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ABSTRACT
In 2016, the United Nations declared the need for urgent action to combat the global threat of antimicrobial resistance

(AMR). In support of this effort, the pharmaceutical industry has committed to measures aimed at improving the stewardship
of antibiotics both within and outside the clinic. Notably, a group of companies collaborated to specifically address concerns
related to antibiotic residues being discharged from manufacturing sites. In addition to developing a framework of minimum
environmental expectations for antibiotic manufacturers, science‐based receiving water targets were established for
antibiotics discharged from manufacturing operations. This paper summarizes the holistic approach taken to derive these
targets and includes previously unpublished, company‐generated, environmental toxicity data. Integr Environ Assess Manag
2019;15:312–319. © 2019 The Authors. Integrated Environmental Assessment and Management published by Wiley
Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC)
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Antibiotic resistance represents a severe and increasing
global threat to human health, so much so that in 2016,
during the 71st session of the General Assembly (UNGA),
the United Nations Member States adopted an antimicro-
bial resistance (AMR) declaration, only the fourth health
issue to reach the UNGA agenda in its history. Tackling the
challenge of antibiotic resistance requires a “one‐health
perspective” that considers 1) human health, 2) animal
health, and 3) the environmental dimension of AMR. It is
crucial that all stakeholders be involved in effective steward-
ship across antibiotic production, use, and disposal.
As a mechanism to survive in the presence of toxic

environmental factors, bacteria develop resistance naturally
via spontaneous mutation and/or through acquisition of
genetic determinants from other bacteria (Munita and Arias
2016). Patient use of antibiotics for viral infections or other

ailments not caused by bacteria, as well as their use of
incorrect dosages, exposes bacteria needlessly to antibiotics.
This exposure presents the selective pressure necessary to
allow antibiotic‐resistant bacteria to emerge. In addition,
antibiotic use in animals as a protective measure or to
promote growth increases human antibiotic exposure through
the food chain and the environment from animal waste.

The elevated presence of antibiotics in the environment is
believed to be increasing the rate of antibiotic resistance
selection (Wright 2010; Finley et al. 2013; Bengtsson‐Palme
et al. 2018), although the relationship and significance of
environmental reservoirs of resistance and adverse human
health impacts is still under investigation. Current evidence links
the overall global distribution of antibiotics released to the
environment to patient and animal excretion (Boxall et al. 2012).
Manufacturing effluents from antibiotic production sites also
have been postulated to contribute to AMR development
locally (Kleywegt et al. 2019; Larsson 2014; Larsson et al. 2007,
2018). Thus, given the seriousness of the health threat, all
sources of antibiotics to the environment are being examined
and reductions being sought as part of this “one health”
approach.

The use of appropriate measures based on risk to
adequately control manufacturing effluent emissions is a
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priority for the pharmaceutical industry and is an approach
already adopted by several companies (Caldwell et al.
2016). This is in line with the Wellcome Trust Review on
Antimicrobial Resistance, which recommends the setting of
minimum standards for manufacturing of antibiotics based
on the current state of the science (O’Neill 2016).
At the UN High‐Level Meeting on Antimicrobial

Resistance in 2016, thirteen pharmaceutical companies
presented a roadmap that laid out 4 key commitments to
reduce AMR and promote innovation in the field of
antimicrobial chemotherapy. The commitments follow
the principles in the Declaration by the Pharmaceutical,
Biotechnology and Diagnostics Industries on Combating
Antimicrobial Resistance (“Industry Declaration”) made at
the 2016 World Economic Forum in Davos. This unpre-
cedented collaboration marked a significant milestone in
the fight against AMR (IFPMA 2016; AMR Industry
Alliance 2017b).
In publishing this roadmap, the signatory companies

establish their shared goals to overcome the threat of AMR.
The companies are dedicated to working toward reducing the
incidence of antimicrobial resistance; improving access to
high‐quality antibiotics, vaccines, and diagnostics; investing in
research and development; and collaborating with govern-
ments and other stakeholders to sustain those investments.
Specifically, the roadmap commits signatories to

• reduce the environmental impact from the production of
antibiotics;

• help ensure antibiotics are used only by patients who
need them;

• improve access to current and future antibiotics, vac-
cines, and diagnostics; and

• explore new opportunities for open collaborations
between industry and the public sector.

More information on the commitments of the AMR
industry roadmap signatories is available in the roadmap
for progress report (IFPMA 2016). The signatories are
aligned in their intent to build and share common practices.
Specifically, the commitment to address manufacturing‐
related concerns states that measures will be supported to
reduce the environmental impact from production of
antibiotics and the following 4 goals will be completed for
each of the signatory companies:

1) Review manufacturing and supply chains to assess good
practice in controlling releases of antibiotics into the
environment.

2) Establish a common framework for managing antibiotic
discharge, building on existing work such as the
Pharmaceutical Supply Chain Initiative (PSCI Pharmaceu-
tical Supply Chain Initiative 2019), and start to apply it
across manufacturing and supply chains by 2018.

3) Work with stakeholders to develop a practical me-
chanism to transparently demonstrate that supply chains
meet the standards in the framework.

4) Work with independent technical experts to establish
science‐driven, risk‐based targets for discharge concen-
trations for antibiotics and good practice methods to
reduce environmental impact of manufacturing dis-
charges by 2020.

Measures to meet each of the above commitments are
complete or actively ongoing. In particular, the roadmap
signatories are in, or have already finalized, the process of
auditing or reauditing and reviewing their supply chains for
active substance production and for formulation of anti-
biotics with a specific focus on losses of active substances to
the environment, mainly via production of wastewaters. The
framework, as called for in commitment 2 is complete and
has been published in the AMR Industry Alliance (2018a)
report “Tracking Progress to Address AMR January 2018,”
and incorporation of critical components of this framework
into the PSCI audit protocol is in progress. A mechanism to
transparently demonstrate progress, called for in commit-
ment 3, is under development and will be shared in the next
AMR Industry Alliance report for release in 2020.
The target of reducing production‐related losses to

concentrations unlikely to result in adverse effects in the
receiving environment needs to be assessed on the basis of
current knowledge and understanding. The purpose of the
present communication is to share science‐based targets
and the empirical data behind them for antibiotic concen-
trations in manufacturing discharges (commitment 4).
The industry roadmap signatories convened an expert

committee consisting of environmental toxicologists, risk
assessors, microbiologists, and engineers from member
companies, to review the state of the science and to develop
recommended risk‐based targets for manufacturing discharges
to reduce the potential for contributing to AMR. As a first step,
it was agreed that the recommendation for targets should
address not only AMR but also should protect ecological
receptors in the receiving environment using traditional
environmental endpoints. We believe that, given the current
state of the science, the best approach is to derive predicted
no‐effect concentrations (PNECs) that can be applied in the
receiving stream. Tolerable discharge targets could then be
derived in a site‐specific manner that considers characteristics
of the local environment (e.g., wastewater treatment capabil-
ities, stream flow, location of receptors).
Leveraging the existing data generated in support of

regulatory drug approvals in the European Union (EMA
European Medicines Agency 2006) and other company
voluntary programs, environmental toxicity data were com-
piled from both industry studies provided by roadmap
members and from the peer‐reviewed literature when studies
were deemed to be reliable. Preference was given to data
generated following recognized Organisation for Economic
Co‐operation and Development (OECD) guidelines, or studies
of a similar nature, and studies performed in compliance with
the OECD Principles of Good Laboratory Practice (GLP).
Environmental predicted no‐effect concentration (PNEC‐

ENV) values were derived from toxicity endpoint data with
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Table 1. Environmental toxicity, PNEC‐ENV, and PNEC‐MIC values

Lowest
NOEC/EC10 PNEC‐ENV PNEC‐MIC

Lowest
PNEC

Active pharmaceutical ingredient (µg/L) (µg/L) (µg/L) (µg/L)

Amikacin N/A N/A 16 16

Amoxicillin Testing ongoing N/A 0.25 0.25

Amphotericin B N/A N/A 0.02 0.02

Ampicillin 8.7 0.87 0.25 0.25

Anidulafungin N/A N/A 0.02 0.02

Avibactam 2000a 200 N/A 200

Avilamycin N/A N/A 8.0 8.0

Azithromycin 0.2 0.02 0.25 0.02

Aztreonam N/A N/A 0.5 0.5

Bacitracin N/A N/A 8.0 8.0

Bedaquiline 0.8 0.08 N/A 0.08

Benzylpenicillin N/A N/A 0.25 0.25

Capreomycin N/A N/A 2.0 2.0

Cefaclor N/A N/A 0.50 0.50

Cefadroxil Testing ongoing N/A 2.0 2.0

Cefalonium 211 21 N/A 21

Cefaloridine N/A N/A 4.0 4.0

Cefalothin N/A N/A 2.0 2.0

Cefazolin N/A N/A 1.0 1.0

Cefdinir N/A N/A 0.25 0.25

Cefepime N/A N/A 0.5 0.5

Cefixime 1.8 0.18 0.06 0.06

Cefoperazone N/A N/A 0.5 0.5

Cefotaxime 1.0 0.1 0.13 0.1

Cefoxitin N/A N/A 8.0 8.0

Cefpirome N/A N/A 0.06 0.06

Cefpodoxime N/A N/A 0.25 0.25

Cefquinome 16 1.6 N/A 1.6

Ceftaroline 1.2 0.12 0.06 0.06

Ceftazidime 13 1.3 0.5 0.5

Ceftibuten N/A N/A 0.25 0.25

Ceftiofur N/A N/A 0.06 0.06

Ceftobiprole 2.3 0.23 0.25 0.23

Ceftolozane 19 1.9 N/A 1.9

Ceftriaxone 100 10 0.03 0.03

Cefuroxime 8.4 0.84 0.5 0.5

Cephalexin 0.77 0.08 4.0 0.08
(Continued )
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Table 1. (Continued )

Lowest
NOEC/EC10 PNEC‐ENV PNEC‐MIC

Lowest
PNEC

Active pharmaceutical ingredient (µg/L) (µg/L) (µg/L) (µg/L)

Cephradine Testing ongoing N/A N/A N/A

Chloramphenicol N/A N/A 8.0 8.0

Ciprofloxacin 5.65 0.57 0.06 0.06

Clarithromycin 0.8 0.08 0.25 0.08

Clinafloxacin N/A N/A 0.5 0.5

Clindamycin 1.0 0.1 1.0 0.1

Cloxacillin Testing ongoing N/A 0.13 0.13

Colistin 90 9.0 2.0 2.0

Daptomycin 3900 390 1.0 1.0

Delamanid 0.3 0.03 N/A 0.03

Doripenem 1.1 0.11 0.13 0.11

Doxycycline Testing ongoing N/A 2.0 2.0

Enramycin 48 4.8 N/A 4.8

Enrofloxacin 19 1.9 0.06 0.06

Ertapenem 140 14 0.13 0.13

Erythromycin 5.0 0.5 1.0 0.5

Ethambutol N/A N/A 2.0 2.0

Faropenem N/A N/A 0.02 0.02

Fidaxomicin 5800 580 0.02 0.02

Florfenicol N/A N/A 2.0 2.0

Fluconazole N/A N/A 0.25 0.25

Flumequine N/A N/A 0.25 0.25

Fosfomycin N/A N/A 2.0 2.0

Fusidic acid N/A N/A 0.5 0.5

Gatifloxacin N/A N/A 0.13 0.13

Gemifloxacin N/A N/A 0.06 0.06

Gentamicin 1.5 0.15 1.0 0.15

Imipenem 4.1 0.41 0.13 0.13

Isoniazid N/A N/A 0.13 0.13

Itraconazole N/A N/A 0.01 0.01

Kanamycin 10.5 1.0 2.00 1.0

Levofloxacin Testing ongoing N/A 0.25 0.25

Lincomycin 8.1 0.81 2.0 0.81

Linezolid 67 6.7 8.0 6.7

Loracarbef N/A N/A 2.0 2.0

Mecillinam N/A N/A 1.0 1.0

Meropenem 15 1.5 0.06 0.06
(Continued )
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Table 1. (Continued )

Lowest
NOEC/EC10 PNEC‐ENV PNEC‐MIC

Lowest
PNEC

Active pharmaceutical ingredient (µg/L) (µg/L) (µg/L) (µg/L)

Metronidazole N/A N/A 0.13 0.13

Minocycline Testing ongoing N/A 1.0 1.0

Moxifloxacin N/A N/A 0.13 0.13

Mupirocin N/A N/A 0.25 0.25

Nalidixic acid N/A N/A 16 16

Narasin N/A N/A 0.5 0.5

Neomycin 0.3 0.03 2.0 0.03

Netilmicin N/A N/A 0.5 0.5

Nitrofurantoin N/A N/A 64 64

Norfloxacin 1200 120.00 0.5 0.5

Ofloxacin 100 10.00 0.5 0.5

Oxacillin N/A N/A 1.0 1.0

Oxytetracycline 180 18 0.5 0.5

Pefloxacin N/A N/A 8.0 8.0

Phenoxymethylpenicillin N/A N/A 0.06 0.06

Piperacillin N/A N/A 0.5 0.5

Polymixin B 0.57 0.06 N/A 0.06

Retapamulin N/A N/A 0.06 0.06

Rifampicin N/A N/A 0.06 0.06

Roxithromycin 68.4 6.8 1.0 1.0

Secnidazole N/A N/A 1.0 1.0

Sparfloxacin N/A N/A 0.06 0.06

Spectinomycin N/A N/A 32 32

Spiramycin 10.9 1.1 0.5 0.5

Streptomycin N/A N/A 16 16

Sulbactam N/A N/A 16 16

Sulfadiazine 130 13 N/A 13

Sulfamethoxazole 5.9 0.6 16 0.6

Tedizolid 31.8 3.2 N/A 3.2

Teicoplanin N/A N/A 0.5 0.5

Telithromycin N/A N/A 0.06 0.06

Tetracycline 32 3.2 1.0 1.0

Thiamphenicol N/A 10 1.0 1.0

Tiamulin N/A N/A 1.0 1.0

Ticarcillin N/A N/A 8.0 8.0

Tigecycline 2a 2.0 1.0 1.0

Tildipirosin 4.2 0.42 N/A 0.42
(Continued )
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an assessment factor applied, consistent with European
guidance (ECHA European Chemicals Agency 2008; EU
WFD European Union Water Framework Directive 2018).
Because cyanobacteria are considered most sensitive to
antibiotics (EMA European Medicines Agency 2006; LePage
et al. 2017), data sets were considered complete if
cyanobacteria data were available following the OECD
201 guideline, or equivalent (OECD 2011). If cyanobacteria
data were not available, the lowest chronic no observed
effect concentration (NOEC) or 10% effect concentration
(EC10) was used when chronic data for 3 trophic levels were
available. In those cases, PNECs were marked to identify the
lack of cyanobacteria results (Table 1 and Supplemental
Data). In general, antibiotics are not particularly toxic to
humans or other vertebrates. Therefore, provided that there
is good evidence for lack of mammalian toxicity, an
assessment factor of 10 may reasonably be applied to the
lowest chronic NOEC or EC10 of cyanobacterial, green
algal, and daphnid tests even in the absence of fish data
(Baumann et al. 2015). For consistency, where new industry
testing has been initiated, cyanobacteria is the indicator
organism of choice for conducting robust environmental risk
assessment on antibiotics.
The next step was to assess the different options for deriving

PNECs that would be protective against the spread of AMR.
Approaches to reduce AMR risk presented in the literature
(Bengtsson‐Palme and Larsson 2016; Gullberg et al. 2011;
Kümmerer and Henninger 2003; Le Page et al. 2017) as well as
discussions at key scientific meetings on the topic (AMR Industry
Alliance 2018b; EDAR Environmental Dimension of Antibiotic
Resistance, 2017; Jones et al. 2018) were considered.
In the following list, we summarize the different ap-

proaches:

1) A key performance measure of antibiotic effectiveness
is the minimum inhibitory concentration (MIC). The MIC is

the lowest concentration of an antibiotic that inhibits
100% of the visible growth of a given strain of bacteria
after 24‐h incubation. The MICs are measured in clinically
relevant bacteria and documented in the European
Committee on Antimicrobial Susceptibility Testing data-
base (EUCAST European Committee on Antimicrobial
Susceptibility Testing 2013). These data are useful in
extrapolation to a PNEC for resistance, although it is
recognized that resistance may occur at concentrations
below the MIC (Gullberg et al. 2011).
Bengtsson‐Palme and Larsson (2016) recommend an

approach for deriving PNECs by extrapolating MIC data
from the EUCAST database and applying an additional
safety factor to derive PNECs for resistance. To date, this is
the sole source of published PNECs for antibiotics that are
specifically derived as a proxy to address resistance. We
designate these as PNEC‐MIC. Comparison of these values
to the available literature for microbial populations in natural
conditions suggests that these published PNECs are a
conservative estimate of the target for protection against
resistance. However, it can be noted that NOECs or EC10
values derived for some species, especially cyanobacteria
used to derive a PNEC‐ENV, may be lower than proposed
criteria designed to be protective of AMR (i.e., the PNEC‐
MIC) (Le Page et al. 2017) (Table 1).

2) Another performance measure of antibiotic effectiveness is
the minimum selective concentration (MSC). The MSC is
defined as the minimum concentration at which the
presence and expression of resistance genes provide
bacteria an advantage due to fitness over nonresistance
strains of the same species or strain (Le Page et al. 2017).
The MSC is a theoretical threshold that is determined in the
laboratory for any microorganism and antibiotic pair (Singer
et al. 2016). However, to date there is a paucity of MSC data
to derive PNECs for the majority of antibiotics and no
standardized and validated approach to determine an MSC.
Additionally, it is unclear whether these single‐species
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Table 1. (Continued )

Lowest
NOEC/EC10 PNEC‐ENV PNEC‐MIC

Lowest
PNEC

Active pharmaceutical ingredient (µg/L) (µg/L) (µg/L) (µg/L)

Tilmicosin N/A N/A 1.0 1.0

Tobramycin 51 5.1 1.0 1.0

Trimethoprim 1000 100 0.5 0.5

Trovafloxacin N/A N/A 0.03 0.03

Tylosin 10 1.0 4.0 1.0

Vancomycin N/A N/A 8.0 8.0

Viomycin N/A N/A 2.0 2.0

Virginiamycin N/A N/A 2.00 2.0

N/A = not applicable; NOEC = no observed effect concentration; PNEC‐ENV = environmental predicted no‐effect concentration; PNEC‐MIC = minimum
inhibitory predicted no‐effect concentration.
a Indicates cyanobacteria data not available.
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standard lab tests are relevant to environmental exposures
involving microbial populations in natural conditions (Murray
et al. 2018). Methods to determine MSCs also require a
priori knowledge of the resistance mechanisms and will not
capture unknown types of AMR.

3) Microbial communities cannot confer resistance without
the dissemination of antibiotic resistance genes (ARGs)
or mobile genetic elements (MGEs), and it has been
proposed that ARGs are a form of genetic pollution in
their own right (Pruden et al. 2006). As such, measure-
ments of ARGs and MGEs in the environment could lend
insight into the potential for gene transfer and for other
members of a microbial community to become resistant.
However, quantifying the environmental and human
health risks associated with the relative abundance of
specific ARGs within a given environmental sample or
discharge requires further investigation before they can
be used to define environmental protection goals (Smalla
et al. 2018). Further research is also required to
determine the dominant routes for transfer of ARGs
between environmental and pathogenic bacteria such
that they may cause resistant infectious disease in
humans. Jechalke et al. (2014) concluded that the
amount of bacteria carrying transferable ARGs is higher
when exposed to pollutants, and that when selective
pressures are reduced or eliminated, the proportion of
the population that carries antibiotic resistance plasmids
is reduced. Additional research on ARGs and MGEs is
recommended by Larsson et al. (2018), specifically
to gain better understanding of the relative contributions
of various sources of antibiotics and antibiotic resistant
bacteria in the environment, as well as how anthropo-
genic sources can impact the evolution of resistance.

Considering the information presently available and the
urgent need for action, it is our view that both the
environmental PNECs (PNEC‐ENVs) and the PNECs devel-
oped by Bengtsson‐Palme and Larsson (2016) (PNEC‐MICs)
should be considered when assessing discharges at anti-
biotic production facilities. We recommend using the lower
of the 2 values to be protective of our ecological resources,
and also to lower the pressure for the evolution, selection,
and maintenance of AMR in the environment (Table 1). It is
also clear that in order to meet many of these PNEC values,
best practices as presented in the framework (commitment
2) will need to be implemented.
xWe also advocate that the comparison point is the

predicted or measured concentration in the receiving
aquatic environment, which is consistent with current
practices (EU WFD European Union Water Framework
Directive 2018). Using the wastewater treatment plant as
the assessment point makes less sense to us because it
would preclude the opportunity for treatment to partially or
fully degrade those antibiotics that are known to be
removed at least in part during wastewater treatment and
would limit the potential for AMR selection to a “contained”
or “engineered” environment.

These recommended target concentrations are being
shared publicly via the AMR Alliance webpage (AMR
Industry Alliance 2017a). It is important to reiterate that
the values are recommended based on currently available
information and, thus, may change as new information
comes to light. Therefore, they should not be considered
definitive and users should remain flexible and aware,
considering changes in our understanding of how AMR
occurs and the role of environment. Besides their use for
manufacturing operations, these PNECs may also inform risk
assessments in other environmental domains such as
municipal or agricultural wastes with due consideration of
other contributions to AMR above and beyond the presence
of antibiotics alone (e.g., metals or biocides).

In conclusion, the publication of these targets fulfills a
critical societal need identified by the United Nations and
collaborating organizations to address some of the environ-
mental concerns posed by AMR. We welcome opportunities
to engage in scientific discussion with all stakeholders with
the aims of expanding the knowledge base, developing and
improving ways to assess risks, and optimizing strategies to
deal with AMR, without compromising patient access to
necessary medicines.
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