
vivo models with robust results for both animal and human AC 
assessment.41 In vivo and ex vivo studies for GAGs concentration 
and distribution within AC have demonstrated good histolog-
ical and biochemical correlation.42 These kinds of studies have 
been necessary in order to determine the type of GBCA needed 
to obtain the highest tissue contrast within AC. In this respect, 

there are studies with contradictory results with regard the pene-
tration rate of non-ionic GBCAs and ionic GBCAs, however, the 
global recommendation is to use ionic GBCAs.39

Clinical value
The dGEMRIC technique is a useful clinical imaging method for 
evaluating cartilage biochemical composition and to monitor 
the effects of therapies for osteoarthritis and cartilage injury. 
Those areas with GAGs concentration preserved will not uptake 
gadolinium as the negative charged hydroxyl group prevents 
significant gadolinium diffusion into cartilage (Figure 7). On the 
other hand, those areas with loss of GAGs (and their negative 
charges) will allow gadolinium molecules to penetrate the carti-
lage surface. Several studies have demonstrated the utility of the 
dGEMRIC approach for detecting early signs of OA related to 
the loss of GAGs in knee.43 In these patients, lower T1 relaxation 
times are identified in areas with cartilage damage compared 
with areas of normal cartilage. dGEMRIC has also be applied 
in other anatomical regions and with different purposes than 
evaluation of OA. For example, in hip dysplasia, dGEMRIC has 
been tested with good correlation with patient symptoms and the 
severity of dysplasia.44

DWI/DTI
Physical principle
Water molecules in biological tissues are in constant and random 
motion due to the thermal energy and interactions with macro-
molecules or membranes.45 In DWI, the microscopic random 
displacements of water molecules is measured to extract informa-
tion about tissues.46 DWI measures the average displacements of 
all water molecules in a voxel along a direction (diffusion direc-
tion) during a time called diffusion time.47 Using the measure-
ments of average water displacement in different directions, we 
can infer the organization of the underlying tissue microstructure 
using diffusion models. The ECM of AC constrains free diffusion 
of water molecules. DWI allows one to estimate the integrity of 
ECM based on the motion of water molecules.48 The apparent 
diffusion coefficient (ADC) can be used to measure the average 
movement of these water molecules in mm2/s (Supplementary 
Video 4).49 AC has a water content of approximately 75% and 

Figure 6.  dGEMRIC assessment. A 41-year-old male tennis 
player, who refers knee pain with flexion and extension move-
ments. (a) Conventional axial FFE T2W shows non-significative 
increase of signal intensity at lateral patellar articular surface 
(arrow). (b) Qualitative dGEMRIC sequence after intraar-
ticular gadolinium injection, demonstrates intense uptake of 
gadolinium at this area (arrow) consistent with loss of GAGs 
(focal lineal ulcer with deep cartilage involvement). dGEMRIC, 
delayed gadolinium enhanced MRI of cartilage; FFE, fast field 
echo; GAG, glycosaminoglycan; T2W, T2 weighted.

http://birpublications.org/bjr
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physiologically displays ADC values in the range between 1.4 and 
1.6 × 10−3 mm2/s.6 Cartilage damage results in less restriction to 
the motion of water and thus increased ADC values (Figure 8).

To extract information about the tissue structure we measure the 
diffusion in at least six non-collinear directions and use the diffu-
sion tensor model.50 This model describes the diffusion in tissue 
as a symmetric tensor. Through measurements of diffusions in at 
least six non-collinear directions, all elements of the tensor can 
be calculated. Parameters derived from DTI such as fractional 
anisotropy (FA), which is an index of tissue organization, or the 
mean diffusivity (MD), which represents the average of the main 
three eigenvalues (the numeric representation of the magnitude 
of each direction of water molecules within the tissue). Applied 
to cartilage, these parameters provide a method to differentiate 
the contributions of collagen structure, as captured with the frac-
tional anisotropy, from the PGs as captured with the mean diffu-
sivity (Supplementary Video 5).49

Ex vivo/in vivo validation
Ex vivo studies have reported a 5─30% increase of diffusivity 
after enzymatic depletion of PGs that correlated with GAGs 
concentration.48,51–53 Diffusivity also increases with disease 
severity in osteochondral samples.54,55 Enzymatic cleavage of 
PGs resulted in increased MD but resulted in no change in FA 
or diffusion orientation, thus indicating the ability of DTI to 
track both collagen and PGs changes independently.56,57 MD has 
shown correlation with mechanical properties of cartilage.58 MD 
and FA also changed with OA.59 Indeed, MD and FA have shown 

the potential to grade histologic cartilage damage as measured 
with the Osteoarthritis Research Society International score with 
an area under the receiver operating curve between 0.7 and 0.9 
for the detection of early degenerative changes (Figure 5C and 
d).59,60

Clinical diagnostic and prognostic value
Translation of diffusion measurements to the clinical scanners 
was hampered by the technical challenges of acquiring diffu-
sion in a low-T2 (~30 ms) tissue with high resolution (<1 mm). 
Clinical echoplanar imaging sequences have not been able to 
provide satisfactory results due to their long TEs (>80 ms), their 
sensitivity to susceptibility artifacts, and their limited resolution 
(~2–3 mm).61 Thus, the first studies used only diffusion-weighted 
images with steady-state free precession sequences assessing 
changes semi-quantitatively.62 Spin-echo-based sequences 
provide excellent image quality.63,64 The first clinical studies of 
DTI were published at 7 T using a line scan sequence and showed 
potential to differentiate the patellar cartilage of healthy and early 
OA subjects (area under the receiver operating curve = 0.92, n = 
26).63 DTI studies have shown significant increase in MD (10 to 
20%) between healthy controls and OA subjects and a decrease 
in FA (−18 to −11%), both at 3 and 7 T. Reproducibility of DTI in 
vivo was high with variation below 4% for MD and 6% for FA on 
repeated measurements.63,65

In summary, diffusion imaging can provide insight in carti-
lage microstructure. DTI has the potential to track changes in 
both collagen and PGs. Clinical studies are still sparse but have 

Figure 7.  Multimodality functional MRI cartilage evaluation. A 29-year-old male which refers knee pain after running. (a) Axial 
fat suppression PD sequence shows slight increase of signal intensity within the lateral aspect of patellar cartilage (arrow). (b) 
Qualitative assessment of axial dGEMRIC acquisition does not reveal any abnormal gadolinium uptake at this area (arrow). (c) 
Axial T2-mapping shows increase of T2 relaxation time values at this level (arrow). The combination of findings described suggest 
hyaline cartilage damage due to loss of collagen fibers with intact GAGs levels. dGEMRIC, delayed gadolinium enhanced MRI of 
cartilage; GAG, glycosaminoglycan.

Figure 8.  Evaluation of AC with DWI in a 45-year-old male with knee instability. (a) Conventional axial FFE T2W sequence does 
not show clear abnormalities at patellar cartilage surface. (b) DWI acquisition demonstrates increase of ADC values at lateral 
patellar surface (arrow) revealing loss of collagen fibers. (c) T2- mapping shows proper correlation with DWI demonstrating also 
increase of T2 values at the same area (arrow). Both functional techniques reflect collagen loss with different physical basis and 
show early cartilage damage changes before morphological imaging. AC, articular cartilage; ADC, apparent diffusioncoefficient; 
DWI, diffusion-weighted imaging; FFE, fast field echo; T2W, T2 weighted.

http://birpublications.org/bjr
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consistently shown feasibility of these techniques and their 
potential for early diagnosis.

gagCEST
Physical principle
gagCEST can be considered a technical upgrade of conventional 
magnetization transfer (MT) sequences. MT allows for the eval-
uation of the contribution to MRI signal from the protons in 
unbound bulk water molecules that are present in certain tissues. 
The final goal of the MT, and gagCEST, techniques is to increase 
the contrast between free water and bound water, evaluating the 
exchange of energy between these two water pools. In the case 
of gagCEST, a selective RF pulse excites exchangeable GAGs 
protons.66 These excited protons experience a chemical exchange 
phenomenon with free water protons that results in a quantifi-
able decrease in the magnetization of the free water pool. The 
target in the case of GAGs is the hydroxyl and sulfate group, with 
allows one to measure the GAGs concentration in vivo within 
AC. The amount of the magnetization transfer between both 
water pools (free and bound to GAGs) can be expressed as the 
asymmetry of magnetization transfer ratio (MTRasym), which 
reflects the distribution of free protons around a central water 
peak in AC. This parameter is obtained after saturating protons 
linked to GAGs on either side-of the water peak. As occurs 
with other techniques that require the application of selective 
RF pulses, a high strength magnetic field (up to 3 T) and very 
homogeneous B0, are needed to saturate of the hydroxyl group, 
which has a resonance frequency very close to that of free water 
(Supplementary Video 6). 

Ex vivo/in vivo validation
Several studies have evaluated the physical principle of chem-
ical exchange saturation in ex vivo models (animal and phan-
toms) confirming the feasibility of this approach to characterize 
AC damage and for early damage detection. Phantom studies 
are required in order to properly adjust the RF pulse to GAGs 
exchangeable protons saturation as well as to center the CEST 
spectrum and fitting it with water resonance frequency. The 
fitting of the whole spectrum of gagCEST is time consuming in 
presence of B0 inhomogeneities, so strategies such as the acqui-
sition of a dual gradient echo B0 map have been proposed to 
reduce scan time.67 Regarding the need for high magnetic field 
systems, some authors have evaluated the differences in gagCEST 
asymmetry in vivo between 3 and 7 T. After B0 inhomogeneities 
correction, the gagCEST asymmetry at 3 T is scarce, so 7 T is 
recommended in order to increase gagCEST asymmetry and 
thus, tissue contrast between damaged and healthy AC.68

Clinical diagnostic and prognostic value
Currently, the application of gagCEST techniques for AC 
assessment is uncommon in clinical practice due to the tech-
nical requisites described above. Nevertheless, several studies 
have evaluated the potential applications of this approach for 
AC assessment.69 In these studies, higher MTRasym values 
have been detected in healthy volunteers than in patients 
with OA reflecting, in a very specific manner, a loss of GAGs 
from cartilage even in early stages.70 Some authors have even 
compared the accuracy of dGEMRIC and gagCEST, both of 
which are able to assess loss of GAGs with similar results. For 

cartilage repair assessment or even the introduction of new 
therapies in the firsts stages of OA, the gagCEST approach 
has shown promising results in patient monitoring; showing 
normalization of MTRasym, which suggests recovery of GAGs 
concentration within AC.71

Sodium imaging
Physical principle
Most MRI systems are designed for the detection and charac-
terization of 1H protons. However, there are other compounds 
within the tissues, such as sodium which can also be evalu-
ated. +23Na is an ion characterized by a quadrupolar moment 
able to interact with surrounding protons, which condition 
a biexponential decay of relaxation times.72 +23Na (positively 
charged) and PGs (negatively charged) establish an electro-
magnetic equilibrium inside the AC with a direct correlation 
between both compounds. Sulfate and carboxylate PGs groups 
are fixed to +23Na, so a loss of PGs involves a decrease of +23Na 
concentration within cartilage.8 However, SI of AC has two 
major drawbacks: its very low concentration and its very short 
transverse relaxation time. These disadvantages result in poor 
quality images due to low SNR, poor resolution and partial 
volume effects from synovial fluid and subchondral bone.73 
To try and overcome these limitations, and increase the reso-
lution and SNR of sodium acquisitions, the use of dedicated 
coils with long scan times and high magnetic field systems is 
mandatory (Supplementary Video 7).74,75

Ex vivo/in vivo validation
In vivo and ex vivo studies have demonstrated the existence of a 
fixed charge density (FCD) within AC due to a balance between 
+23Na and GAGs. That FCD enables the calculation of the GAGs 
concentration in the AC. Animal studies with bovine cartilage 
and PGs damage induced by trypsin demonstrate changes in 
sodium concentration with an almost linearly relationship.76 
Sodium MRI has also been applied for OA evaluation in exper-
imental animal models after cytokine injection; detecting a 
decrease of sodium concentration as well as FCD. The results are 
consistent with loss of PGs and these studies have shown histo-
logical correlation.29

Clinical diagnostic and prognostic value
The use of sodium MRI in common clinical practice is quite 
limited due to the drawbacks listed above. However, some 
studies have tested the feasibility of sodium MRI for cartilage 
evaluation in healthy volunteers and patients with early signs 
of OA.77 Lower signal in the sodium image, consistent with 
loss of fixed charge density, has been identified in patients 
with knee OA compared with healthy controls, which suggests 
a decrease in PGs concentration within AC.75 Nevertheless, 
no large series have yet been published evaluating the clin-
ical impact of this approach for assessment of AC damage. 
Further studies are needed to establish the potential role of this 
promising tool as well as the sensitivity and specificity with 
regard the rest of functional imaging modalities for cartilage 
assessment.

Conclusions
Currently, there is a wide range of functional MRI tech-
niques that are allowing radiologist to evaluate AC in a more 

http://birpublications.org/bjr
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accurate manner than with morphological MRI sequences 
alone. These techniques predominantly evaluate the integrity 
of each one of AC components, mainly collagen and GAGs/
PGs. T2-mapping can be considered the most robust and ready 
for practical use in current clinical radiology practice due to 
its relative short acquisition time and its almost worldwide 
implementation. Other approaches, such as dGEMRIC, also 
used in clinical practice, have the major drawback of the need 
for GBCAs administration. To this point, non-contrast tech-
niques like DWI or DTI may become viable alternatives. T1ρ, 
gagCEST and Sodium imaging have also show high specificity 
for GAGs/PGs assessment but they are used uncommonly in 
clinical practice due to the longer acquisition times and higher 
magnetic fields strength requirement. Nevertheless, the knowl-
edge of the physical basis of how each technique allows one to 

evaluate ECM in a specific manner is important for radiolo-
gists. Being familiar with these techniques will allow physicists 
and radiologists to optimize the acquisition and interpretation 
of these studies, not only for investigational purposes but also 
for their application in current and future clinical radiologic  
practice.
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